
Data Structures – Week #2

Algorithm Analysis

&

Sparse Vectors/Matrices

&

Recursion

October 1, 2021 Borahan Tümer 2

Outline

 Performance of Algorithms

 Performance Prediction (Order of Algorithms)

 Examples

 Exercises

 Sparse Vectors/Matrices

 Recursion

 Recurrences

Algorithm Analysis

October 1, 2021 Borahan Tümer 4

Performance of Algorithms

 Algorithm: a finite sequence of instructions that the computer follows
to solve a problem.

 Algorithms solving the same problem may perform differently.
Depending on resource requirements an algorithm may be feasible or
not. To find out whether or not an algorithm is usable or relatively
better than another one solving the same problem, its resource
requirements should be determined.

 The process of determining the resource requirements of an algorithm
is called algorithm analysis.

 Two essential resources, hence, performance criteria of algorithms are

 execution or running time

 memory space used.

October 1, 2021 Borahan Tümer 5

Performance Assessment - 1

 Execution time of an algorithm is hard to assess

unless one knows

 the intimate details of the computer architecture,

 the operating system,

 the compiler,

 the quality of the program,

 the current load of the system and

 other factors.

October 1, 2021 Borahan Tümer 6

Performance Assessment - 2

 Two ways to assess performance of an algorithm

 Execution time may be compared for a given algorithm

using some special performance programs called

benchmarks and evaluated as such.

 Growth rate of execution time (or memory space) of an

algorithm with the growing input size may be found.

October 1, 2021 Borahan Tümer 7

Performance Assessment - 3

 Here, we define the execution time or the memory

space used as a function of the input size.

 By “input size” we mean

 the number of elements to store in a data structure,

 the number of records in a file etc…

 the nodes in a LL or a tree or

 the nodes as well as connections of a graph

October 1, 2021 Borahan Tümer 8

Assessment Tools

 We can use the concept the “growth rate or order

of an algorithm” to assess both criteria. However,

our main concern will be the execution time.

 We use asymptotic notations to symbolize the

asymptotic running time of an algorithm in terms

of the input size.

October 1, 2021 Borahan Tümer 9

Asymptotic Notations

 We use asymptotic notations to symbolize the asymptotic
running time of an algorithm in terms of the input size.

 The following notations are frequently used in algorithm
analysis:

 O (Big Oh) Notation (asymptotic upper bound)

 Ω (Omega) Notation (asymptotic lower bound)

 Θ (Theta) Notation (asymptotic tight bound)

 o (little Oh) Notation (upper bound that is not asymptotically tight)

 ω (omega) Notation (lower bound that is not asymptotically tight)

 Goal: To find a function that asymptotically limits the
execution time or the memory space of an algorithm.

October 1, 2021 Borahan Tümer 10

O-Notation (“Big Oh”)

Asymptotic Upper Bound

 Mathematically expressed, the “Big Oh” (O())
concept is as follows:

 Let g: N R* be an arbitrary function.

 O(g(n)) = {f: N R* | (c R+)(n0 N)(n
n0) [f(n) cg(n)]},

 where R* is the set of nonnegative real numbers
and R+ is the set of strictly positive real
numbers (excluding 0).

October 1, 2021 Borahan Tümer 11

O-Notation by words

 Expressed by words; O(g(n)) is the set of all functions f(n) mapping
() integers (N) to nonnegative real numbers (R*) such that (|) there
exists a positive real constant c (c R+) and there exists an integer
constant n0 (n0 N) such that for all values of n greater than or equal
to the constant (n n0), the function values of f(n) are less than or
equal to the function values of g(n) multiplied by the constant c (f(n)
cg(n)).

 In other words, O(g(n)) is the set of all functions f(n) bounded above
by a positive real multiple of g(n), provided n is sufficiently large
(greater than n0). g(n) denotes the asymptotic upper bound for the
running time f(n) of an algorithm.

October 1, 2021 Borahan Tümer 12

O-Notation (“Big Oh”)

Asymptotic Upper Bound

October 1, 2021 Borahan Tümer 13

Θ-Notation (“Theta”)

Asymptotic Tight Bound

 Mathematically expressed, the “Theta” (Θ())
concept is as follows:

 Let g: N R* be an arbitrary function.

 Θ(g(n)) = {f: N R* | (c1,c2 R+)(n0 N)(n n0)

[0 c1g(n) f(n) c2g(n)]},

 where R* is the set of nonnegative real numbers
and R+ is the set of strictly positive real
numbers (excluding 0).

October 1, 2021 Borahan Tümer 14

Θ-Notation by words

 Expressed by words; A function f(n) belongs to the set
Θ(g(n)) if there exist positive real constants c1 and c2

(c1,c2R+) such that it can be sandwiched between c1g(n)
and c2g(n) ([0 c1gn) f(n) c2g(n)]), for sufficiently large n
(n n0).

 In other words, Θ(g(n)) is the set of all functions f(n)
tightly bounded below and above by a pair of positive real
multiples of g(n), provided n is sufficiently large (greater
than n0). g(n) denotes the asymptotic tight bound for the
running time f(n) of an algorithm.

October 1, 2021 Borahan Tümer 15

Θ-Notation (“Theta”)

Asymptotic Tight Bound

October 1, 2021 Borahan Tümer 16

Ω-Notation (“Big-Omega”)

Asymptotic Lower Bound

 Mathematically expressed, the “Omega” (Ω()) concept is

as follows:

 Let g: N R* be an arbitrary function.

 Ω(g(n)) = {f: N R* | (c R+)(n0 N)(n n0)

[0 cg(n) f(n)]},

 where R* is the set of nonnegative real numbers and R+

is the set of strictly positive real numbers (excluding 0).

October 1, 2021 Borahan Tümer 17

Ω-Notation by words

 Expressed by words; A function f(n) belongs to the set

Ω(g(n)) if there exists a positive real constant c (cR+)

such that f(n) is greater than or equal to cg(n) ([0 cg(n)

f(n)]), for sufficiently large n (n n0).

 In other words, Ω(g(n)) is the set of all functions t(n)

bounded below by a positive real multiple of g(n),

provided n is sufficiently large (greater than n0). g(n)

denotes the asymptotic lower bound for the running time

f(n) of an algorithm.

October 1, 2021 Borahan Tümer 18

Ω-Notation (“Big-Omega”)

Asymptotic Lower Bound

October 1, 2021 Borahan Tümer 19

o-Notation (“Little Oh”)

Upper bound NOT Asymptotically Tight

 “o” notation does not reveal whether the function f(n) is a

tight asymptotic upper bound for t(n) (t(n) cf(n)).

 “Little Oh” or o notation provides an upper bound that

strictly is NOT asymptotically tight.

 Mathematically expressed;

 Let f: N R* be an arbitrary function.

 o(f(n)) = {t: N R* | (c R+)(n0 N)(n n0) [t(n)<

cf(n)]},

 where R* is the set of nonnegative real numbers and R+ is the set

of strictly positive real numbers (excluding 0).

October 1, 2021 Borahan Tümer 20

ω-Notation (“Little-Omega”)

Lower Bound NOT Asymptotically Tight

 ω concept relates to Ω concept in analogy to the relation of “little-Oh”
concept to “big-Oh” concept.

 “Little Omega” or ω notation provides a lower bound that strictly is
NOT asymptotically tight.

 Mathematically expressed, the “Little Omega” (ω()) concept is as
follows:

 Let f: N R* be an arbitrary function.

 ω(f(n)) = {t: N R* | (c R+)(n0 N)(n n0) [cf(n) < t(n)]},

 where R* is the set of nonnegative real numbers and R+ is the set
of strictly positive real numbers (excluding 0).

October 1, 2021 Borahan Tümer 21

Asymptotic Notations
Examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

1

2

3

4

5

6

7
x 10

5

0.011n2 -----> c*f(n)

0.01n2+5+log(n+2) -----> t(n)

0.009 n2 -----> d*f(n)

50n -----> a*g(n)

0.000005 n3 -----> b*h(n)

b*h(n)

c*f(n)

t(n)

d*f(n)

a*g(n)

Upper bound not asymptotically tight

Asymptotic upper bound

Lower bound not asymptotically tight

Asymptotic lower bound

Execution time of algorithm

t(n) O(f(n))

t(n) O(h(n))

t(n) Θ(f(n))

t(n) Θ(h(n))

t(n) Θ(g(n))

t(n) Ω(f(n))

t(n) Ω(g(n))

t(n) o(h(n))

t(n) o(f(n))

t(n) ω(g(n))

t(n) ω(f(n))

October 1, 2021 Borahan Tümer 22

Execution time of various structures

 Simple Statement

O(1), executed within a constant amount of time

irresponsive to any change in input size.

 Decision (if) structure

if (condition) f(n) else g(n)

O(if structure)=max(O(f(n)),O(g(n))

 Sequence of Simple Statements

O(1), since O(f1(n)++fs(n))=O(max(f1(n),,fs(n)))

October 1, 2021 Borahan Tümer 23

Execution time of various structures

 O(f1(n)++fs(n))=O(max(f1(n),,fs(n))) ???

 Proof:

t(n) O(f1(n)++fs(n)) t(n) c[f1(n)+…+fs(n)]

 sc*max [f1(n),…, fs(n)], sc another constant.

 t(n) O(max(f1(n),,fs(n)))

Hence, hypothesis follows.

October 1, 2021 Borahan Tümer 24

Execution Time of Loop

Structures

 Loop structures’ execution time depends upon

whether or not their index bounds are related to

the input size.

 Assume n is the number of input records

 for (i=0; i<=n; i++) {statement block}, O(?)

 for (i=0; i<=m; i++) {statement block}, O(?)

October 1, 2021 Borahan Tümer 25

Examples

Find the execution time t(n) in terms of n!

for (i=0; i<=n; i++)

for (j=0; j<=n; j++)

statement block;

for (i=0; i<=n; i++)

for (j=0; j<=i; j++)

statement block;

for (i=0; i<=n; i++)

for (j=1; j<=n; j*=2)

statement block;

October 1, 2021 Borahan Tümer 26

Examples

October 1, 2021 Borahan Tümer 27

Exercises

Find the number of times the statement block is executed!

for (i=0; i<=n; i++)

for (j=1; j<=i; j*=2)

statement block;

for (i=1; i<=n; i*=3)

for (j=1; j<=n; j*=2)

statement block;

Sparse Vectors and Matrices

October 1, 2021 Borahan Tümer 29

Motivation

 In numerous applications, we may have to process
vectors/matrices which mostly contain trivial information
(i.e., most of their entries are zero!). This type of
vectors/matrices are defined to be sparse.

 Storing sparse vectors/matrices as usual (e.g., matrices in a
2D array or a vector a regular 1D array) causes wasting
memory space for storing trivial information.

 Example: What is the space requirement for a matrix mnxn

with only non-trivial information in its diagonal if

 it is stored in a 2D array;

 in some other way? Your suggestions?

October 1, 2021 Borahan Tümer 30

Sparse Vectors and Matrices

 This fact brings up the question:

May the vector/matrix be stored in

MM avoiding waste of memory space?

October 1, 2021 Borahan Tümer 31

Sparse Vectors and Matrices

 Assuming that the vector/matrix is static (i.e., it

is not going to change throughout the execution

of the program), we should study two cases:

1. Non-trivial information is placed in the

vector/matrix following a specific order;

2. Non-trivial information is randomly placed in the

vector/matrix.

October 1, 2021 Borahan Tümer 32

Case 1: Info. follows an order

 Example structures:

 Triangular matrices (upper or lower triangular matrices)

 Symmetric matrices

 Band matrices

 Any other types ...?

October 1, 2021 Borahan Tümer 33

Triangular Matrices

nn

n

n

n

m

mm

mmm

mmmm

m

0000

000

00

0

333

22322

1131211

Upper Triangular Matrix

nnnnn mmmm

mmm

mm

m

m

321

333231

2221

11

0

00

000

Lower Triangular Matrix

October 1, 2021 Borahan Tümer 34

Symmetric and Band Matrices

nnnnn

n

n

n

mmmm

mmmm

mmmm

mmmm

m

321

3332313

2232212

1131211

Symmetric Matrix

nnnn

nn

mm

m

mm

mmm

mm

m

1,

,1

3332

232221

1211

00

00

0

00

Band Matrix

October 1, 2021 Borahan Tümer 35

Case 1:How to Efficiently Store...

 Store only the non-trivial information in a 1-dim

array a;

 Find a function f mapping the indices of the 2-dim

matrix (i.e., i and j) to the index k of 1-dim array a,

or

such that

k=f(i,j)

0

2

0: NNf

October 1, 2021 Borahan Tümer 36

Case 1: Example for Lower

Triangular Matrices

nnnnn

ij

mmmm

m

mmm

mm

m

m

321

333231

2221

11

0

00

000

m11 m21 m22 m31 m32 m33 mn1 mn2 mn3 mnn

k 0 1 2 3 4 5 n(n-1)/2

k=f(i,j)=i(i-1)/2+j-1

mij = a[i(i-1)/2+j-1]

October 1, 2021 Borahan Tümer 37

Case 1: Example for Upper

Triangular Matrices

m11 m12 m13 … m1n m22 m2n m33 m3n mnn

k 0 1 2 … n-1 n 2n-2 2n-1…3n-4… n(n+1)/2-1

nn

n

n

n

m

mm

mmm

mmmm

m

000

000

00

0

333

22322

1131211

m11 at k=0 m1j at k=j-1

m22 at k=n m2j at k=n+j-2

m33 at k=2n-1 m3j at k=2n-1+j-3

m44 at k=3n-3 m4j at k=3n-3+j-4

m55 at k=4n-6 m5j at k=4n-6+j-5

m66 at k=5n-10 m5j at k=5n-10+j-6

…

mii at k=(i-1)n-(i-2)(i-1)/2 mij at k=(i-1)n- (i-2)(i-1)/2+j-i

October 1, 2021 Borahan Tümer 38

Case 2: Non-trivial Info.

Randomly Located

00

000

00

000

de

g

c

fb

a

m

Example:

October 1, 2021 Borahan Tümer 39

Case 2:How to Efficiently Store...

 Store only the non-trivial information in a 1-dim

array a along with the entry coordinates.

 Example:

a;0,0 b;1,1 f;1,n-1 c;2,1 g;i,j e;n-1,0 d;n-1,2a

Recursion

October 1, 2021 Borahan Tümer 41

Recursion

Definition:

Recursion is a mathematical concept referring

to programs or functions calling or using

itself.

A recursive function is a functional piece of

code that invokes or calls itself.

October 1, 2021 Borahan Tümer 42

Recursion

Concept:

 A recursive function divides the problem into two

conceptual pieces:

 a piece that the function knows how to solve (base

case),

 a piece that is very similar to, but a little simpler than,

the original problem, hence still unknown how to solve

by the function (call(s) of the function to itself).

October 1, 2021 Borahan Tümer 43

Recursion… cont’d

 Base case: the simplest version of the problem

that is not further reducible. The function actually

knows how to solve this version of the problem.

 To make the recursion feasible, the latter piece

must be slightly simpler.

October 1, 2021 Borahan Tümer 44

Recursion Examples

 Towers of Hanoi

 Story: According to the legend, the life on the

world will end when Buddhist monks in a Far-

Eastern temple move 64 disks stacked on a peg in

a decreasing order in size to another peg. They

are allowed to move one disk at a time and a

larger disk can never be placed over a smaller one.

October 1, 2021 Borahan Tümer 45

Towers of Hanoi… cont’d

Algorithm:

Hanoi(n,i,j)

// moves n smallest rings from rod i to rod j

F0A0 if (n > 0) {

//moves top n-1 rings to intermediary rod (6-i-j)

F0A2 Hanoi(n-1,i,6-i-j);

//moves the bottom (nth largest) ring to rod j

F0A5 move i to j

// moves n-1 rings at rod 6-i-j to destination rod j

F0A8 Hanoi(n-1,6-i-j,j);

F0AB }

October 1, 2021 Borahan Tümer 49

Towers of Hanoi… cont’d

Example: Hanoi(4,i,j)
4 1 3

3 1 2

2 1 3

1 1 2

0 1 3

12
0 3 2

13
1 2 3

0 2 1

23
0 1 3

12
2 3 2

1 3 1

0 3 2

31
0 2 1

32
1 1 2

0 1 3

12
0 3 2

13

3 2 3

2 2 1

1 2 3

0 2 1

23
0 1 3

21
1 3 1

0 3 2

31
0 2 1

23
2 1 3

1 1 2

0 1 3

12
0 3 2

13
1 2 3

0 2 1

23
0 1 3

October 1, 2021 Borahan Tümer 50

Towers of Hanoi… cont’d

4 1 3 start
3 1 2 start
2 1 3 start
1 1 2 start

13

12 13

1 2 3 start
1 2 3 end

2 1 3 end1 1 2 end

23 12

2 3 2 start

1 3 1 start

31

1 3 1 end

32

1 1 2 start

12

3 1 2 end
2 3 2 end
1 1 2 end

3 2 3 start
2 2 1 start
1 2 3 start

23

1 2 3 end

21

1 3 1 start
2 2 1 end
1 3 1 end

31 23

2 1 3 start
1 1 2 start

12

1 1 2 end

13

1 2 3 start

23 4 1 3 end
3 2 3 end
2 1 3 end
1 2 3 end

October 1, 2021 Borahan Tümer 51

Recursion Examples

 Fibonacci Series

 tn= tn-1 + tn-2; t0=0; t1=1

 Algorithm

long int fib(n)

{

if (n==0 || n==1)

return n;

else

return fib(n-1)+fib(n-2);

}

October 1, 2021 Borahan Tümer 52

Fibonacci Series… cont’d

 Tree of recursive function

calls for fib(5)

 Any problems???

October 1, 2021 Borahan Tümer 53

Fibonacci Series… cont’d

 Redundant function calls slow the execution

down.

 A lookup table used to store the Fibonacci values

already computed saves redundant function

executions and speeds up the process.

 Homework: Write fib(n) with a lookup table!

Recurrences

October 1, 2021 Borahan Tümer 55

Recurrences or Difference Equations

 Homogeneous Recurrences

 Consider a0 tn + a1tn-1 + … + ak tn-k = 0.

 The recurrence

 contains ti values which we are looking for.

 is a linear recurrence (i.e., ti values appear alone, no

powered values, divisions or products)

 contains constant coefficients (i.e., ai).

 is homogeneous (i.e., RHS of equation is 0).

October 1, 2021 Borahan Tümer 56

Homogeneous Recurrences

We are looking for solutions of the form:

tn = xn

Then, we can write the recurrence as

a0 x
n + a1x

n-1+ … + ak x
n-k = 0

 This kth degree equation is the characteristic equation

(CE) of the recurrence.

October 1, 2021 Borahan Tümer 57

Homogeneous Recurrences

If ri, i=1,…, k, are k distinct roots of a0 x
k + a1 x

k-1+ … + ak = 0,

then

If ri, i=1,…, k, is a single root of multiplicity k, then

k

i

n

iin rct
1

k

i

ni

in rnct
1

1

October 1, 2021 Borahan Tümer 58

Inhomogeneous Recurrences

Consider

 a0 tn + a1tn-1 + … + ak tn-k = bn p(n)

 where b is a constant; and p(n) is a polynomial in

n of degree d.

October 1, 2021 Borahan Tümer 59

Inhomogeneous Recurrences

Generalized Solution for Recurrences

Consider a general equation of the form

(a0 tn + a1tn-1 + … + ak tn-k) = b1
n p1(n) + b2

n p2(n) + …

We are looking for solutions of the form:

tn = xn

Then, we can write the recurrence as

where di is the polynomial degree of polynomial pi(n).

This is the characteristic equation (CE) of the recurrence.

 0
1

2

1

1

1

10
21

dd

k

kk bxbxaxaxa

October 1, 2021 Borahan Tümer 60

Generalized Solution for

Recurrences

If ri, i=1,…, k, are k distinct roots of

(a0 x
k + a1 x

k-1+ … + ak)=0

12
2

2

2111

11
1

1

1

 from

2

1

22322

 from

1

1

11211

1

d

d

bx

nd

ddk

n

dk

n

dk

bx

nd

dk

n

k

n

k

k

i

n

iin

bncnbcbc

bncnbcbcrct

October 1, 2021 Borahan Tümer 61

Examples

Homogeneous Recurrences

Example 1.

tn + 5tn-1 + 4 tn-2 = 0; sol’ns of the form tn = xn

xn + 5xn-1+ 4xn-2 = 0; (CE) n-2 trivial sol’ns (i.e., x1,...,n-2=0)

(x2+5x+4) = 0; characteristic equation (simplified CE)

x1=-1; x2=-4; nontrivial sol’ns

 tn = c1(-1)n+ c2(-4)n ; general sol’n

October 1, 2021 Borahan Tümer 62

Examples

Homogeneous Recurrence

Example 2.

tn-6 tn-1+12tn-2-8tn-3=0; tn = xn

xn-6xn-1+12xn-2-8xn-3= 0; n-3 trivial sol’ns

CE: (x3-6x2+12x-8) = (x-2)3= 0; by polynomial division

x1= x2= x3 = 2; roots not distinct!!!

 tn = c12
n+ c2n2n + c3n

22n; general sol’n

October 1, 2021 Borahan Tümer 63

Examples

Homogeneous Recurrence

Example 3.

tn = tn-1+ tn-2; Fibonacci Series

xn-xn-1-xn-2 = 0; CE: x2-x-1 = 0;

; distinct roots!!!

; general sol’n!!

We find coefficients ci using initial values t0 and t1 of

Fibonacci series on the next slide!!!

2

51
2,1

x

nn

n cct

2

51

2

51
21

October 1, 2021 Borahan Tümer 64

Examples

Example 3… cont’d

We use as many ti values

as ci

Check it out using t2!!!

5

1
,

5

1

2

51

2

51

2

51

2

51
1

0
2

51

2

51
0

2111

1

2

1

11

2121

0

2

0

10

cccccct

cccccct

nn

nt

2

51

5

1

2

51

5

1

October 1, 2021 Borahan Tümer 65

Examples

Example 3… cont’d

What do n and tn represent?
n is the location and tn the value of any Fibonacci number in the series.

October 1, 2021 Borahan Tümer 66

Examples

Example 4.

tn = 2tn-1 - 2tn-2; n 2; t0 = 0; t1 = 1;

CE: x2-2x+2 = 0;

Complex roots: x1,2=1i

As in differential equations, we represent the complex roots as a

vector in polar coordinates by a combination of a real radius r

and a complex argument :

z=r*e i;

Here,

1+i=2 * e(/4)i

1-i=2 * e(-/4)i

October 1, 2021 Borahan Tümer 67

Examples

Example 4… cont’d

Solution:

tn = c1 (2)n/2 e(n/4)i + c2 (2)n/2 e(-n/4)i;

From initial values t0 = 0, t1 = 1,

tn = 2n/2 sin(n/4); (prove that!!!)

Hint:

ninie

ie

nin

i

sincossincos

sincos

October 1, 2021 Borahan Tümer 68

Examples

Inhomogeneous Recurrences

Example 1. (From Example 3)

We would like to know how many times fib(n)

on page 22 is executed in terms of n. To find out:

1. choose a barometer in fib(n);

2. devise a formula to count up the number of

times the barometer is executed.

October 1, 2021 Borahan Tümer 69

Examples

Example 1… cont’d

In fib(n), the only statement is the if statement.

Hence, if condition is chosen as the barometer.

Suppose fib(n) takes tn time units to execute,

where the barometer takes one time unit and the

function calls fib(n-1) and fib(n-2), tn-1 and tn-2,

respectively. Hence, the recurrence to solve is

tn = tn-1 + tn-2 + 1

October 1, 2021 Borahan Tümer 70

Examples

Example 1… cont’d

tn - tn-1 - tn-2 = 1; inhomogeneous recurrence

The homogeneous part comes directly from

Fibonacci Series example on page 52.

RHS of recurrence is 1 which can be expressed

as 1nx0. Then, from the equation on page 48,

CE: (x2-x-1)(x-1) = 0; from page 49,

n

nn

n ccct 1
2

51

2

51
321

October 1, 2021 Borahan Tümer 71

Examples

Example 1… cont’d

Now, we have to find c1,…,c3.

Initial values: for both n=0 and n=1, if condition is

checked once and no recursive calls are done.

For n=2, if condition is checked once and recursive

calls fib(1) and fib(0) are done.

 t0 = t1 = 1 and t2 = t0 + t1 + 1 = 3.

321
2

51

2

51
ccct

nn

n

October 1, 2021 Borahan Tümer 72

Examples

Example 1… cont’d

Here, tn provides the number of times the

barometer is executed in terms of n. Practically,

this number also gives the number of times fib(n) is

called.

;1
2

51

5

15

2

51

5

15

1;
5

15
;

5

15

3,1;
2

51

2

51

321

210321

nn

n

nn

n

t

ccc

tttccct

