
Data Structures – Week #5

Trees (Ağaçlar)

October 1, 2021 Borahan Tümer, Ph.D. 2

Trees (Ağaçlar)
Toros Göknarı Avrupa Göknarı

October 1, 2021 Borahan Tümer, Ph.D. 3

Trees (Ağaçlar)

October 1, 2021 Borahan Tümer, Ph.D. 4

Outline

• Trees

• Definitions

• Implementation of Trees

• Binary Trees

• Tree Traversals & Expression Trees

• Binary Search Trees

October 1, 2021 Borahan Tümer, Ph.D. 5

Definition of a Tree

• Definition:

A tree is a collection of nodes (vertices) where

the collection may be empty. Otherwise, the

collection consists of a distinguished node r,

called the root, and zero or more non-empty

(sub)trees T1, …, Tk, each of whose roots are

connected by a directed edge to r.

October 1, 2021 Borahan Tümer, Ph.D. 6

More definitions

• In-degree of a vertex is the number of edges arriving at that
vertex.

• Out-degree of a vertex is the number of edges leaving that
vertex.

• Nodes with out-degree=0 (no children) are called the leaves of
the tree.

• Root is the only node in the tree with in-degree=0.

• The child C of a node A is the node that is connected to A by a
single edge. Then, A is the parent of C.

• Grandparent and grandchild relations can be defined in the
same manner.

• Nodes with the same parent are called siblings.

October 1, 2021 Borahan Tümer, Ph.D. 7

More definitions

• A path from a node n1 to nk is defined as a sequence of nodes

n1,…, nk such that ni is the parent of ni+1 for 1i<k.

– The length of this path is the number of edges on the path,

i.e., k-1.

– There is exactly one path from the root to each node.

• The depth of any node ni is the length of the unique path from

the root to ni.

– The depth of root is 0.

• The height of any node ni is the length of the longest path from

ni to a leaf.

October 1, 2021 Borahan Tümer, Ph.D. 8

A General Tree Example

• Root

– A

• Children of A

– B, C, D, E, F.

• Leaves of the tree

– C, D, G, H, I, K, L, M,

and N.

• Siblings of G

– H and I.

October 1, 2021 Borahan Tümer, Ph.D. 9

Remarks

The height of all leaves are 0.

The height of a tree is the height of its root.

The height of the above tree is 3.

The height of C is 0.

If there is a path from n1 to n2, then n1 is an

ancestor of n2 and n2 is a descendant of n1 .

October 1, 2021 Borahan Tümer, Ph.D. 10

Implementation of Trees

• One way to implement a tree would be to have a pointer in each
node to each child, besides the data it holds. This is infeasible!

• Q:Why?

• A:The number of children of each node is variable, and hence,
unknown.

• Another option would be to keep the children in a linked list where
the first node of the list is pointed to by the pointer in the parent
node as a header.

• A typical tree node declaration in C would be as follows:

struct TNode_type {
int data;
struct TNodetype *childptr, *siblingptr;

}

October 1, 2021 Borahan Tümer, Ph.D. 11

A General Tree Implementation

October 1, 2021 Borahan Tümer, Ph.D. 12

Binary Trees (BTs)

• A binary tree is a tree of nodes with at most
two children.

• Declaration of a typical node in a binary tree

– struct BTNodeType {

infoType *data;

struct BTNodeType *left;

struct BTNodeType *right;

}

• Average depth in BTs: O()n

October 1, 2021 Borahan Tümer, Ph.D. 13

A Binary Tree Example

October 1, 2021 Borahan Tümer, Ph.D. 14

Tree Traversals

• A tree can be traversed recursively in three

different ways:

– in-order traversal (left-node-right or LNR)

• First recursively visit the left subtree.

• Next process the data in the current node.

• Finally, recursively visit the right subtree.

– pre-order traversal (node-left-right or NLR)

– post-order traversal (left-right-node or LRN)

October 1, 2021 Borahan Tümer, Ph.D. 15

Recursive In-order (LNR) Traversal

void in-order(BTNodeType *p) {

if (p!=null){

in-order(p->left);

operate(p);

in-order(p->right);

}

}

October 1, 2021 Borahan Tümer, Ph.D. 16

Recursive Pre-order (NLR) Traversal

void pre-order(BTNodeType *p) {

if (p!=null){

operate(p);

pre-order(p->left);

pre-order(p->right);

}

}

October 1, 2021 Borahan Tümer, Ph.D. 17

Recursive Post-order (LRN) Traversal

void post-order(BTNodeType *p) {

if (p!=null){

post-order(p->left);

post-order(p->right);

operate(p);

}

}

October 1, 2021 Borahan Tümer, Ph.D. 18

Expression Trees

• Prefix, postfix and infix formats of arithmetic expressions

Infix Postfix Prefix

A+B AB+ +AB

A/(B+C) ABC+/ /A+BC

A/B+C AB/C+ +/ABC

A-B*C+D/(E+F) ABC*-DEF+/+ +-A*BC/D+EF

A*((B+C)/(D-E)+F)-G/(H-I) ABC+DE-/F+*GHI-/- -*A+/+BC-DEF/G-HI

October 1, 2021 Borahan Tümer, Ph.D. 19

Construction of an Expression Tree

from Postfix Expressions

• Initialize an empty stack of subtrees

• Repeat

– Get token;

– if token is an operand

• Push it as a subtree

– else

• pop the last two subtrees and form & push a subtree
such that root is the current operator and left and right
operands are the former and latter subtrees, respectively

• Until the end of arithmetic expression

October 1, 2021 Borahan Tümer, Ph.D. 20

Example to Construction of Expression

Trees

ABC+DE-/F+*GHI-/-

Empty Stack of subtrees

October 1, 2021 Borahan Tümer, Ph.D. 21

Example to Construction of Expression

Trees - 1

ABC+DE-/F+*GHI-/-

A

Stack of subtrees

October 1, 2021 Borahan Tümer, Ph.D. 22

Example to Construction of Expression

Trees - 2

ABC+DE-/F+*GHI-/-

A B

Stack of subtrees

October 1, 2021 Borahan Tümer, Ph.D. 23

Example to Construction of Expression

Trees - 3

ABC+DE-/F+*GHI-/-

A B C

Stack of subtrees

October 1, 2021 Borahan Tümer, Ph.D. 24

Example to Construction of Expression

Trees - 4

ABC+DE-/F+*GHI-/-

Stack of subtrees

A

B C

+

October 1, 2021 Borahan Tümer, Ph.D. 25

Example to Construction of Expression

Trees - 5

ABC+DE-/F+*GHI-/-

Stack of subtrees

A D

B C

+

October 1, 2021 Borahan Tümer, Ph.D. 26

Example to Construction of Expression

Trees - 6

ABC+DE-/F+*GHI-/-

Stack of subtrees

A D E

B C

+

October 1, 2021 Borahan Tümer, Ph.D. 27

Example to Construction of Expression

Trees - 7

ABC+DE-/F+*GHI-/-

Stack of subtrees

A

B C

+

D E

-

October 1, 2021 Borahan Tümer, Ph.D. 28

Example to Construction of Expression

Trees - 8

ABC+DE-/F+*GHI-/-

Stack of subtrees

A

B C

+

D E

-

/

October 1, 2021 Borahan Tümer, Ph.D. 29

Example to Construction of Expression

Trees - 9

ABC+DE-/F+*GHI-/-

Stack of subtrees

A

B C

+

D E

-

/

F

October 1, 2021 Borahan Tümer, Ph.D. 30

Example to Construction of Expression

Trees - 10

ABC+DE-/F+*GHI-/-

Stack of subtrees

A

B C

+

D E

-

/ F

+

October 1, 2021 Borahan Tümer, Ph.D. 31

Example to Construction of Expression

Trees - 11

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

October 1, 2021 Borahan Tümer, Ph.D. 32

Example to Construction of Expression

Trees - 12

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

G

October 1, 2021 Borahan Tümer, Ph.D. 33

Example to Construction of Expression

Trees - 13

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

G H

October 1, 2021 Borahan Tümer, Ph.D. 34

Example to Construction of Expression

Trees - 14

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

G H I

October 1, 2021 Borahan Tümer, Ph.D. 35

Example to Construction of Expression

Trees - 15

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

G

H I

-

October 1, 2021 Borahan Tümer, Ph.D. 36

Example to Construction of Expression

Trees - 16

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

H I

-

/

G

October 1, 2021 Borahan Tümer, Ph.D. 37

Example to Construction of Expression

Trees - 17

ABC+DE-/F+*GHI-/-

Stack of subtrees

B C

+

D E

-

/ F

+

*

A

H I

-

/

G

-

October 1, 2021 Borahan Tümer, Ph.D. 38

Binary Search Trees (BSTs)

BSTs are binary trees with keys placed in each

node in such a manner that

the key of a node is

greater than all keys in its left sub-tree

and

less than all keys in its right sub-tree.

Here, we assume no replication of keys. For replicating keys,

the relations are modified as “greater than or equal to” or “less

than or equal to” depending on the application.

October 1, 2021 Borahan Tümer, Ph.D. 39

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

October 1, 2021 Borahan Tümer, Ph.D. 40

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

October 1, 2021 Borahan Tümer, Ph.D. 41

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

October 1, 2021 Borahan Tümer, Ph.D. 42

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20

October 1, 2021 Borahan Tümer, Ph.D. 43

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

October 1, 2021 Borahan Tümer, Ph.D. 44

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

October 1, 2021 Borahan Tümer, Ph.D. 45

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

October 1, 2021 Borahan Tümer, Ph.D. 46

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

October 1, 2021 Borahan Tümer, Ph.D. 47

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

October 1, 2021 Borahan Tümer, Ph.D. 48

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

October 1, 2021 Borahan Tümer, Ph.D. 49

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

96

October 1, 2021 Borahan Tümer, Ph.D. 50

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

October 1, 2021 Borahan Tümer, Ph.D. 51

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

October 1, 2021 Borahan Tümer, Ph.D. 52

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60

October 1, 2021 Borahan Tümer, Ph.D. 53

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60 98

October 1, 2021 Borahan Tümer, Ph.D. 54

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60 9868

October 1, 2021 Borahan Tümer, Ph.D. 55

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60 9868 84

October 1, 2021 Borahan Tümer, Ph.D. 56

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60 9868 8436

October 1, 2021 Borahan Tümer, Ph.D. 57

A Binary Search Tree Example
48 16 24 20 32 8 12 54 72 18 96 64 17 60 98 68 84 36 30

48

16

24

20 32

8

12

54

72

18

9664

17

60 9868 843630

October 1, 2021 Borahan Tümer, Ph.D. 58

Recursive Find Function in BSTs

int find (BTNodeType *p, int key)

{ // we assume infotype in BTNodeType is int

if (p != NULL)

if (key < p->data) find(p->left, key);

else if (key > p->data) find(p->right, key);

else if (p->data == key) printf (p->data);

}

October 1, 2021 Borahan Tümer, Ph.D. 59

Analysis of Find - 1

We would like to calculate the search time, t(n), it takes to find a
given key in a BST with n nodes (or to find it is not in the BST!).
First let us answer the following question:

Question: What is the unit operation performed to accomplish the
search?

Answer: The comparison of the key searched with the key stored
in the tree node (i.e., if (key < p->data) or if (key > p->data)
or if (key == p->data)).

Hence, what we need to do to find t(n) is to count, as a function
of n, how many times the comparison is executed.

October 1, 2021 Borahan Tümer, Ph.D. 60

Analysis of Find - 2

Now, we have converted the problem into one as in the
following:

what is the average number of comparisons performed to find a
given key in a BST?

or

how many nodes, on average, are visited to find a given key or to
find it is not in the BST?

or, in a higher level of detail,

what is the average depth of the node that stores the key we are
looking for or, in case the key is not in the BST, what is the
average depth of the leaf at the end of the path our search follows
through?

October 1, 2021 Borahan Tümer, Ph.D. 61

Analysis of Find - 3

Now, we turn back to formulating t(n):

We will do the formulation for three cases:

1. Average case

2. Worst case

3. Best case

October 1, 2021 Borahan Tümer, Ph.D. 62

Analysis of Find: Average Case - 1

Average case:

Each node has a left and right subtree. The search time will consist of the
search time of the left subtree, right subtree and the time spent for the root in
the main BST. That is, the sum of all depths of nodes in a BST (also known as
the internal path length) will be the sum of the depths of those nodes in the left
subtree, those in the right subtree and the additional contribution of the root in
the main tree. We will formulate and find the internal path length f(n) of a
BST with n nodes.

Assume the left and right subtrees of the root of a BST with n nodes have k
and n-k-1 nodes, respectively. Then the depth may be expressed as follows:

f(n)=f(k)+f(n-k-1)+n-1;

The term “n-1” is added to the sum of depths by the fact that all nodes in the
BST are one level deeper in the main BST (because of the root of the main
BST).

October 1, 2021 Borahan Tümer, Ph.D. 63

An example tree with f(14)

491435)()()(

35)14(

114193)14(

114)10()3()14(

ntnnfnt

f

f

fff

f(n)

f(k)

f(n-k-1)

October 1, 2021 Borahan Tümer, Ph.D. 64

Another example tree with f(14)

f(n)

f(k)

f(n-k-1)

501436)()()(

36)14(

114518)14(

114)4()9()14(

ntnnfnt

f

f

fff

October 1, 2021 Borahan Tümer, Ph.D. 65

Average Case - 2

f(n)=f(k)+f(n-k-1)+n-1;

k and n-k-1 can be any number between between 0 and

n-1. To come up with a general solution, we can average

f(k) and f(n-k-1):

From this point on we will drop the subscript off and use

f(n) to denote fave(n)

1)(
2

)(
1

0

nkf
n

nf
n

k

ave

October 1, 2021 Borahan Tümer, Ph.D. 66

Average Case - 3

)1(

)1(
2

)1(

1

)(

);1(2)1()1()(

)()();1(2)1(2)1()1()(

)()2)(1()(2)1()1(

)();1()(2)(

*1)(
2

)(

2

0

1

0

1

0

nn

n

n

nf

n

nf

nnfnnnf

IIInnfnfnnnf

IInnkfnfn

Innkfnnf

nnkf
n

nf

n

k

n

k

n

k

October 1, 2021 Borahan Tümer, Ph.D. 67

Average Case - 4

n

i

n

i

ii

i
nfnnf

ii

i
f

n

nf

ff

ff

nn

n

n

nf

n

nf

nn

n

n

nf

n

nf

1

1

)1(

1
)1(2)0()1()(

)1(

1
2)0(

1

)(

0
1

)0(

2

)1(

3*2

1

2

)1(

3

)2(

)1(

2
2

1

)2()1(

)1(

1
2

)1(

1

)(

October 1, 2021 Borahan Tümer, Ph.D. 68

Average Case - 5

))log(())log(()(

log;
1

)1(24)1(2)(

1

2
1

1
)1(2)(

1

1

1
2)1(2)1()(

0)0(;
1

1

2

)1(

1
;

)1(

1
)1(2)0()1()(

)log(

2

2

1 1

1

nnOnnnOnf

cxa
x

dx

i
nnnf

ni
nnf

ii
nnnf

f
iiii

i

ii

i
nfnnf

n

n

i

n

i

n

i

n

i

n

i

To find the average (per node) number of comparisons, Nave, we divide f(n) by the number

of nodes n: Nave= f(n)/nO(log n)

October 1, 2021 Borahan Tümer, Ph.D. 69

Analysis of Find: Worst Case - 1

Worst Case BST:

The worst case BST is one with the deepest path. An n-
node such BST is one with n depth levels.

Question: How many such n-node BSTs are there?

We will formulate and find the internal path length f(n)
in a worst case n-node BST.

In such a BST one subtree of the root forms a linked list
of n-1 nodes whereas the other subtree has no nodes.
Then the depth may be expressed as follows:

f(n)=f(n-1)+n-1.

October 1, 2021 Borahan Tümer, Ph.D. 70

Worst Case - 2

(?))(

393)3(

142)2(

0)1(

)(

0)1)(1(:

0)1(;1)1()(

321

321

321

2

321

2

Onf

cccf

cccf

cccf

ncnccnf

xxCE

fnnfnf

Order of f(n): f(n)=O(n2)

October 1, 2021 Borahan Tümer, Ph.D. 71

Analysis of Find: Best Case - 1

Best Case BST:

The best case BST is one with the least tree depth. An
n-node such BST is one with depth levels.

Question: How many such n-node BSTs are there?

We will formulate and find the internal path length f(n)
in a best case n-node BST.

In such a BST both subtrees of the root have the same
number of nodes (i.e., n/2 nodes). Then the depth may
be expressed as follows:

f(n)=2f(n/2)+n-1.

 1log2 n

October 1, 2021 Borahan Tümer, Ph.D. 72

Best Case - 2

(?))(

)(log
2

1
)(

122)2(

0)1(

)(log)(

22)(

0)1()2)(2(:

12)1(2)(

2;0)1(;1)2/(2)(

2

2
1

221

1

221

21

Onf

nnnf

cccf

cf

nncncnf

kcckf

xxxCE

kfkf

nfnnfnf

kk

k

k

Order of f(n): f(n)=O(nlgn)

October 1, 2021 Borahan Tümer, Ph.D. 73

Non-recursive FindMin Function in

BSTs

BTNodeType *findMin (BTNodeType *p)

{// returns a pointer to node with the minimum key in the BST.

// which one is the minimum key in a BST?

if (p != NULL)

while (p->left != NULL) p=p->left;

return p;

}

October 1, 2021 Borahan Tümer, Ph.D. 74

Recursive FindMax Function in BSTs

BTNodeType *findMax (BTNodeType *p)

{// returns a pointer to node with the maximum key in the BST

// which one is the maximum key in a BST?

if (p == NULL) return NULL;

if (p->right == NULL) return p;

return findMax(p->right);

}

October 1, 2021 Borahan Tümer, Ph.D. 75

Recursive Insert Function in BSTs

BTNodeType *insert (infotype * key, BTNodeType *p)
{// returns a pointer to new node with key inserted in the BST.

if (p == NULL) { //empty tree
p=malloc(sizeof(BTNodeType));
if (p == NULL) return OutofMemoryError; //no heap space left!!!
p->data=key;
p->left=p->right=NULL;
return p;

}
else if (key < p->data) //tree exists, key < root

p->left=insert(key,p->left);
else if (key > p->data) //tree exists, key > root

p->right=insert(key,p->right);
return p; //key found

}

October 1, 2021 Borahan Tümer, Ph.D. 76

Recursive Remove Function in BSTs
BTNodeType *Remove (infotype *key, BTNodeType *p)
{// returns a pointer to node replacing the node removed.

BTNodeType *TempPtr;
if (p == NULL) //empty tree

return errorMessage(“empty tree”);
if (key < p->data)
p->left=Remove(key,p->left);

else if (key > p->data)
p->right=Remove(key,p->right);

else //node with key found!!!
if (p->right && p->left) { //if node has two children

TmpPtr=findMin(p->right); //find smallest key of right subtree of node with key
p->data=TmpPtr->data; //replace removed data by smallest key of right subtree
p->right=Remove(p->data,p->right);

}
else { //if node has less than two children

TmpPtr=p;
if (p->left == NULL) p=p->right;
else if (p->right == NULL) p=p->left;
free(TmpPtr);

}
return p;

}

October 1, 2021 Borahan Tümer, Ph.D. 77

Best-Average-Worst Case Access

Times of a specific BST

• To find a node with some specific piece of

data, a search gets started from the root.

• Data at each node is compared with the key

that is searched for.

• Counting up the number of comparisons for

each node will render the access time.

October 1, 2021 Borahan Tümer, Ph.D. 78

Calculation of Access Time

• Access to some specific piece of data is

achieved when the node this piece of data

resides is found. To find this node, a search

gets started from the root.

• Data at each node is compared with the key

that is searched for.

• Counting up the number of comparisons for

each node will render the access time.

October 1, 2021 Borahan Tümer, Ph.D. 79

Calculation of Access Time

Depth

level

of

Comparisons/

node

of

Comparisons/

level

0 1 1*1=1

1 2 2*2=4

2 3 3*3=9

3 4 4*5=20

4 5 5*7=35

5 6 6*1=6
Total Nodes: 19 75

BST Access Times

Average 75/19=3.94

Worst 6

Best 1

