Data Structures - Week \#2

Algorithm Analysis

Sparse Vectors/Matrices
\&
Recursion

Outline

- Performance of Algorithms
- Performance Prediction (Order of Algorithms)
- Examples
- Exercises
- Sparse Vectors/Matrices
- Recursion
- Recurrences

Algorithm Analysis

Performance of Algorithms

- Algorithm: a finite sequence of instructions that the computer follows to solve a problem.
- Algorithms solving the same problem may perform differently. Depending on resource requirements an algorithm may be feasible or not. To find out whether or not an algorithm is usable or relatively better than another one solving the same problem, its resource requirements should be determined.
- The process of determining the resource requirements of an algorithm is called algorithm analysis.
- Two essential resources, hence, performance criteria of algorithms are
- execution or running time
- memory space used.

Performance Assessment - 1

- Execution time of an algorithm is hard to assess unless one knows
- the intimate details of the computer architecture,
- the operating system,
- the compiler,
- the quality of the program,
- the current load of the system and
- other factors.

Performance Assessment - 2

- Two ways to assess performance of an algorithm
- Execution time may be compared for a given algorithm using some special performance programs called benchmarks and evaluated as such.
- Growth rate of execution time (or memory space) of an algorithm with the growing input size may be found.

Performance Assessment - 3

- Here, we define the execution time or the memory space used as a function of the input size.
- By "input size" we mean
- the number of elements to store in a data structure,
- the number of records in a file etc...
- the nodes in a LL or a tree or
- the nodes as well as connections of a graph

Assessment Tools

- We can use the concept the "growth rate or order of an algorithm" to assess both criteria. However, our main concern will be the execution time.
- We use asymptotic notations to symbolize the asymptotic running time of an algorithm in terms of the input size.

Asymptotic Notations

- We use asymptotic notations to symbolize the asymptotic running time of an algorithm in terms of the input size.
- The following notations are frequently used in algorithm analysis:
- \boldsymbol{O} (Big Oh) Notation (asymptotic upper bound)
- $\boldsymbol{\Omega}$ (Omega) Notation (asymptotic lower bound)
- $\boldsymbol{\Theta}$ (Theta) Notation (asymptotic tight bound)
- o (little Oh) Notation (upper bound that is not asymptotically tight)
- $\boldsymbol{\omega}$ (omega) Notation (lower bound that is not asymptotically tight)
- Goal: To find a function that asymptotically limits the execution time or the memory space of an algorithm.

O-Notation ("Big Oh")

Asymptotic Upper Bound

- Mathematically expressed, the "Big Oh" $(O())$ concept is as follows:
- Let $g: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*}$ be an arbitrary function.
- $O(g(n))=\left\{f: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*} \mid\left(\exists c \in \boldsymbol{R}^{+}\right)\left(\exists n_{0} \in \boldsymbol{N}\right)(\forall n \geq\right.$ $\left.\left.n_{0}\right)[f(n) \leq c g(n)]\right\}$,
- where R^{*} is the set of nonnegative real numbers and \boldsymbol{R}^{+}is the set of strictly positive real numbers (excluding 0).

O-Notation by words

Expressed by words; $O(g(n))$ is the set of all functions $f(n)$ mapping (\rightarrow) integers (\boldsymbol{N}) to nonnegative real numbers $\left(\boldsymbol{R}^{*}\right)$ such that (\mid) there exists a positive real constant $c\left(\exists c \in \boldsymbol{R}^{+}\right)$and there exists an integer constant $n_{0}\left(\exists n_{0} \in N\right)$ such that for all values of n greater than or equal to the constant $\left(\forall n \geq n_{0}\right)$, the function values of $f(n)$ are less than or equal to the function values of $g(n)$ multiplied by the constant $c(f(n) \leq$ $c g(n)$).

- In other words, $O(g(n))$ is the set of all functions $f(n)$ bounded above by a positive real multiple of $g(n)$, provided n is sufficiently large (greater than $\left.n_{0}\right) . g(n)$ denotes the asymptotic upper bound for the running time $f(n)$ of an algorithm.

O-Notation ("Big Oh")

Asymptotic Upper Bound

Θ-Notation ("Theta")

Asymptotic Tight Bound

- Mathematically expressed, the "Theta" $(\Theta())$ concept is as follows:
- Let $g: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*}$ be an arbitrary function.
- $\Theta(g(n))=\left\{f: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*} \mid\left(\exists c_{1}, c_{2} \in \boldsymbol{R}^{+}\right)\left(\exists n_{0} \in \boldsymbol{N}\right)\left(\forall n \geq n_{0}\right)\right.$ $\left.\left[0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right]\right\}$,
- where R^{*} is the set of nonnegative real numbers and \boldsymbol{R}^{+}is the set of strictly positive real numbers (excluding 0).

Θ-Notation by words

Expressed by words; A function $f(n)$ belongs to the set $\Theta(g(n))$ if there exist positive real constants c_{1} and c_{2} $\left(\exists c_{1}, c_{2} \in \boldsymbol{R}^{+}\right)$such that it can be sandwiched between $c_{1} g(n)$ and $\left.c_{2} g(n)\left(\left[0 \leq c_{1} g n\right) \leq f(n) \leq c_{2} g(n)\right]\right)$, for sufficiently large n ($\forall n \geq n_{0}$).

- In other words, $\Theta(g(n))$ is the set of all functions $f(n)$ tightly bounded below and above by a pair of positive real multiples of $g(n)$, provided n is sufficiently large (greater than $\left.n_{0}\right) . g(n)$ denotes the asymptotic tight bound for the running time $f(n)$ of an algorithm.

Θ-Notation ("Theta")

Asymptotic Tight Bound

Ω-Notation ("Big-Omega")

Asymptotic Lower Bound

- Mathematically expressed, the "Omega" $(\Omega())$ concept is as follows:
- Let $g: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*}$ be an arbitrary function.
- $\Omega(g(n))=\left\{f: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*} \mid\left(\exists c \in \boldsymbol{R}^{+}\right)\left(\exists n_{0} \in \boldsymbol{N}\right)\left(\forall n \geq n_{0}\right)\right.$
$[0 \leq c g(n) \leq f(n)]\}$,
- where \boldsymbol{R}^{*} is the set of nonnegative real numbers and \boldsymbol{R}^{+} is the set of strictly positive real numbers (excluding 0).

Ω-Notation by words

- Expressed by words; A function $f(n)$ belongs to the set $\Omega(g(n))$ if there exists a positive real constant $c\left(\exists c \in \boldsymbol{R}^{+}\right)$ such that $f(n)$ is greater than or equal to $\operatorname{cg}(n)([0 \leq c g(n) \leq$ $f(n)]$), for sufficiently large $n\left(\forall n \geq n_{0}\right)$.
- In other words, $\Omega(g(n))$ is the set of all functions $t(n)$ bounded below by a positive real multiple of $g(n)$, provided n is sufficiently large (greater than $\left.n_{0}\right) . g(n)$ denotes the asymptotic lower bound for the running time $f(n)$ of an algorithm.

Ω-Notation ("Big-Omega")

Asymptotic Lower Bound

o-Notation ("Little Oh")

Upper bound NOT Asymptotically Tight

- " o " notation does not reveal whether the function $f(n)$ is a tight asymptotic upper bound for $\mathrm{t}(\mathrm{n})(t(n) \leq c f(n))$.
- "Little Oh" or \boldsymbol{o} notation provides an upper bound that strictly is NOT asymptotically tight.
- Mathematically expressed;
- Let $\mathrm{f}: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*}$ be an arbitrary function.
- $o(f(n))=\left\{t: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*} \mid\left(\exists c \in \boldsymbol{R}^{+}\right)\left(\exists n_{0} \in \boldsymbol{N}\right)\left(\forall n \geq n_{0}\right)[t(n)<\right.$ $c f(n)]\}$,
- where \boldsymbol{R}^{*} is the set of nonnegative real numbers and \boldsymbol{R}^{+}is the set of strictly positive real numbers (excluding 0).

ω-Notation ("Little-Omega")

Lower Bound NOT Asymptotically Tight

- ω concept relates to Ω concept in analogy to the relation of "little-Oh" concept to "big-Oh" concept.
- "Little Omega" or ω notation provides a lower bound that strictly is NOT asymptotically tight.
- Mathematically expressed, the "Little Omega" $(\omega())$ concept is as follows:
- Let $\mathrm{f}: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*}$ be an arbitrary function.
- $\omega(f(n))=\left\{t: \boldsymbol{N} \rightarrow \boldsymbol{R}^{*} \mid\left(\exists c \in \boldsymbol{R}^{+}\right)\left(\exists n_{0} \in \boldsymbol{N}\right)\left(\forall n \geq n_{0}\right)[c f(n)<t(n)]\right\}$,
- where \boldsymbol{R}^{*} is the set of nonnegative real numbers and \boldsymbol{R}^{+}is the set of strictly positive real numbers (excluding 0).

Asymptotic Notations Examples

Execution time of various structures

- Simple Statement
$O(1)$, executed within a constant amount of time irresponsive to any change in input size.
- Decision (if) structure
if (condition) $f(n)$ else $g(n)$
$O($ if structure $)=\max (O(f(n)), O(g(n))$
- Sequence of Simple Statements

$$
O(1), \text { since } O\left(f_{l}(n)+\ldots+f_{s}(n)\right)=O\left(\max \left(f_{l}(n), \ldots, f_{s}(n)\right)\right)
$$

Execution time of various structures

- $O\left(f_{l}(n)+\ldots+f_{s}(n)\right)=O\left(\max \left(f_{l}(n), \ldots, f_{s}(n)\right)\right) ? ? ?$
- Proof:
$t(n) \in O\left(f_{l}(n)+\ldots+f_{s}(n)\right) \Rightarrow t(n) \leq c\left[f_{l}(n)+\ldots+f_{s}(n)\right]$ $\leq s c^{*} \max \left[f_{l}(n), \ldots, f_{s}(n)\right], s c$ another constant.
$\Rightarrow t(n) \in O\left(\max \left(f_{1}(n), \ldots, f_{s}(n)\right)\right)$
Hence, hypothesis follows.

Execution Time of Loop

Structures

- Loop structures' execution time depends upon whether or not their index bounds are related to the input size.
- Assume n is the number of input records
- for ($\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$) \{statement block\}, $\mathrm{O}($? $)$
- for (i=0; i<=m; i++) \{statement block\}, O(?)

Examples

Find the execution time $\mathrm{t}(\mathrm{n})$ in terms of n !
for (i=0; i<=n; i++)

$$
\text { for }(j=0 ; j<=n ; j++)
$$

statement block;

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=0 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) \\
& \text { statement block; }
\end{aligned}
$$

$$
\begin{aligned}
& \text { for }(\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}=2) \\
& \text { statement block; }
\end{aligned}
$$

Examples

$$
t(n)=2 n^{2}+n+5
$$

Show that $t(n)$ is
a) $O\left(n^{2}\right)$;
b) $O\left(n^{3}\right)$;
c) $w\left(n^{2}\right)$
d) $\Omega\left(n^{2}\right)$;
e) $\left.0\left(n^{2}\right) ; f\right) \oplus\left(n^{2}\right)$
a) $2 n^{2}+n+5 \leq c \cdot n^{2} \quad \forall n \geq n_{0}$; for $n=1$

1) $\lim _{n \rightarrow \infty} c \geqslant 2$
2) $\lim _{n \rightarrow 1} c \geq 2+1 / n+\frac{5}{n}=8-0 \Rightarrow c \geq 8$
$\Rightarrow c>8$ satisfies boil 1) and 2)
b) follows directly from (a) since $n^{3}>n^{2}$ always for $n>0$
b) $\mathrm{Cn}_{0}^{2}<2 n_{0}^{2}+n_{0}+5$

$$
\text { 1) } \lim _{n_{n} \rightarrow} c<2+\frac{1}{n_{0}}+\frac{5}{n_{0}^{2}}
$$

2) $\lim _{n \rightarrow \infty} c<2$
3) $\lim _{n \rightarrow \infty} c<2$
$\Rightarrow c<2$ satisfies both 1) (2)
d) directly follows from (c)
e) $2 n^{2}+n+5 \in 0\left(n^{2}\right) \quad \forall n \rightarrow n_{0}, n_{0}=1$

$$
2 n^{2}+n+5<c n^{2}
$$

1) $\lim _{n \rightarrow \infty} 2<c$
2) $\lim _{n \rightarrow 1} 2+\frac{1}{n}+5<c$ $8<c \checkmark$
$\Rightarrow c>8$ satisfies both 1) \& 2)
f) $\operatorname{since} t(n) \in O\left(n^{2}\right)$ and $t(n) \in \Omega\left(n^{2}\right)$

$$
\Rightarrow t(n) \in \Theta\left(n^{2}\right)
$$

Exercises

Find the number of times the statement block is executed!
for ($\mathrm{i}=0 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++$)

$$
\text { for }\left(j=1 ; j<=i ; j^{*}=2\right)
$$

statement block;

$$
\begin{aligned}
& \text { for }\left(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}^{*}=3\right) \\
& \text { for }\left(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}^{*}=2\right) \\
& \text { statement block; }
\end{aligned}
$$

Sparse Vectors and Matrices

Motivation

- In numerous applications, we may have to process vectors/matrices which mostly contain trivial information (i.e., most of their entries are zero!). This type of vectors/matrices are defined to be sparse.
- Storing sparse vectors/matrices as usual (e.g., matrices in a 2D array or a vector a regular 1D array) causes wasting memory space for storing trivial information.
- Example: What is the space requirement for a matrix $m_{n x n}$ with only non-trivial information in its diagonal if
- it is stored in a 2D array;
- in some other way? Your suggestions?

Sparse Vectors and Matrices

- This fact brings up the question:

> May the vector/matrix be stored in MM avoiding waste of memory space?

Sparse Vectors and Matrices

- Assuming that the vector/matrix is static (i.e., it is not going to change throughout the execution of the program), we should study two cases:

1. Non-trivial information is placed in the vector/matrix following a specific order;
2. Non-trivial information is randomly placed in the vector/matrix.

Case 1: Info. follows an order

- Example structures:
- Triangular matrices (upper or lower triangular matrices)
- Symmetric matrices
- Band matrices
- Any other types ...?

Triangular Matrices

$$
m=\left[\begin{array}{ccccc}
m_{11} & m_{12} & m_{13} & \cdots & m_{1 n} \\
0 & m_{22} & m_{23} & \cdots & m_{2 n} \\
0 & 0 & m_{33} & \cdots & m_{3 n} \\
0 & 0 & 0 & \vdots & \vdots \\
0 & 0 & 0 & 0 & m_{n n}
\end{array}\right]
$$

Upper Triangular Matrix

$$
m=\left[\begin{array}{ccccc}
m_{11} & 0 & 0 & \cdots & 0 \\
m_{21} & m_{22} & 0 & \cdots & 0 \\
m_{31} & m_{32} & m_{33} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
m_{n 1} & m_{n 2} & m_{n 3} & \cdots & m_{n n}
\end{array}\right]
$$

Lower Triangular Matrix

Symmetric and Band Matrices

$$
m=\left[\begin{array}{ccccc}
m_{11} & m_{12} & m_{13} & \cdots & m_{1 n} \\
m_{12} & m_{22} & m_{23} & \cdots & m_{2 n} \\
m_{13} & m_{23} & m_{33} & \cdots & m_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
m_{1 n} & m_{2 n} & m_{3 n} & \cdots & m_{n n}
\end{array}\right]
$$

Symmetric Matrix

Band Matrix

Case 1:How to Efficiently Store...

- Store only the non-trivial information in a 1-dim array a;
- Find a function f mapping the indices of the 2-dim matrix (i.e., i and j) to the index k of 1 -dim array a, or

$$
f: N_{0}^{2} \rightarrow N_{0}
$$

such that

$$
k=f(i, j)
$$

Case 1: Example for Lower Triangular Matrices

$$
k=f(i, j)=i(i-1) / 2+j-1
$$

$$
\Rightarrow
$$

$$
m_{i j}=a[i(i-1) / 2+j-1]
$$

Case 1: Example for Upper Triangular Matrices

$$
\begin{aligned}
& m=\left[\begin{array}{ccccc}
m_{11} & m_{12} & m_{13} & \cdots & m_{1 n} \\
0 & m_{22} & m_{23} & \cdots & m_{2 n} \\
0 & 0 & m_{33} & \cdots & m_{3 n}
\end{array} \quad k \rightarrow \begin{array}{cc|c|c|c|c|c|c|c|c|c|c|c|c|}
& 0 & 1 & 2 & \ldots & n-1 & n & \ldots & 2 n-2 & 2 n-1 \ldots 3 n-4 \ldots & n(n+1) / 2-1 \\
0 & m_{11} & m_{12} & m_{13} & \ldots & m_{1 n} & m_{22} & \ldots . . & m_{2 n} & m_{33} & m_{3 n} & \ldots . . & m_{n n} \\
\hline
\end{array}\right. \\
& m_{11} \text { at } k=0 m_{1 j} \text { at } k=j-1 \\
& m_{22} \text { at } k=n m_{2 j} \text { at } k=n+j-2 \\
& m_{33} \text { at } k=2 n-1 \quad m_{3 j} \text { at } k=2 n-1+j-3 \\
& m_{44} \text { at } k=3 n-3 m_{4 j} \text { at } k=3 n-3+j-4 \\
& m_{55} \text { at } k=4 n-6 m_{5 j} \text { at } k=4 n-6+j-5 \\
& m_{66} \text { at } k=5 n-10 m_{5 j} \text { at } k=5 n-10+j-6 \\
& m_{i i} \text { at } k=(i-1) n-(i-2)(i-1) / 2 m_{i j} \text { at } k=(i-1) n-(i-2)(i-1) / 2+j-i
\end{aligned}
$$

Case 2: Non-trivial Info. Randomly Located

Example:

$$
m=\left[\begin{array}{ccccc}
a & 0 & 0 & \cdots & 0 \\
0 & b & 0 & \cdots & f \\
0 & c & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & g & \vdots \\
e & 0 & d & \cdots & 0
\end{array}\right]
$$

Case 2:How to Efficiently Store...

- Store only the non-trivial information in a 1-dim array a along with the entry coordinates.
- Example:

$a ; 0,0$	$b ; 1,1$	$f ; 1, n-1$	$c ; 2,1$	$g ; i, j$	$e ; n-1,0$	$d ; n-1,2$

Recursion

Recursion

Definition:

Recursion is a mathematical concept referring to programs or functions calling or using itself.

A recursive function is a functional piece of code that invokes or calls itself.

Recursion

Concept:

- A recursive function divides the problem into two conceptual pieces:
- a piece that the function knows how to solve (base case),
- a piece that is very similar to, but a little simpler than, the original problem, hence still unknown how to solve by the function (call(s) of the function to itself).

Recursion... cont'd

- Base case: the simplest version of the problem that is not further reducible. The function actually knows how to solve this version of the problem.
- To make the recursion feasible, the latter piece must be slightly simpler.

Recursion Examples

- Towers of Hanoi
- Story: According to the legend, the life on the world will end when Buddhist monks in a FarEastern temple move 64 disks stacked on a peg in a decreasing order in size to another peg. They are allowed to move one disk at a time and a larger disk can never be placed over a smaller one.

Towers of Hanoi... cont'd

Algorithm:
Hanoi($n, i, j)$
// moves n smallest rings from rod i to rod j
F0A0 if $(n>0)$ \{
//moves top $\mathrm{n}-1$ rings to intermediary rod (6-i-j)
F0A2 $\operatorname{Hanoi}(n-1, i, 6-i-j)$;
$/ /$ moves the bottom ($\mathrm{n}^{\text {th }}$ largest) ring to rod j
F0A5 move ito j
// moves $\mathrm{n}-1$ rings at rod 6-i-j to destination rod j
F0A8 $\operatorname{Hanoi}(n-1,6-i-j, j)$;
FOAB \}

Towers of Hanoi... cont'd

Example: $\operatorname{Hanoi}(4, i, j)$
413

Recursion Examples

- Fibonacci Series
- $\mathrm{t}_{\mathrm{n}}=\mathrm{t}_{\mathrm{n}-1}+\mathrm{t}_{\mathrm{n}-2} ; \mathrm{t}_{0}=0 ; \mathrm{t}_{1}=1$
- Algorithm
long int fib(n)
\{
if $(n==0| | n==1)$
return n ;
else
return fib(n-1)+fib(n-2);
\}

Fibonacci Series... cont'd

- Tree of recursive function calls for fib(5)
- Any problems???

Fibonacci Series... cont'd

- Redundant function calls slow the execution down.
- A lookup table used to store the Fibonacci values already computed saves redundant function executions and speeds up the process.
- Homework: Write fib(n) with a lookup table!

Recurrences

Recurrences or Difference Equations

- Homogeneous Recurrences
- Consider $\mathrm{a}_{0} t_{n}+\mathrm{a}_{1} t_{n-1}+\ldots+\mathrm{a}_{k} t_{n-k}=0$.
- The recurrence
- contains t_{i} values which we are looking for.
- is a linear recurrence (i.e., t_{i} values appear alone, no powered values, divisions or products)
- contains constant coefficients (i.e., a_{i}).
- is homogeneous (i.e., RHS of equation is 0).

Homogeneous Recurrences

We are looking for solutions of the form:

$$
t_{n}=x^{n}
$$

Then, we can write the recurrence as

$$
\mathrm{a}_{0} x^{n}+\mathrm{a}_{1} x^{n-1}+\ldots+\mathrm{a}_{k} x^{n-k}=0
$$

- This $k^{\text {th }}$ degree equation is the characteristic equation (CE) of the recurrence.

Homogeneous Recurrences

If $r_{i}, i=1, \ldots, k$, are k distinct roots of $\mathrm{a}_{0} x^{k}+\mathrm{a}_{1} x^{k-1}+\ldots+\mathrm{a}_{k}=0$, then

$$
t_{n}=\sum_{i=1}^{k} c_{i} r_{i}^{n}
$$

If $r_{i}, i=1, \ldots, k$, is a single root of multiplicity k, then

$$
t_{n}=\sum_{i=1}^{k} c_{i} n^{i-1} r^{n}
$$

Inhomogeneous Recurrences

Consider

- $\mathrm{a}_{0} t_{n}+\mathrm{a}_{1} t_{n-1}+\ldots+\mathrm{a}_{k} t_{n-k}=\mathrm{b}^{\mathrm{n}} p(\mathrm{n})$
- where b is a constant; and $p(\mathrm{n})$ is a polynomial in n of degree d.

Inhomogeneous Recurrences

Generalized Solution for Recurrences

Consider a general equation of the form

$$
\left(\mathrm{a}_{0} t_{n}+\mathrm{a}_{1} t_{n-1}+\ldots+\mathrm{a}_{k} t_{n-k}\right)=b_{1}{ }^{\mathrm{n}} p_{l}(\mathrm{n})+b_{2}{ }^{\mathrm{n}} p_{2}(\mathrm{n})+\ldots
$$

We are looking for solutions of the form:

$$
t_{n}=x^{n}
$$

Then, we can write the recurrence as

$$
\left(a_{0} x^{k}+a_{1} x^{k-1}+\cdots+a_{k}\right)\left(x-b_{1}\right)^{d_{1}+1}\left(x-b_{2}\right)^{d_{2}+1} \cdots=0
$$

where d_{i} is the polynomial degree of polynomial $p_{i}(\mathrm{n})$.
This is the characteristic equation (CE) of the recurrence.

Generalized Solution for Recurrences

If $r_{i}, i=1, \ldots, k$, are k distinct roots of

$$
\begin{gathered}
\left(\mathrm{a}_{0} x^{k}+\mathrm{a}_{1} x^{k-1}+\ldots+\mathrm{a}_{k}\right)=0 \\
t_{n}=\sum_{i=1}^{k} c_{i} r_{i}^{n}+\overbrace{c_{k+1} b_{1}^{n}+c_{k+2} n b_{1}^{n}+\cdots+c_{k+1+d_{1}} n^{d_{1}-1} b_{1}^{n}}^{\operatorname{from}\left(x-b_{1}\right)^{d_{1}+1}}+ \\
\cdots+\underbrace{c_{k+2+d_{1}} b_{2}^{n}+c_{k+3+d_{1}} n b_{2}^{n}+\cdots+c_{k+2+d_{1}+d_{2}} n^{d_{2}-1} b_{2}^{n}}_{\operatorname{from}\left(x-b_{2}\right)^{d_{2}+1}}+\cdots
\end{gathered}
$$

Examples

Homogeneous Recurrences
Example 1.
$t_{n}+5 t_{n-1}+4 t_{n-2}=0 ;$ sol'ns of the form $t_{n}=x^{n}$
$x^{n}+5 x^{n-1}+4 x^{n-2}=0$; (CE) $\mathrm{n}-2$ trivial sol'ns (i.e., $\mathrm{x}_{1, \ldots, \mathrm{n}_{2}}=0$)
$\left(x^{2}+5 x+4\right)=0$; characteristic equation (simplified CE)
$x_{1}=-1 ; x_{2}=-4$; nontrivial sol'ns
$\Rightarrow \quad t_{n}=c_{1}(-1)^{n}+c_{2}(-4)^{n}$; general sol'n

Examples

Homogeneous Recurrence

Example 2.
$t_{n}-6 t_{n-1}+12 t_{n-2}-8 t_{n-3}=0 ; \quad t_{n}=x^{n}$
$x^{n}-6 x^{n-1}+12 x^{n-2}-8 x^{n-3}=0 ; ~ n-3$ trivial sol'ns
CE: $\left(x^{3}-6 x^{2}+12 x-8\right)=(x-2)^{3}=0$; by polynomial division $x_{1}=x_{2}=x_{3}=2$; roots not distinct!!!
$\Rightarrow t_{n}=c_{1} 2^{n}+c_{2} \boldsymbol{n} 2^{n}+c_{3} \boldsymbol{n}^{2} 2^{n} ;$ general sol'n

Examples

Homogeneous Recurrence
Example 3.
$t_{n}=t_{n-1}+t_{n-2} ;$ Fibonacci Series
$x^{n}-x^{n-1}-x^{n-2}=0 ; \Rightarrow$ CE: $x^{2}-x-1=0$;
$x_{1,2}=\frac{1 \pm \sqrt{5}}{2}$; distinct roots!!!
$\Rightarrow t_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad ;$ general sol'n!!
We find coefficients c_{i} using initial values t_{0} and t_{1} of
Fibonacci series on the next slide!!!

Examples

Example 3... cont'd

We use as many t_{i} values

as c_{i}

$$
\begin{aligned}
& t_{0}=0=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{0}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{0}=c_{1}+c_{2}=0 \Rightarrow c_{1}=-c_{2} \\
& t_{1}=1=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{1}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{1}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)-c_{1}\left(\frac{1-\sqrt{5}}{2}\right) \Rightarrow c_{1}=\frac{1}{\sqrt{5}}, c_{2}=-\frac{1}{\sqrt{5}}
\end{aligned}
$$

Check it out using $t_{2}!!!$
$\Rightarrow t_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Examples

Example 3... cont'd

What do n and t_{n} represent?

n is the location and t_{n} the value of any Fibonacci number in the series.

Examples

Example 4.
$t_{n}=2 t_{n-1}-2 t_{n-2} ; \quad n \geq 2 ; t_{0}=0 ; t_{1}=1$;
CE: $x^{2}-2 x+2=0$;
Complex roots: $\boldsymbol{x}_{1,2}=1 \pm i$
As in differential equations, we represent the complex roots as a vector in polar coordinates by a combination of a real radius r and a complex argument θ.

$$
z=r^{*} e^{\theta i}
$$

Here,

$$
\begin{aligned}
& 1+i=\sqrt{2} * e^{(\pi / 4) i} \\
& 1-i=\sqrt{2} * e^{(-\pi / 4) i}
\end{aligned}
$$

Examples

Example 4... cont'd
Solution:

$$
t_{n}=c_{1}(2)^{n / 2} \boldsymbol{e}^{(n \pi / 4) i}+c_{2}(2)^{n / 2} \boldsymbol{e}^{(-n \pi / 4) i}
$$

From initial values $t_{0}=0, t_{1}=1$,

$$
t_{n}=2^{n / 2} \sin (n \pi / 4) ; \text { (prove that!!!!) }
$$

Hint:
$e^{i \theta}=\cos \theta+i \sin \theta$

$$
e^{i n \theta}=(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta
$$

Examples

Inhomogeneous Recurrences
Example 1. (From Example 3)
We would like to know how many times fib(n) on page 22 is executed in terms of n. To find out:

1. choose a barometer in fib(n);
2. devise a formula to count up the number of times the barometer is executed.

Examples

Example 1... cont'd
In fib(n), the only statement is the if statement.
Hence, if condition is chosen as the barometer.
Suppose fib(n) takes t_{n} time units to execute, where the barometer takes one time unit and the function calls fib(n-1) and fib(n-2), t_{n-1} and t_{n-2}, respectively. Hence, the recurrence to solve is

$$
t_{n}=t_{n-1}+t_{n-2}+1
$$

Examples

Example 1... cont'd
$t_{n}-t_{n-1}-t_{n-2}=1$; inhomogeneous recurrence
The homogeneous part comes directly from
Fibonacci Series example on page 52.
RHS of recurrence is 1 which can be expressed as $I^{n} x^{0}$. Then, from the equation on page 48,
CE: $\left(x^{2}-x-1\right)(x-1)=0$; from page 49 ,
$t_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+c_{3} 3^{n}$

Examples

Example 1... cont'd
$t_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+c_{3}$
Now, we have to find c_{1}, \ldots, c_{3}.
Initial values: for both $n=0$ and $n=1$, if condition is checked once and no recursive calls are done.
For $n=2$, if condition is checked once and recursive calls fib(1) and fib(0) are done.
$\Rightarrow t_{0}=t_{1}=1$ and $t_{2}=t_{0}+t_{1}+1=3$.

Examples

Example 1... cont'd

$$
\begin{aligned}
& t_{n}=c_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+c_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}+c_{3} ; \quad t_{0}=t_{1}=1, t_{2}=3 \\
& c_{1}=\frac{\sqrt{5}+1}{\sqrt{5}} ; c_{2}=\frac{\sqrt{5}-1}{\sqrt{5}} ; c_{3}=-1 \\
& t_{n}=\left[\frac{\sqrt{5}+1}{\sqrt{5}}\right]\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left[\frac{\sqrt{5}-1}{\sqrt{5}}\right]\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1
\end{aligned}
$$

Here, t_{n} provides the number of times the
barometer is executed in terms of n. Practically, this number also gives the number of times fib(n) is called.

