
Data Structures – Week #6

Special Trees
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Outline

• Adelson-Velskii-Landis (AVL) Trees

• Splay Trees

• B-Trees
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AVL Trees
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Motivation for AVL Trees

• Accessing a node in a BST takes O(log2n) in 
average.

• A BST can be structured so as to have an 
average access time of O(n). Can you think of one such BST?

• Q: Is there a way to guarantee a worst-case 
access time of O(log2n) per node or can we 
find a way to guarantee a BST depth of 
O(log2n)?

• A: AVL Trees



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         5

Definition

An AVL tree is a BST with the following

balance condition: 

for each node in the BST, the height of left

and right sub-trees can differ by at most 1, or

.1
RL NN hh
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Remarks on Balance Condition

• Balance condition must be easy to maintain:

– This is the reason, for example, for the balance 

condition’s not being as follows: the height of left 

and right sub-trees of each node have the same 

height.

• It ensures the depth of the BST is O(log2n).

• The height information is stored as an 

additional field in BTNodeType.
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Structure of an AVL Tree

struct BTNodeType {

infoType *data;

unsigned int height;

struct BTNodeType *left;

struct BTNodeType *right;

}
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Rotations

Definition:

• Rotation is the operation performed 
on a BST to restore its AVL property 
lost as a result of an insert operation.

• We consider the node  whose new 
balance violates the AVL condition.
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Rotation

• Violation of AVL condition

• The AVL condition violation may occur in four cases:

– Insertion into left subtree of the left child     (L/L)

– Insertion into right subtree of the left child   (R/L)

– Insertion into left subtree of the right child   (L/R)

– Insertion into right subtree of the right child (R/R)

• The outside cases 1 and 4 (i.e., L/L and R/R) are fixed by a 
single rotation.

• The other cases (i.e., R/L and L/R) need two rotations called 
double rotation to get fixed.

• These are fundamental operations in balanced-tree algorithms.
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Single Rotation (L/L)

  k2 node
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Single Rotation (R/R)

  k1 node
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Double Rotation (R/L)

Single rotation cannot fix the AVL condition violation!!!

  k1 node
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Double Rotation (R/L)

k1

k2

k3X

Z

B C

k3

k2

X B C Z

k1Height 1 

Height 2 

Height 3 

The symmetric case (L/R) is handled similarly left as an exercise to you!

  k1 node



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         14

48

48

Constructing an AVL Tree – Animation
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16

48

48

Constructing an AVL Tree – Animation

16
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16

48

24

48

Constructing an AVL Tree – Animation

16 24
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1          -1

16

48

24

48

Constructing an AVL Tree – Animation

16 24

R/L

Dbl. Rot.
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2048

Constructing an AVL Tree – Animation

16 24

48

20



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         19
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Constructing an AVL Tree – Animation

16 24

48

20

8
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Constructing an AVL Tree – Animation

16 24

48

20

8

12



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         21

16

24

20

8

1248

Constructing an AVL Tree – Animation

16 24

48

20

8

12

-1     0

OK

1     0

OK

2     0L/L

Sngl. Rot.
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8

16

20 1248

Constructing an AVL Tree – Animation

16 24

24
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8

32

4820

32
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Constructing an AVL Tree – Animation

16 24
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8

32

4820

32 54
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Constructing an AVL Tree – Animation

16 24
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8

32

4820

32 54 72
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Constructing an AVL Tree – Animation

16 24

24

12

8

32

4820

32 54 72

-1     0

OK

0     1

OK

0     2 R/R

Sngl. Rot.
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Constructing an AVL Tree – Animation

16 24

48

12

8

5424

32 54 72

20 32
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16
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Constructing an AVL Tree – Animation

16 24

48

12

8

5424

32 54 72

20 32

18

0    -1

OK

1    0

OK

2    1

OK

1    3

L/R

Dbl.Rot.
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Constructing an AVL Tree – Animation

16 24

48

20

8

5432

32 54 72 18

8

12 18

96
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Constructing an AVL Tree – Animation

16 24

48

20

8

32

32 54 72 18

8

12 18

96

-1    0

OK

-1    1

R/R

Sngl. Rot.

54
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Constructing an AVL Tree – Animation

16 24

48

20

8

32

32 54 72 18

8

12 18

96

72

54
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Height versus Number of Nodes

• The minimum number of nodes in an AVL tree 
recursively relates to the height of the tree as 
follows:

S(h) = S(h-1) + S(h-2) + 1; 

Initial Values: S(0)=1; S(1)=2

Homework: Solve for S(h) as a function of h!
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Splay Trees
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Motivation for Splay Trees

• We are looking for a data structure where, even 
though some worst case (O(n)) accesses may be 
possible, m consecutive tree operations starting from 
an empty tree (inserts, finds and/or removals) take 
O(m*log2n).

• Here, the main idea is to assume that, O(n) accesses
are not bad as long as they occur relatively
infrequently.

• Hence, we are looking for modifications of a BST per 
tree operation that attempts to minimize O(n) 
accesses.   
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Splaying

• The underlying idea of splaying is to move a 

deep node accessed upwards to the root, 

assuming that it will be accessed in the near 

future again.

• While doing this, other deep nodes are also 

carried up to smaller depth levels, making the 

average depth of nodes closer to O(log2n).
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Splaying

• Splaying is similar to bottom-up AVL 
rotations

• If a node X is the child of the root R, 

– then we rotate only X and R, and this is the last 

rotation performed.

else consider X, its parent P and grandparent G. 

Two cases and their symmetries to consider

Zig-zag case, and 

Zig-zig case.
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Zig-zag case 

G

P

XA

D

B C

X

P

A B C D

GHeight h

Height h+1

Height h+2

This is the same operation as an AVL double rotation in an R/L violation. 
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Zig-zig case 

G

P D

B

C

X

A

B

C

P

Height h

Height h+1

Height h+2

A

X

D

G

Height h+3

as is LC(P)

LC(G)

as is

LC(P): left child of node P

RC(P): right child of node P
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Animated Example
10

2 11

1 4

3 9

5

8

6

7

Initial BST
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Animated Example
10

2 11

1 4

3 9

5

8

6

7

G

P

X

Zig-zig 

case

Node with 6 accessed!

G stands for Grandparent

P stands for Parent

X denotes the current node
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Animated Example
10

2 11

1 4

3 9

5

6

Node with 6 accessed!

7

8

G

P

X

Zig-zag 

case
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Animated Example
10

2 11

1

3

5

Node with 6 accessed!

9

7

8

6

G

P

X

Zig-zig 

case
4

31

5

9

7

8



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         42

Animated Example
10

11

4

Node with 6 accessed!

31

5

9

7

8

6

2

X

R

1 3

2

4

5 9

7

8
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Animated Example
6

10

Node with 6 accessed!

11

1 3

2

4

5 9

7

8
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B-Trees
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Motivation for B-Trees

• Two technologies for providing memory capacity in a 
computer system

– Primary (main) memory (silicon chips)

– Secondary storage (magnetic disks)

• Primary memory  

– 5 orders of magnitude (i.e., about 105 times) faster,  

– 2 orders of magnitude (about 100 times) more expensive, 
and

– by at least 2 orders of magnitude less in size

than secondary storage due to mechanical operations 
involved in magnetic disks. 
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Motivation for B-Trees

• During one disk read or disk write ((4-8.5msec for 
7200 RPM sequential disks (not SSDs!)),  MM can be 
accessed about 105 times (100 nanosec per access).  

• To reimburse (compensate) for this time, at each 
disks access, not a single item, but one or more 
equal-sized pages of items (each page 211-214 bytes) 
are accessed.    

• We need some data structure to store these equal 
sized pages in MM. 

• B-Trees, with their equal-sized leaves (as big as a 
page), are suitable data structures for storing and 
performing regular operations on paged data.
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B-Trees

• A B-tree is a rooted tree with the following 

properties:

• Every node x has the following fields:

– n[x], the number of keys currently stored in x.

– the n[x] keys themselves, in non-decreasing order, 

so that 

key1[x] ≤ key2[x] ≤ ... ≤ keyn[x][x] ,

– leaf[x], a boolean value, true if x is a leaf.
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B-Trees

• Each internal (non-leaf) node has n[x]+1
pointers, c1[x],..., cn[x]+1[x], to its children. Leaf 
nodes have no children, hence no pointers!

• The keys separate the ranges of keys stored in 
each subtree: if ki is any key stored in the 
subtree with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ ... ≤ keyn[x][x] ≤ kn[x]+1 .

• All leaves have the same depth, h, equal to the 
tree’s height.
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B-Trees

• There are lower and upper bounds on the 

number of keys a node may contain.  These 

bounds can be expressed in terms of a fixed 

integer t ≥ 2 called the minimum degree of the 

B-Tree.

– Lower limits

• All nodes but the root has at least t-1 keys. 

• Every internal node but the root has at least t children. 

• A non-empty tree’s root must have at least one key.
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B-Trees

– Upper limits

• Every node can contain at most 2t-1 keys. 

• Every internal node can have at most 2t children. 

• A node is defined to be full if it has exactly 2t-1 keys.

• For a B-tree of minimum degree t ≥ 2 and n

nodes

2

1
log




n
h t
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Basic Operations on B-Trees

• B-tree search

• B-tree insert

• B-tree removal
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Disk Operations in B-Tree operations

• Suppose x is a pointer to an object.

• It is accessible if it is in the main memory. 

• If it is on the disk, it needs to be transferred to 

the main memory to be accessible.  This is 

done by DISK_READ(x).

• To save any changes made to any field(s) of 

the object pointed to by x, a DISK_WRITE(x) 

operation is performed.
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Search in B-Trees

• Similar to search in BSTs with the exception 

that instead of a binary, a multi-way (n[x]+1-

way) decision is made.

137 17

5321 77

82 88 9358 65 7134 43 49

keyi(x) ci(x)
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Search in B-Trees

B-tree-Search(x,k)

{ i=1;

while (i ≤ n[x] and k > keyi[x]) i++;

if (i ≤ n[x] and k = keyi[x]) // if key found

return (x,i);

if (leaf[x]) // if key not found at a leaf

return NULL;

else {DISK_READ(ci[x]);                 // if key < keyi[x]

return B-tree-Search(ci[x],k);} 

}
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Insertion in B-Trees

• Insertion into a B-tree is more complicated than that 
into a BST, since the creation of a new node to place 
the new key may violate the B-tree property of the 
tree.

• Instead, the key is put into a leaf node x if it is not 
full.

• If full, a split is performed, which splits a full node 
(with 2t-1 keys) at its median key, keyt[x], into two 
nodes with t-1 keys each.

• keyt[x] moves up into the parent of x and identifies 
the split point of the two new trees.
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Insertion in B-Trees

• A single-pass insertion starts at the root  

traversing down to the leaf into which the key 

is to be inserted.  

• On the path down, all full nodes are split

including a full leaf that also guarantees a 

parent with an available position for the 

median key of a full node to be placed. 
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Insertion in B-Trees: Example 
69 inserted...

1 4 6

137 17

5321 77

82 88 9358 65 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799
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Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 65 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799

5369 inserted...
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Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799

5369 inserted...

65
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Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163

67 70

737476 787981 848586 899092

949799

5369 inserted...

65

68

69
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Insertion in B-Trees:B-tree-Insert
B-tree-Insert(T,k)

{ r=root[T];

if (n[r] == 2t-1) { 

s=malloc(new-B-tree-node);

root[T]=s;

leaf[s]=false;

n[s]=0;

c1[s]=r; 

B-tree-Split-Child(s,1,r);

B-tree-Insert-Nonfull(s,k); }

elseB-tree-Insert-Nonfull(r,k);

}
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Insertion in B-Trees:B-tree-Split-Child
B-tree-Split-Child(x,i,y)
{ z=malloc(new-B-tree-node);

leaf[z]=leaf[y];
n[z]=t-1;

for (j = 1; j < t) keyj[z]=keyj+t[y];         A
if (!leaf[y])

for (j = 1; j <= t;j++) cj[z]=cj+t[y];   B
n[y]=t-1;

for (j=n[x]+1; j>=i+1; j--) cj+1[x]=cj[x]; C

ci+1[x]=z; D 

for (j=n[x]; j>=i; j--) keyj+1[x]=keyj[x];     E

keyi[x]=keyt[y]; n[x]++;                          F
DISK_WRITE(y);
DISK_WRITE(z);
DISK_WRITE(x);

}
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B-tree-Split-Child: Example

x

...

5321 77

58 716555 76

y

t=3

... ...
71 76

A

B

z
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B-tree-Split-Child: Example

5321 65

5855

y

x

t=3

... ... ...
71 76

C

z

77

D

E

F



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         65

B-tree-Split-Child: Example

5321 65

5855

y

x

t=3

... ... ...
71 76

z

77
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Insertion in B-Trees:B-tree-Insert-
Nonfull

B-tree-Insert-Nonfull(x,k)
{ i=n[x];

if (leaf[x]) {
while (i≥1 and k < keyi[x]) {keyi+1[x]=keyi[x]; i--;}
keyi+1[x]=k;
n[x]++;
DISK_WRITE(x);

}
else {

while (i≥1 and k < keyi[x]) i--;
i++;
DISK_READ(ci[x]);
if (n[ci[x]]==2t-1) {

B-tree-Split-Child(x,i, ci[x]);
if (k > keyi[x]) i++;

}
B-tree-Insert-Nonfull(ci[x],k);

} 
}

if x is a leaf

then place key in x;

write x on disk;

else find the node (root of               

subtree) key goes to;

read node from disk;

if node full

split node at key’s     

position; 

recursive call with 

node split and key;
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Removing a key from a B-Tree

• Removal in B-trees is different than insertion 
only in that a key may be removed from any 
node, not just from a leaf.

• As the insertion algorithm splits any full node 
down the path to the leaf to which the key is to 
be inserted, a recursive removal algorithm may 
be written to ensure that for any call to 
removal on a node x, the number of keys in x is 
at least the minimum degree t.
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Various Cases of Removing a key from 

a B-Tree

1. If the key k is in node x and x is a leaf, 

remove the key k from x.

2. If the key k is in node x and x is an internal 

node, then

a. If the child y that precedes k in node x has at least 

t keys, then find the predecessor k’ of k in the 

subtree rooted at y.  Recursively delete k’, and 

replace k by k’ in x.  Finding k’ and deleting it 

can be performed in a single downward pass.
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Various Cases of Removal a key from 

a B-Tree

b. Symmetrically, if the child z that follows k in 
node x has at least t keys, then find the successor 
k’ of k in the subtree rooted at z.  Recursively 
delete k’, and replace k by k’ in x.  Finding k’ and 
deleting it can be performed in a single 
downward pass. 

c. Otherwise, if both y and z have only t-1 keys, 
merge k and all of z into y so that x loses both k 
and the pointer to z and y now contains 2t-1 keys.  
Free z and recursively delete k from y. 
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Various Cases of Removal a key from 

a B-Tree
3. If k is not present in internal node x, 

determine root ci[x] of the subtree that must 

contain k, if k exists in the tree.  If ci[x] has 

only t-1 keys, execute step 3a or 3b as 

necessary to guarantee that we descend to a 

node containing at least t keys.  Then finish 

by recursing on the appropriate child of x. 
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Various Cases of Removal a key from 

a B-Tree
a. If ci[x] has only t-1 keys but has an immediate 

sibling with at least t keys, give ci[x] an extra key 
by moving a key from x down into ci[x], moving a 
key from ci[x]’s immediate left or right sibling up 
into x, and moving the appropriate child pointer 
from the sibling into ci[x]. 

b. If ci[x] and both of ci[x]’s immediate siblings have 
t-1 keys, merge ci[x] with one sibling, which 
involves moving a key from x down into the new 
merged node to become the median key for that 
node.
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Removal in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163

67 70

737476 787981 848586 899092

949799

53initial tree...

65

68

69

74 to delete...
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Removal in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 67 7376 787981 848586 899092

949799

5374 removed...

21 to delete...

65

68

7069

Pred. Of 21
Case 1
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Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 67 7376 787981 848586 899092

949799

5321 removed...

65 to remove...

65

68

7069

Case 2a

Succ. of 65
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Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 68 7376 787981 848586 899092

949799

5365 removed...

69 to remove...

67

69

70

Case 2b recursively 

followed by case 3a

Merge 69 & 70 into 

node of 68 and 

recursively delete 69!



October 1, 2021 Borahan Tümer, Ph.D.                                                                                                         76

Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 7376 787981 848586 899092

949799

5369 removed...

67

Case 2c recursively 

followed by case 1

7068



Example RBT
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Rotations
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N1

N2A

CB

N2

A

CN1

B



Example RBT
Right-Rotate(T,16)
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LS stands for « Left Subtree of »



Example Rotation 
Right-Rotate(T,16)
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Insertion O(lgn)

• RB-INSERT(T,z)

• /*z inserted to T in O(logn)

• y←nil[T]; x← root[T];

• while x≠ nil[T] do
– y ←x

– if (key[z]<key[x])

• x ←left[x]

– else x ←right[x]

• p[z]=y

• if y=nil[T]
– root[T]←z

– else if (key[z]<key[y])

– left[y] ←z

• else right[y] ←z

• left[z] ← nil[T]; right[z] ← nil[T]; 

• color[z]← RED; 

• RB-INSERT-FIXUP(T,z)
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Fixing Up Colors after Insertion

• RB-INSERT-FIXUP(T,z)

• while color[p[z]] == RED do

• if (p[z] == left[p[p[z]]])
– y=right[p[p[z]]]; 

– if (color[y]==RED)
• color[p[z]]=BLACK

• color[y]=BLACK

• color[p[p[z]]]=RED

• z=p[p[z]]

– else if (z==right[p[z]])
– z=p[z]

– LEFT-ROTATE(T,z)

• color[p[z]]=BLACK

• color[p[p[z]]]=RED

• RIGHT-ROTATE(T,p[p[z]])
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• else    //** if (p[z] ≠ left[p[p[z]]])
– y=left[p[p[z]]]; 

– if (color[y]==RED)
• color[p[z]]=BLACK

• color[y]=BLACK

• color[p[p[z]]]=RED

• z=p[p[z]]

– else if (z==left[p[z]])
– z=p[z]

– RIGHT-ROTATE(T,z)

• color[p[z]]=BLACK

• color[p[p[z]]]=RED

• LEFT-ROTATE(T,p[p[z]])

• color[root[T]]=BLACK;

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3



Example: Case 1
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Case 1: z’s uncle y is red.



Example: Case 1 solved
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z

Turned to black

Turned to red



Example: Case 2
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Case 2: z’s uncle y is black and z is a right child



Example: Case 2 solved
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Example: Case 3
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Case 3: z’s uncle y is black and z is a left child



Example: Case 3 solved
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