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Performance of Algorithms

 Algorithm: a finite sequence of instructions that the computer follows 
to solve a problem. 

 Algorithms solving the same problem may perform differently.  
Depending on resource requirements an algorithm  may be feasible or 
not.  To find out whether or not an algorithm is usable or relatively 
better than another one solving the same problem, its resource 
requirements should be determined.  

 The process of determining the resource requirements of an algorithm
is called algorithm analysis.

 Two essential resources, hence, performance criteria of algorithms are

 execution or running time

 memory space used.
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Performance Assessment - 1

 Execution time of an algorithm is hard to assess 

unless one knows

 the intimate details of the computer architecture, 

 the operating system, 

 the compiler, 

 the quality of the program,

 the current load of the system and 

 other factors. 
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Performance Assessment - 2

 Two ways to assess performance of an algorithm

 Execution time may be compared for a given algorithm 

using some special performance programs called 

benchmarks and evaluated as such.

 Growth rate of execution time (or memory space) of an 

algorithm with the growing input size may be found.
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Performance Assessment - 3

 Here, we define the execution time or the memory 

space used as a function of the input size.

 By “input size” we mean

 the number of elements to store in a data structure, 

 the number of records in a file etc…

 the nodes in a LL or a tree or 

 the nodes as well as connections of a graph 
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Assessment Tools

 We can use the concept the “growth rate or order 

of an algorithm” to assess both criteria.  However, 

our main concern will be the execution time.

 We use asymptotic notations to symbolize the 

asymptotic running time of an algorithm in terms 

of the input size.
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Asymptotic Notations

 We use asymptotic notations to symbolize the asymptotic 
running time of an algorithm in terms of the input size.

 The following notations are frequently used in algorithm 
analysis:

 O (Big Oh) Notation (asymptotic upper bound)

 Ω (Omega) Notation (asymptotic lower bound)

 Θ (Theta) Notation (asymptotic tight bound)

 o (little Oh) Notation (upper bound that is not asymptotically tight)

 ω (omega) Notation (lower bound that is not asymptotically tight)

 Goal: To find a function that asymptotically limits the  
execution time or the memory space of an algorithm.
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O-Notation (“Big Oh”)

Asymptotic Upper Bound

 Mathematically expressed, the “Big Oh” (O())
concept is as follows:

 Let g: N  R* be an arbitrary function.  

 O(g(n)) = {f: N  R* | (c  R+)(n0  N)(n 
n0) [f(n) cg(n)]}, 

 where R* is the set of nonnegative real numbers 
and R+ is the set of strictly positive real 
numbers (excluding 0).
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O-Notation by words

 Expressed by words; O(g(n)) is the set of all functions f(n) mapping 
() integers (N) to nonnegative real numbers (R*) such that (|) there 
exists a positive real constant c (c  R+) and there exists an integer 
constant n0 (n0  N) such that for all values of n greater than or equal 
to the constant (n  n0), the function values of f(n) are less than or 
equal to the function values of g(n) multiplied by the constant c (f(n)
cg(n)). 

 In other words, O(g(n)) is the set of all functions f(n) bounded above 
by a positive real multiple of g(n), provided n is sufficiently large 
(greater than n0). g(n) denotes the asymptotic upper bound for the 
running time f(n) of an algorithm.
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O-Notation (“Big Oh”)

Asymptotic Upper Bound
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Θ-Notation (“Theta”)

Asymptotic Tight Bound

 Mathematically expressed, the “Theta” (Θ())
concept is as follows:

 Let g: N  R* be an arbitrary function.  

 Θ(g(n)) = {f: N  R* | (c1,c2  R+)(n0  N)(n  n0) 

[0  c1g(n) f(n) c2g(n)]}, 

 where R* is the set of nonnegative real numbers 
and R+ is the set of strictly positive real 
numbers (excluding 0).
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Θ-Notation by words

 Expressed by words; A function f(n) belongs to the set 
Θ(g(n)) if there exist positive real constants c1 and c2

(c1,c2R+) such that it can be sandwiched between c1g(n)
and c2g(n) ([0  c1gn) f(n) c2g(n)]), for sufficiently large n
(n  n0). 

 In other words, Θ(g(n)) is the set of all functions f(n)
tightly bounded below and above by a pair of positive real 
multiples of g(n), provided n is sufficiently large (greater 
than n0). g(n) denotes the asymptotic tight bound for the 
running time f(n) of an algorithm.
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Θ-Notation (“Theta”)

Asymptotic Tight Bound
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Ω-Notation (“Big-Omega”)

Asymptotic Lower Bound

 Mathematically expressed, the “Omega” (Ω()) concept is 

as follows:

 Let g: N  R* be an arbitrary function.  

 Ω(g(n)) = {f: N  R* | (c  R+)(n0  N)(n  n0) 

[0  cg(n) f(n)]}, 

 where R* is the set of nonnegative real numbers and R+

is the set of strictly positive real numbers (excluding 0).
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Ω-Notation by words

 Expressed by words; A function f(n) belongs to the set 

Ω(g(n)) if there exists a positive real constant c (cR+)

such that f(n) is greater than or equal to cg(n) ([0 cg(n)

f(n)]), for sufficiently large n (n  n0). 

 In other words, Ω(g(n)) is the set of all functions t(n)

bounded below by a positive real multiple of g(n), 

provided n is sufficiently large (greater than n0). g(n)

denotes the asymptotic lower bound for the running time 

f(n) of an algorithm.
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Ω-Notation (“Big-Omega”)

Asymptotic Lower Bound
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o-Notation (“Little Oh”)

Upper bound NOT Asymptotically Tight

 “o” notation does not reveal whether the function f(n) is a 

tight asymptotic upper bound for t(n) (t(n) cf(n)).

 “Little Oh” or o notation provides an upper bound that 

strictly is NOT asymptotically tight.

 Mathematically expressed;

 Let f: N  R* be an arbitrary function.  

 o(f(n)) = {t: N  R* | (c  R+)(n0  N)(n  n0) [t(n)<

cf(n)]}, 

 where R* is the set of nonnegative real numbers and R+ is the set 

of strictly positive real numbers (excluding 0).
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ω-Notation (“Little-Omega”)

Lower Bound NOT Asymptotically Tight

 ω concept relates to Ω concept in analogy to the relation of “little-Oh” 
concept  to “big-Oh” concept.

 “Little Omega” or ω notation provides a lower bound that strictly is 
NOT asymptotically tight.

 Mathematically expressed, the “Little Omega” (ω()) concept is as 
follows:

 Let f: N  R* be an arbitrary function.  

 ω(f(n)) = {t: N  R* | (c  R+)(n0  N)(n  n0) [cf(n) < t(n)]}, 

 where R* is the set of nonnegative real numbers and R+ is the set 
of strictly positive real numbers (excluding 0).
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Asymptotic Notations
Examples

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0
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0.011n2   -----> c*f(n)

0.01n2+5+log(n+2)  -----> t(n)

0.009 n2   -----> d*f(n)  

50n  -----> a*g(n)

0.000005 n3  -----> b*h(n)

b*h(n)

c*f(n)

t(n)

d*f(n)

a*g(n)

Upper bound not asymptotically tight

Asymptotic upper bound 

Lower bound not asymptotically tight

Asymptotic lower bound 

Execution time of algorithm 

t(n)  O(f(n))

t(n)  O(h(n))

t(n)  Θ(f(n))

t(n)  Θ(h(n))

t(n)  Θ(g(n))

t(n)  Ω(f(n))

t(n)  Ω(g(n))

t(n)  o(h(n))

t(n)  o(f(n))

t(n)  ω(g(n))

t(n)  ω(f(n))
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Execution time of various structures

 Simple Statement

O(1), executed within a constant amount of time 

irresponsive to any change in input size.

 Decision (if) structure

if (condition) f(n) else g(n)

O(if structure)=max(O(f(n)),O(g(n))

 Sequence of Simple Statements

O(1), since O(f1(n)++fs(n))=O(max(f1(n),,fs(n)))
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Execution time of various structures

 O(f1(n)++fs(n))=O(max(f1(n),,fs(n))) ???

 Proof:

t(n) O(f1(n)++fs(n))  t(n) c[f1(n)+…+fs(n)] 

 sc*max [f1(n),…, fs(n)], sc another constant.

 t(n) O(max(f1(n),,fs(n)))

Hence, hypothesis follows.
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Execution Time of Loop 

Structures

 Loop structures’ execution time depends upon 

whether or not their index bounds are related to 

the input size.

 Assume n is the number of input records

 for (i=0; i<=n; i++) {statement block}, O(?)

 for (i=0; i<=m; i++) {statement block}, O(?)
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Examples

Find the execution time t(n) in terms of n!

for (i=0; i<=n; i++) 

for (j=0; j<=n; j++)

statement block;

for (i=0; i<=n; i++) 

for (j=0; j<=i; j++)

statement block;

for (i=0; i<=n; i++) 

for (j=1; j<=n; j*=2)

statement block;
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Examples
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Exercises

Find the number of times the statement block is executed! 

for (i=0; i<=n; i++) 

for (j=1; j<=i; j*=2)

statement block;

for (i=1; i<=n; i*=3) 

for (j=1; j<=n; j*=2)

statement block;



Sparse Vectors and Matrices
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Motivation

 In numerous applications, we may have to process 
vectors/matrices which mostly contain trivial information 
(i.e., most of their entries are zero!).  This type of 
vectors/matrices are defined to be sparse.

 Storing sparse vectors/matrices as usual (e.g., matrices in a 
2D array or a vector a regular 1D array) causes wasting  
memory space for storing trivial information. 

 Example: What is the space requirement for a matrix mnxn

with only non-trivial information in its diagonal if

 it is stored in a 2D array;

 in some other way?  Your suggestions?
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Sparse Vectors and Matrices

 This fact brings up the question:

May the vector/matrix be stored in 

MM avoiding waste of memory space?
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Sparse Vectors and Matrices

 Assuming that the vector/matrix is static (i.e., it 

is not going to change throughout the execution 

of the program), we should study two cases:

1. Non-trivial information is placed in the 

vector/matrix following a specific order;

2. Non-trivial information is randomly placed in the 

vector/matrix. 
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Case 1: Info. follows an order

 Example structures:

 Triangular matrices (upper or lower triangular matrices)

 Symmetric matrices

 Band matrices

 Any other types ...?
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Triangular Matrices
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Symmetric and Band Matrices
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Case 1:How to Efficiently Store...

 Store only the non-trivial information in a 1-dim

array a;

 Find a function f mapping the indices of the 2-dim

matrix (i.e., i and j) to the index k of 1-dim array a, 

or

such that 

k=f(i,j)

0

2

0: NNf 
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Case 1: Example for Lower 

Triangular Matrices
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mij = a[i(i-1)/2+j-1]
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Case 1: Example for Upper 

Triangular Matrices

m11 m12 m13 … m1n m22 ..... m2n m33 m3n ...... mnn
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m22 at k=n m2j at k=n+j-2

m33 at k=2n-1 m3j at k=2n-1+j-3

m44 at k=3n-3 m4j at k=3n-3+j-4

m55 at k=4n-6 m5j at k=4n-6+j-5

m66 at k=5n-10 m5j at k=5n-10+j-6

…

mii at k=(i-1)n-(i-2)(i-1)/2 mij at k=(i-1)n- (i-2)(i-1)/2+j-i
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Case 2: Non-trivial Info. 

Randomly Located
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Case 2:How to Efficiently Store...

 Store only the non-trivial information in a 1-dim

array a along with the entry coordinates.

 Example:

a;0,0 b;1,1 f;1,n-1 c;2,1 g;i,j e;n-1,0 d;n-1,2a



Recursion
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Recursion

Definition:

Recursion is a mathematical concept referring

to programs or functions calling or using 

itself. 

A recursive function is a functional piece of

code that invokes or calls itself. 
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Recursion

Concept:

 A recursive function divides the problem into two 

conceptual pieces: 

 a piece that the function knows how to solve (base 

case), 

 a piece that is very similar to, but a little simpler than,

the original problem, hence still unknown how to solve 

by the function (call(s) of the function to itself). 
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Recursion… cont’d

 Base case: the simplest version of the problem 

that is not further reducible.  The function actually 

knows how to solve this version of the problem.

 To make the recursion feasible, the latter piece 

must be  slightly simpler.
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Recursion Examples

 Towers of Hanoi

 Story: According to the legend, the life on the 

world will end when Buddhist monks in a Far-

Eastern temple move 64 disks stacked on a peg in 

a decreasing order in size to another peg.  They 

are allowed to move one disk at a time and a 

larger disk can never be placed over a smaller one.
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Towers of Hanoi… cont’d

Algorithm:

Hanoi(n,i,j)

// moves n smallest rings from rod i to rod j

F0A0 if (n > 0) {

//moves top n-1 rings to intermediary rod (6-i-j) 

F0A2 Hanoi(n-1,i,6-i-j);

//moves the bottom (nth largest) ring to rod j

F0A5 move i to j

// moves n-1 rings at rod 6-i-j to destination rod j

F0A8 Hanoi(n-1,6-i-j,j);

F0AB }
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Towers of Hanoi… cont’d

Example: Hanoi(4,i,j)
4 1 3

3 1 2

2 1 3

1 1 2

0 1 3

12
0 3 2

13
1 2 3

0 2 1

23
0 1 3

12
2 3 2

1 3 1

0 3 2

31
0 2 1

32
1 1 2

0 1 3

12
0 3 2

13

3 2 3

2 2 1

1 2 3

0 2 1

23
0 1 3

21
1 3 1

0 3 2

31
0 2 1

23
2 1 3

1 1 2

0 1 3

12
0 3 2

13
1 2 3

0 2 1

23
0 1 3
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Towers of Hanoi… cont’d

    

    


   







4 1 3 start
3 1 2 start
2 1 3 start
1 1 2 start

13

12 13

1 2 3 start
1 2 3 end

2 1 3 end1 1 2 end

23 12

2 3 2 start

1 3 1 start

31

1 3 1 end

32

1 1 2 start

12

3 1 2 end
2 3 2 end
1 1 2 end

3 2 3 start
2 2 1 start
1 2 3 start

23

1 2 3 end

21

1 3 1 start
2 2 1 end 
1 3 1 end

31 23

2 1 3 start
1 1 2 start

12

1 1 2 end

13

1 2 3 start

23 4 1 3 end
3 2 3 end
2 1 3 end
1 2 3 end
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Recursion Examples

 Fibonacci Series

 tn= tn-1 + tn-2; t0=0; t1=1

 Algorithm

long int fib(n)

{

if (n==0 || n==1) 

return n;

else 

return fib(n-1)+fib(n-2);

}
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Fibonacci Series… cont’d

 Tree of recursive function 

calls for fib(5)

 Any problems???
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Fibonacci Series… cont’d

 Redundant function calls slow the execution 

down.

 A lookup table used to store the Fibonacci values 

already computed saves redundant function 

executions and speeds up the process.

 Homework: Write fib(n) with a lookup table!



Recurrences
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Recurrences or Difference Equations

 Homogeneous Recurrences

 Consider  a0 tn + a1tn-1 + … + ak tn-k = 0.

 The recurrence

 contains ti values which we are looking for.  

 is a linear recurrence (i.e., ti values appear alone, no 

powered values, divisions or products)

 contains constant coefficients (i.e., ai).

 is homogeneous (i.e., RHS of equation is 0).
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Homogeneous Recurrences

We are looking for solutions of the form:  

tn = xn

Then, we can write the recurrence as 

a0 x
n + a1x

n-1+ … + ak x
n-k = 0

 This kth degree equation is the characteristic equation 

(CE) of the recurrence.
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Homogeneous Recurrences

If ri, i=1,…, k, are k distinct roots of a0 x
k + a1 x

k-1+ … + ak = 0, 

then

If ri, i=1,…, k, is a single root of multiplicity k, then 





k

i

n

iin rct
1
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ni

in rnct
1
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Inhomogeneous Recurrences

Consider 

 a0 tn + a1tn-1 + … + ak tn-k = bn p(n) 

 where b is a constant; and p(n) is a polynomial in 

n of degree d. 
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Inhomogeneous Recurrences

Generalized Solution for Recurrences

Consider a general equation of the form

(a0 tn + a1tn-1 + … + ak tn-k ) = b1
n p1(n) + b2

n p2(n) + … 

We are looking for solutions of the form:

tn = xn

Then, we can write the recurrence as 

where di is the polynomial degree of polynomial pi(n).

This is the characteristic equation (CE) of the recurrence.
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Generalized Solution for 

Recurrences

If ri, i=1,…, k, are k distinct roots of 

(a0 x
k + a1 x

k-1+ … + ak)=0
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Examples

Homogeneous Recurrences

Example 1.

tn + 5tn-1 + 4 tn-2 = 0;   sol’ns of the form tn = xn

xn + 5xn-1+ 4xn-2 = 0; (CE)  n-2 trivial sol’ns (i.e., x1,...,n-2=0)

(x2+5x+4) = 0; characteristic equation (simplified CE)

x1=-1; x2=-4; nontrivial sol’ns

 tn = c1(-1)n+ c2(-4)n ;   general sol’n
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Examples

Homogeneous Recurrence

Example 2.

tn-6 tn-1+12tn-2-8tn-3=0;    tn = xn

xn-6xn-1+12xn-2-8xn-3= 0;   n-3 trivial sol’ns

CE: (x3-6x2+12x-8) = (x-2)3= 0; by polynomial division

x1= x2= x3 = 2; roots not distinct!!!

 tn = c12
n+ c2n2n + c3n

22n;   general sol’n
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Examples

Homogeneous Recurrence

Example 3.

tn = tn-1+ tn-2; Fibonacci Series 

xn-xn-1-xn-2 = 0;  CE: x2-x-1 = 0; 

; distinct roots!!!

; general sol’n!!

We find coefficients ci using initial values t0 and t1 of

Fibonacci series on the next slide!!!
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Examples

Example 3… cont’d

We use as many ti values

as ci

Check it out using t2!!!
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Examples

Example 3… cont’d

What do n and tn represent?
n is the location and tn the value of any Fibonacci number in the series.
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Examples

Example 4.

tn = 2tn-1 - 2tn-2;   n  2; t0 = 0; t1 = 1;

CE: x2-2x+2 = 0;

Complex roots: x1,2=1i

As in differential equations, we represent the complex roots as a 

vector in polar coordinates by a combination of a real radius r

and a complex argument :

z=r*e i;

Here, 

1+i=2 * e(/4)i

1-i=2 * e(-/4)i
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Examples

Example 4… cont’d

Solution:

tn = c1 (2)n/2 e(n/4)i + c2 (2)n/2 e(-n/4)i;

From initial values t0 = 0, t1 = 1, 

tn = 2n/2 sin(n/4);  (prove that!!!)

Hint: 
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Examples

Inhomogeneous Recurrences

Example 1. (From Example 3)

We would like to know how many times fib(n)

on page 22 is executed in terms of n. To find out:

1. choose a barometer in fib(n);

2. devise a formula to count up the number of 

times the barometer is executed.
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Examples

Example 1… cont’d

In fib(n), the only statement is the if statement.

Hence, if condition is chosen as the barometer.

Suppose fib(n) takes tn time units to execute,

where the barometer takes one time unit and the 

function calls fib(n-1) and fib(n-2), tn-1 and tn-2, 

respectively.  Hence, the recurrence to solve is

tn = tn-1 + tn-2 + 1
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Examples

Example 1… cont’d

tn - tn-1 - tn-2 = 1; inhomogeneous recurrence

The homogeneous part comes directly from

Fibonacci Series example on page 52.

RHS of recurrence is 1 which can be expressed

as 1nx0.  Then, from the equation on page 48,

CE: (x2-x-1)(x-1) = 0; from page 49,
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Examples

Example 1… cont’d

Now, we have to find c1,…,c3.

Initial values: for both n=0 and n=1, if condition is 

checked once and no recursive calls are done.  

For n=2, if condition is checked once and recursive 

calls fib(1) and fib(0) are done.

 t0 = t1 = 1 and t2 = t0 + t1 + 1 = 3. 
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Examples

Example 1… cont’d

Here, tn provides the number of times the 

barometer is executed in terms of n.  Practically, 

this number also gives the number of times fib(n) is 

called.
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