Data Structures - Week \#10

Graphs \& Graph
 Algorithms

Outline

- Motivation for Graphs
- Definitions
- Representation of Graphs
- Topological Sort
- Breadth-First Search (BFS)
- Depth-First Search (DFS)
- Single-Source Shortest Path Problem (SSSP)
- Dijkstra's Algorithm
- Minimum Spanning Trees
- Prim's Algorithm
- Kruskal’s Algorithm

Graphs \& Graph Algorithms

Motivation

- Graphs are useful structures for solving many problems computer science is interested in including but not limited to
- Computer and telephony networks
- Game theory
- Implementation of automata

Graph Definitions

- A graph $G=(V, E)$ consists a set of vertices V and a set of edges E.
- An edge $(v, w) \in E$ has a starting vertex v and and ending vertex w. An edge sometimes is called an arc.
- If the pair is ordered, then the graph is directed. Directed graphs are also called digraphs.
- Graphs which have a third component called a weight or cost associated with each edge are called weighted graphs.

Adjacency Set and Being Adjacent

- Vertex v is adjacent to u iff $(u, v) \in E$. In an undirected graph with $e=(u, v), u$ and v are adjacent to each other.
- In Fig. 6.1, the vertices v, w and x form the adjacency set of u or

$$
\operatorname{Adj}(u)=\{v, w, x\} .
$$

More Definitions

- A cycle is a path such that the vertex at the destination of the last edge is the source of the first edge.
- A digraph is acyclic iff it has no cycles in it.
- In-degree of a vertex is the number of edges arriving at that vertex.
- Out-degree of a vertex is the number of edges leaving that vertex.

Path Definitions

- A path in a graph is a sequence of vertices w_{1}, w_{2}, \ldots, w_{n} where each edge $\left(w_{i}, w_{i+1}\right) \in E$ for $l \leq i<n$.
- The length of a path is the number of edges on the path, (i.e., $n-1$ for the above path). A path from a vertex to itself, containing no edges has a length 0 .
- An edge (v, v) is called a loop.
- A simple path is one in which all vertices, except possibly the first and the last, are distinct.

Connectedness

An undirected graph is connected if there exists a path from every vertex to every other vertex.

- A digraph with the same property is called strongly connected.
- If a digraph is not strongly connected, but the underlying graph (i.e., the undirected graph with the same topology) is connected, then the digraph is said to be weakly connected.
- A graph is complete if there is an edge between every pair of vertices.

Representation of Graphs

- Two ways to represent graphs:
- Adjacency matrix representation
-Adjacency list representation

Adjacency Matrix Representation

- Assume you have n vertices.
- In a boolean array with n^{2} elements, where each element represents the connection of a pair of vertices, you assign true to those elements that are connected by an edge and false to others.
- Good for dense graphs!
- Not very efficient for sparse (i.e., not dense) graphs.
- Space requirement: $O\left(|V|^{2}\right)$.

Adjacency matrix re (AMR)

	1	2	3	4	5	6	7	8	9
1	∞	7	∞	8	9	∞	∞	3	∞
2	∞	∞	5	∞	∞	4	9	∞	3
3	∞	∞	∞	6	∞	∞	∞	∞	∞
4	∞	5							
5	∞	4	7	∞	∞	8	3	6	∞
6	∞	7							
7	∞	4	6						
8	∞	1							
9	∞	3							

Disadvantage: Waste of space for sparse graphs Advantage: Fast access

Adjacency List Representation

Assume you have n vertices.

- We employ an array with n elements, where $i^{\text {th }}$ element represents vertex i in the graph. Hence, element i is a header to a list of vertices adjacent to the vertex i.
- Good for sparse graphs
- Space requirement: $O(|E|+|V|)$.

Adjacency list representation (ALR)

array index: source vertex; first number: destination vertex; second number: cost of the corresponding edge

Disadvantage: Sequential search among edges of a node Advantage: Minimum space requirement

Topological Sort

- Topological sort is an ordering of vertices in an acyclic digraph such that if there is a path from v_{i} to v_{j}, then v_{j} appears after v_{i} in the ordering.
- Example: course prerequisite requirements.

Algorithm for Topological Sort*

```
Void Toposort ()
{
    Queue Q; int ctr=0; Vertex v,w;
    Q=createQueue(NumVertex);
    for each vertex v
        if (indegree[v] == 0) enqueue(v,Q);
    while (!IsEmpty(Q)) {
    v=dequeue(Q); topnum[v]=++ctr;
    for each w adjacent to v
        if (--indegree[w] == 0) enqueue(w,Q);
    }
    if (ctr != NumVertex) report error ('graph cyclic!')
    free queue;
}
*From [2]
```


An Example to Topological Sort

S
t

\mathbf{r}	\mathbf{v}	\mathbf{s}	\mathbf{x}	\mathbf{t}	\mathbf{w}	\mathbf{y}	\mathbf{u}	
$\mathbf{T N}$	$\mathbf{0}$	1	2	3	4	5		

An Example to Topological Sort

An Example to Topological Sort

r
s
t

x

\mathbf{r}	v	s	x	t	w	y	u	z
$\mathbf{0}$	1	2	3	4	5	6	7	

An Example to Topological Sort

r

s

t

\mathbf{u}

\mathbf{x}

Q
TN

\mathbf{r}	v	s	x	t	w	y	u	z
$\mathbf{0}$	1	2	3	4	5	6	7	8

Breadth-First Search (BFS)

- Given a graph, G, and a source vertex, s, breadth-first search (BFS) checks to discover every vertex reachable from s.
- BFS discovers vertices reachable from s in a breadth-first manner.
- That is, vertices a distance of k away from s are systematically discovered before vertices reachable from s through a path of length $k+1$.

Breadth-First Search (BFS)

- To follow how the algorithm proceeds, BFS colors each vertex white, gray or black.
- Unprocessed nodes are colored white while vertices discovered (encountered during search) turn to gray. Vertices processed (i.e., vertices with all neighbors discovered) become black.
- Algorithm terminates when all vertices are visited.

Algorithm for Breadth-First Search*

BFS(Graph G, Vertex s)
\{
// initialize all vertices
for each vertex $u \in V[G]-\{s\}$ \{ color [u]=white; $\operatorname{dist}[u]=\infty$; from[u]=NULL;
\}
color[s]=gray;
dist[s]=0;
from[s]=NULL;
$\mathrm{Q}=\{ \}$; enqueue (Q, s);
while (!isEmpty(Q)) \{ u=dequeue(Q); for each $v \in \operatorname{Adj}[u]$
if (color [v]==white) \{ color[v]=gray; $\operatorname{dist}[v]=\operatorname{dist}[u]+1$; from $[\mathrm{v}]=\mathrm{u}$; enqueue(Q, v); \}
color[u]=black;
\}
\}
*From [1]

An Example to BFS

Rest of Example

Depth-First Search (DFS)

- Unlike in BFS, depth-first search (DFS), performs a search going deeper in the graph.
- The search proceeds discovering vertices that are deeper on a path and looks for any left edges of the most recently discovered vertex u.
- If all edges of u are found, DFS backtracks to the vertex t which u was discovered from to find the remaining edges.

Algorithm for Depth-First Search*

DFS(Graph G, Vertex s) \{
// initialize all vertices
for each vertex $u \in V[G]\{$ color [u]=white; from $[u]=$ NULL;
\}
time $=0$;
for each vertex $u \in V[G]$
if (color [u]==white)
DFS-visit(u);
\}
DFS-visit(u)
\{
color[u]=gray; //u just discovered time++;
d[u]=time;
for each $v \in \operatorname{Adj}[u] / /$ check edge (u, v) if (color[v] == white) \{ from $[v]=u$; DFS-visit(v); //recursive call \}
color[u]=black; // u is done processing f[u] = time++;
*From [1]

Depth-First Search

- The function DFS() is a "manager" function calling the recursive function DFS-visit(u) for each vertex in the graph.
- DFS-visit(u) starts by graying the vertex u just discovered. Then it recursively visits and discovers (and hence grays) all those nodes v in the adjacency set of u, $\operatorname{Adj}[u]$. At the end, u is finished processing and turns to black.
- time in DFS-visit(u) time-stamps each vertex u when
$-u$ is discovered using $\mathrm{d}[\mathrm{u}]$
$-u$ is done processing using $\mathrm{f}[\mathrm{u}]$.

An example to DFS

Example cont'd...

Example cont'd...

End of Example

Single-Source Shortest Paths (SSSP)

- SSSP Problem:
- Given a weighted digraph $G(V, E)$, we need to efficiently find the shortest path

$$
p^{*}=\left(u_{i}, u_{i+1}, \ldots, u_{j}, \ldots, u_{k-1}, u_{k}\right)
$$

between two vertices u_{i} and u_{k}.

- The shortest path p^{*} is the path with the minimum weight among all paths $p_{l}=\left(u_{i}, \ldots, u_{k}\right)$, or

$$
w\left(p^{*}\right)=\min _{l}\left[w\left(p_{l}\right)\right]
$$

Dijkstra's Algorithm

- Dijkstra's algorithm solves the SSSP problem on a weighted digraph $G=(V, E)$ assuming no negative weights exist in G.
- Input parameters for Dijkstra's algorithm
- the graph G,
- the weights w,
- a source vertex s.
- It uses
- a set V_{F} holding vertices with final shortest paths from the source vertex s.
- from[u] and dist[u] for each vertex $u \in V$ as in BFS.
- A min-heap Q

Dijkstra's Algorithm

Dijkstra(Graph G, Weights w, Vertex s)
\{
for each vertex $u \in V[G]$ \{ dist $[u]=\infty$; from[u]=NULL; \}
dist [s]=0;
$V_{F}=\varnothing$;
$\mathrm{Q}=$ all vertices $\mathrm{u} \in V$;
while (!IsEmpty(Q)) \{
u=deletemin(Q);
add u to V_{F};
for each vertex $v \in \operatorname{Adj}(u)$
if $(\operatorname{dist}[v]>\operatorname{dist}[u]+w(u, v))\{$ $\operatorname{dist}[v]=\operatorname{dist}[u]+w(u, v))$; from $[v]=u$;
$\stackrel{3}{3 / / \text { end of while }}$
\} //end of function

Dijkstra's Algorithm - An Example

October 1, 2021
Borahan Tümer, Ph.D.

Dijkstra's Algorithm - An Example

October 1, 2021
Borahan Tümer, Ph.D.

Resulting Shortest Paths

Note that r is not reachable from s !

Minimum Spanning Trees (MSTs)

- Problem:
- Given a connected weighted undirected graph $G=(V, E)$, find an acyclic subset $S \subseteq E$, such that S connects all vertices in G and the sum of the weights of the edges in S are minimum.
- The solution to the problem is provided by a minimum spanning tree.

Minimum Spanning Trees (MSTs)

- MST is
- a tree since it connects all vertices by an acyclic subset of $S \subseteq E$,
- spanning since it spans the graph (connects all its vertices)
- minimum since its weights are minimized.

Prim's Algorithm

- Prim's algorithm operates similar to Dijkstra's algorithm to find shortest paths.
- Prim's algorithm proceeds always with a single tree.
- It starts with an arbitrary vertex t.
- It progressively connects an isolated vertex to the existing tree by adding the edge with the minimum possible weight to the tree.

Prim's Algorithm

Prim(Graph G, Weights w, Vertex t)
\{
for each vertex $u \in V[G]$ \{ dist $[u]=\infty$; from[u]=NULL;
\}
dist $[\mathrm{t}]=0$;
$V_{F}=\varnothing$;
$\mathrm{Q}=$ all vertices $\mathrm{u} \in V$;
while (!IsEmpty(Q)) \{ $\mathrm{u}=$ deletemin(Q); $\mathrm{O}(\mathrm{VIgV})$ add u to V_{F}; for each vertex $v \in \operatorname{Adj}(u) O(E)$ if $(v \in Q$ and $w(u, v)<\operatorname{dist}[v])\{$ $\operatorname{dist}[\mathrm{v}]=\mathrm{w}(\mathrm{u}, \mathrm{v}) ; \mathrm{O}(\mathrm{lgV})$ from $[v]=u$;

\} // end of while
3 //end of function

Running Time: $\mathbf{O}(\mathrm{V} \lg \mathrm{V}+\mathrm{E} \lg \mathrm{V})=\mathrm{O}(\mathrm{E} \lg \mathrm{V})$

Prim's Algorithm - Example

Two different MSTs!!!

Kruskal's Algorithm

- Kruskal's Algorithm is another greedy algorithm.
- It is about finding the least weight and connecting with that two trees in the forest.
- Initially, there exists a forest of many singlenode trees.

Kruskal's Algorithm

Kruskal(Graph G,
Weights w)
\{
for each vertex $u \in V[G]\{$ make each vertex to a single-element tree;
\}
sort edges in ascending order by their weight $w_{\text {, }}$
for each edge (u, v) $\in E$
if (u and v are in two different trees) \{ add (u, v) to the MST;

O(E IgE)
O(E)
$\operatorname{lgE}=\mathrm{O}(\mathrm{lg} V)$
since $|\mathrm{E}|<|\mathrm{V}|^{2}$ combine both trees;

$\underset{\text { dist }}{\substack{\} \\[u]}}=0$;
return;

Running Time: $\mathbf{O}(\mathrm{E} \lg \mathrm{E}+\mathrm{E})=\mathbf{O}(\mathrm{E} \lg \mathrm{E})=\mathbf{O}(\mathrm{E} \lg V)$

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example Two Alternatives

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example Two Alternatives

Kruskal's Algorithm - Example

Kruskal's Algorithm - Example

Edge not accepted! It builds a cycle!

Kruskal's Algorithm - Example Two Alternatives

Edge not accepted! It builds a cycle!

Kruskal's Algorithm - Example Two Alternatives

Kruskal's Algorithm - Example Two Alternatives

References

- [1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "Introduction to Algorithms," $2^{\text {nd }}$ Edition, 2003, MIT Press
- [2] M.A. Weiss, "Data Structures and Algorithm Analysis in C," $2^{\text {nd }}$ Edition, 1997, Addison Wesley

