
Data Structures – Week #4

Queues

October 1, 2021 Borahan Tümer, Ph.D. 2

Outline

• Queues

• Operations on Queues

• Array Implementation of Queues

• Linked List Implementation of Queues

• Queue Applications

October 1, 2021 Borahan Tümer, Ph.D. 3

Queues (Kuyruklar)

• A queue is a list of data with the restriction that

1. data can be inserted from the “rear” or “tail,” and

2. data can be retrieved from the “front” or “head”

of the list.

• By “rear” we mean a pointer pointing to the

element that is last added to the list whereas

“front” points to the first element.

• A queue is a first-in-first-out (FIFO) structure.

October 1, 2021 Borahan Tümer, Ph.D. 4

Operations on Queues

• Two basic operations related to queues:

– Enqueue (Put data to the rear of the queue)

– Dequeue (Retrieve data from the front of the

queue)

October 1, 2021 Borahan Tümer, Ph.D. 5

Implementation of Queues

• Queues can be implemented using

– arrays, or

– linked lists

October 1, 2021 Borahan Tümer, Ph.D. 6

Array Implementation of Queues

• Queues can be implemented using arrays.

• During the execution, queue can grow or
shrink within this array. The array has two
“open” ends.

• One end of the doubly-open-ended array is the
rear where the insertions are made. The other
is the front where elements are removed.

October 1, 2021 Borahan Tümer, Ph.D. 7

Array Implementation of Queues

• Initialization:

– front=0; rear=-1;

• Condition for an empty queue:

– In general: rear+1 = front

– In particular: rear = -1;

• Condition for a full queue

– In general: rear-(n-1) = front;

– In particular: rear  n-1;

October 1, 2021 Borahan Tümer, Ph.D. 8

Sample C Implementation

#define queueSize …;
struct dataType {

…
}
typedef struct dataType dataType;
struct queueType {

int front;
int rear;
dataType content[queueSize];

}
typedef struct queueType queueType;
queueType queue;

October 1, 2021 Borahan Tümer, Ph.D. 9

Sample C Implementation…

isEmpty() and isFull()
//Initialize Queue (i.e., set value of front and rear to 0)

queue.rear=-1;

int isEmpty(queueType q)

{

return (q.rear < q.front);

}

int isFull(queueType q, int n)

{

return (q.rear–(n-1) >= q.front);

}

October 1, 2021 Borahan Tümer, Ph.D. 10

Enqueue() Operation

int enqueue(queueType *qp,int n,dataType item)

{

if isFull(*qp,n) return 0; //unsuccessful insertion

(*qp).content[++(*qp).rear]=item;

return 1; //successful insertion

}

Running time of enqueue O(?)

An O(1) operation

October 1, 2021 Borahan Tümer, Ph.D. 11

Enqueue Operation Animated

Empty Queue

a enqueued

b enqueued

c enqueued

d enqueued

…

k enqueued

l enqueued

October 1, 2021 Borahan Tümer, Ph.D. 12

Dequeue Operation

int dequeue(queueType *qp,dataType *item)
{

if isEmpty(*qp) return 0; //unsuccessful removal
*item = (*qp).content[0]; // always: front = 0
for (i=1; i <= (*qp).rear; i++)

(*qp).content[i-1]= (*qp).content[i];
(*qp).rear--;
return 1; //successful removal

} O(?)

An O(n) operation

October 1, 2021 Borahan Tümer, Ph.D. 13

O(n) Dequeue Operation Animated

a dequeued

b dequeued

c dequeued

d dequeued

…

k dequeued

l dequeued

Empty Queue

October 1, 2021 Borahan Tümer, Ph.D. 14

Improved Dequeue Operation

int dequeue(queueType *qp,dataType *item)

{

if isEmpty(*qp) return 0; //unsuccessful removal

*item = (*qp).content[(*qp).front++];

return 1; //successful removal

}

An O(1) operation

October 1, 2021 Borahan Tümer, Ph.D. 15

O(1) Dequeue Operation Animated

a dequeued

b dequeued

c dequeued

d dequeued

…

k dequeued

l dequeued

Empty Queue

October 1, 2021 Borahan Tümer, Ph.D. 16

Problem of O(1) Dequeue

• As front proceeds towards the larger indexed
elements in the queue, we get supposedly
available but inaccessible array cells in the
queue (i.e., all elements with indices less than
that pointed to by front).

• Whenever rear points to (n-1)st element, a shift
operation still needs to be carried out.

• Solution: attaching the end of the queue to the
start!!! Such queues we call circular queues.

October 1, 2021 Borahan Tümer, Ph.D. 17

Circular Queues

• Since with the existing conditions an empty

and full circular queue is indistinguishable, we

redefine the conditions for empty and full

queue following a new convention:

• Convention: front points to the preceding cell

of the cell with the data to be removed next.

• Empty circular queue condition: front=rear

• Full queue condition: front=(rear+1) mod n

October 1, 2021 Borahan Tümer, Ph.D. 18

Circular Queues (CQs)

//Initialize Queue (i.e., set value of front and rear to n-1)

queue.rear=n-1; queue.front=n-1; // i.e., -1 mod n

int isEmptyCQ(queueType cq)

{

return (cq.rear == cq.front);

}

int isFullCQ(queueType cq, int n)

{

return (cq.rear == (cq.front-1 % n));

}

October 1, 2021 Borahan Tümer, Ph.D. 19

Enqueue Operation in CQs

int enqueueCQ(queueType *cqp,dataType item)

{

if isFullCQ(*cqp,n) return 0;//unsuccessful
insertion

(*cqp).content[++(*cqp).rear % n]=item;

return 1; //successful insertion

}

An O(1) operation

October 1, 2021 Borahan Tümer, Ph.D. 20

Dequeue Operation in CQs

int dequeueCQ(queueType *cqp,dataType *item)

{

if isEmptyCQ(*cqp) return 0;//unsuccessful removal

*item = (*cqp).content[++(*cqp).front % n];

return 1; //successful removal

}

An O(1) operation

October 1, 2021 Borahan Tümer, Ph.D. 21

A Circular Queue Example
int enqueueCQ(queueType *cqp,dataType item)

{

if isFullCQ(*cqp) return 0;//unsuccessful insertion

(*cqp).content[++(*cqp).rear%n]=item;

return 1; //successful insertion

}

int dequeueCQ(queueType *cqp,dataType *item)

{

if isEmptyCQ(*cqp) return 0;//unsuccessful removal

*item = (*cqp).content[++(*cqp).front%n];

return 1; //successful removal

}

October 1, 2021 Borahan Tümer, Ph.D. 22

Linked List Implementation of Queues

//Declaration of a queue node

Struct QueueNode {

int data;

struct QueueNode *next;

}

typedef struct QueueNode QueueNode;

typedef QueueNode * QueueNodePtr;

…

October 1, 2021 Borahan Tümer, Ph.D. 23

Linked List Implementation of Queues

QueueNodePtr NodePtr, rear, front;

…

…

NodePtr = malloc(sizeof(QueueNode));

rear = NodePtr;

NodePtr->data=2; // or rear->data=2

NodePtr->next=NULL; // or rear->next=NULL;

Enqueue(&rear,&NodePtr);

…

Dequeue();

…

October 1, 2021 Borahan Tümer, Ph.D. 24

Enqueue and Dequeue Functions

Void Enqueue (QueueNodePtr *RearPtr, QueueNodePtr *NewNodePtr) {
*NewNodePtr = malloc(sizeof(QueueNode));
(*NewNodePtr)->data=5;
(*NewNodePtr)->next =NULL;
(*RearPtr)->next=*NewNodePtr;
*RearPtr = (*RearPtr)->next;

}

Void Dequeue(QueueNodePtr *FrontPtr) {
QueueNodePtr TempPtr;
TempPtr= *FrontPtr;
*FrontPtr = (*FrontPtr)->next;
free(TempPtr); // or you may return TempPtr!!!

}

October 1, 2021 Borahan Tümer, Ph.D. 25

Linked List Implementation of Queues

Void Enqueue (QueueNodePtr *RearPtr,

QueueNodePtr *NewNodePtr) {

*NewNodePtr = malloc(sizeof(QueueNode));

(*NewNodePtr)->data=5;

(*NewNodePtr)->next =NULL;

(*RearPtr)->next=*NewNodePtr;

*RearPtr = (*RearPtr)->next;

}

Void Dequeue(QueueNodePtr *FrontPtr) {

QueueNodePtr TempPtr;

TempPtr= *FrontPtr;

*FrontPtr = (*FrontPtr)->next;

free(TempPtr); // or return TempPtr!!!

}

October 1, 2021 Borahan Tümer, Ph.D. 26

Queue Applications

• All systems where a queue (a FIFO structure) is
applicable can make use of queues.

• Possible examples from daily life are:

– Bank desks

– Market cashiers

– Pumps in gas stations

• Examples from computer science are:

– Printer queues

– Queue of computer processes that wait for using the
microprocessor

October 1, 2021 Borahan Tümer, Ph.D. 27

Priority Queues

• While a regular queue functions based on the arrival time as
the only criterion as a FIFO structure, this sometimes degrades
the overall performance of the system.

• Consider a printer queue in a multi-processing system where
one user has submitted, say, a 200-page-long print job seconds
before many users have submitted print jobs of only several
pages long.

• A regular queue would start with the long print job and all
others would have to wait. This would cause the average
waiting time (AWT) of the queue to increase. AWT is an
important measure used to evaluate the performance of the
computer system, and the shorter the AWT, the better the
performance of the system.

October 1, 2021 Borahan Tümer, Ph.D. 28

Priority Queues

• What may be done to improve the performance

of the printer queue?

• Solution: Assign priority values to arriving

jobs

• Then, jobs of the same priority will be ordered

by their arrival time.

October 1, 2021 Borahan Tümer, Ph.D. 29

Priority Queues

• Assume a printer queue of jobs with three

priorities, a, b, and c, where jobs with a (c)

have the highest (lowest) priority, respectively.

• That is, jobs with priority a are to be processed

first by their arrival times, and jobs of priority

c last.

October 1, 2021 Borahan Tümer, Ph.D. 30

Priority Queues

