
Data Structures – Week #6

Special Trees

October 1, 2021 Borahan Tümer, Ph.D. 2

Outline

• Adelson-Velskii-Landis (AVL) Trees

• Splay Trees

• B-Trees

October 1, 2021 Borahan Tümer, Ph.D. 3

AVL Trees

October 1, 2021 Borahan Tümer, Ph.D. 4

Motivation for AVL Trees

• Accessing a node in a BST takes O(log2n) in
average.

• A BST can be structured so as to have an
average access time of O(n). Can you think of one such BST?

• Q: Is there a way to guarantee a worst-case
access time of O(log2n) per node or can we
find a way to guarantee a BST depth of
O(log2n)?

• A: AVL Trees

October 1, 2021 Borahan Tümer, Ph.D. 5

Definition

An AVL tree is a BST with the following

balance condition:

for each node in the BST, the height of left

and right sub-trees can differ by at most 1, or

.1
RL NN hh

October 1, 2021 Borahan Tümer, Ph.D. 6

Remarks on Balance Condition

• Balance condition must be easy to maintain:

– This is the reason, for example, for the balance

condition’s not being as follows: the height of left

and right sub-trees of each node have the same

height.

• It ensures the depth of the BST is O(log2n).

• The height information is stored as an

additional field in BTNodeType.

October 1, 2021 Borahan Tümer, Ph.D. 7

Structure of an AVL Tree

struct BTNodeType {

infoType *data;

unsigned int height;

struct BTNodeType *left;

struct BTNodeType *right;

}

October 1, 2021 Borahan Tümer, Ph.D. 8

Rotations

Definition:

• Rotation is the operation performed
on a BST to restore its AVL property
lost as a result of an insert operation.

• We consider the node whose new
balance violates the AVL condition.

October 1, 2021 Borahan Tümer, Ph.D. 9

Rotation

• Violation of AVL condition

• The AVL condition violation may occur in four cases:

– Insertion into left subtree of the left child (L/L)

– Insertion into right subtree of the left child (R/L)

– Insertion into left subtree of the right child (L/R)

– Insertion into right subtree of the right child (R/R)

• The outside cases 1 and 4 (i.e., L/L and R/R) are fixed by a
single rotation.

• The other cases (i.e., R/L and L/R) need two rotations called
double rotation to get fixed.

• These are fundamental operations in balanced-tree algorithms.

October 1, 2021 Borahan Tümer, Ph.D. 10

Single Rotation (L/L)

 k2 node

October 1, 2021 Borahan Tümer, Ph.D. 11

Single Rotation (R/R)

 k1 node

October 1, 2021 Borahan Tümer, Ph.D. 12

Double Rotation (R/L)

Single rotation cannot fix the AVL condition violation!!!

 k1 node

October 1, 2021 Borahan Tümer, Ph.D. 13

Double Rotation (R/L)

k1

k2

k3X

Z

B C

k3

k2

X B C Z

k1Height 1

Height 2

Height 3

The symmetric case (L/R) is handled similarly left as an exercise to you!

 k1 node

October 1, 2021 Borahan Tümer, Ph.D. 14

48

48

Constructing an AVL Tree – Animation

October 1, 2021 Borahan Tümer, Ph.D. 15

16

48

48

Constructing an AVL Tree – Animation

16

October 1, 2021 Borahan Tümer, Ph.D. 16

16

48

24

48

Constructing an AVL Tree – Animation

16 24

October 1, 2021 Borahan Tümer, Ph.D. 17

1 -1

16

48

24

48

Constructing an AVL Tree – Animation

16 24

R/L

Dbl. Rot.

October 1, 2021 Borahan Tümer, Ph.D. 18

16

24

2048

Constructing an AVL Tree – Animation

16 24

48

20

October 1, 2021 Borahan Tümer, Ph.D. 19

16

24

20

8

48

Constructing an AVL Tree – Animation

16 24

48

20

8

October 1, 2021 Borahan Tümer, Ph.D. 20

16

24

20

8

1248

Constructing an AVL Tree – Animation

16 24

48

20

8

12

October 1, 2021 Borahan Tümer, Ph.D. 21

16

24

20

8

1248

Constructing an AVL Tree – Animation

16 24

48

20

8

12

-1 0

OK

1 0

OK

2 0L/L

Sngl. Rot.

October 1, 2021 Borahan Tümer, Ph.D. 22

8

16

20 1248

Constructing an AVL Tree – Animation

16 24

24

12

8

32

4820

32

October 1, 2021 Borahan Tümer, Ph.D. 23

8

16

54

20 1248

Constructing an AVL Tree – Animation

16 24

24

12

8

32

4820

32 54

October 1, 2021 Borahan Tümer, Ph.D. 24

8

16

54

72

20 1248

Constructing an AVL Tree – Animation

16 24

24

12

8

32

4820

32 54 72

October 1, 2021 Borahan Tümer, Ph.D. 25

8

16

54

72

20 1248

Constructing an AVL Tree – Animation

16 24

24

12

8

32

4820

32 54 72

-1 0

OK

0 1

OK

0 2 R/R

Sngl. Rot.

October 1, 2021 Borahan Tümer, Ph.D. 26

8

16

18

72

20 1248

Constructing an AVL Tree – Animation

16 24

48

12

8

5424

32 54 72

20 32

18

October 1, 2021 Borahan Tümer, Ph.D. 27

8

16

18

72

20 1248

Constructing an AVL Tree – Animation

16 24

48

12

8

5424

32 54 72

20 32

18

0 -1

OK

1 0

OK

2 1

OK

1 3

L/R

Dbl.Rot.

October 1, 2021 Borahan Tümer, Ph.D. 28

16

24

72

96

20 1248

Constructing an AVL Tree – Animation

16 24

48

20

8

5432

32 54 72 18

8

12 18

96

October 1, 2021 Borahan Tümer, Ph.D. 29

16

24

72

96

20 1248

Constructing an AVL Tree – Animation

16 24

48

20

8

32

32 54 72 18

8

12 18

96

-1 0

OK

-1 1

R/R

Sngl. Rot.

54

October 1, 2021 Borahan Tümer, Ph.D. 30

16

24

17

96

20 12 64 68 3060 98 84 3648

Constructing an AVL Tree – Animation

16 24

48

20

8

32

32 54 72 18

8

12 18

96

72

54

October 1, 2021 Borahan Tümer, Ph.D. 31

Height versus Number of Nodes

• The minimum number of nodes in an AVL tree
recursively relates to the height of the tree as
follows:

S(h) = S(h-1) + S(h-2) + 1;

Initial Values: S(0)=1; S(1)=2

Homework: Solve for S(h) as a function of h!

October 1, 2021 Borahan Tümer, Ph.D. 32

Splay Trees

October 1, 2021 Borahan Tümer, Ph.D. 33

Motivation for Splay Trees

• We are looking for a data structure where, even
though some worst case (O(n)) accesses may be
possible, m consecutive tree operations starting from
an empty tree (inserts, finds and/or removals) take
O(m*log2n).

• Here, the main idea is to assume that, O(n) accesses
are not bad as long as they occur relatively
infrequently.

• Hence, we are looking for modifications of a BST per
tree operation that attempts to minimize O(n)
accesses.

October 1, 2021 Borahan Tümer, Ph.D. 34

Splaying

• The underlying idea of splaying is to move a

deep node accessed upwards to the root,

assuming that it will be accessed in the near

future again.

• While doing this, other deep nodes are also

carried up to smaller depth levels, making the

average depth of nodes closer to O(log2n).

October 1, 2021 Borahan Tümer, Ph.D. 35

Splaying

• Splaying is similar to bottom-up AVL
rotations

• If a node X is the child of the root R,

– then we rotate only X and R, and this is the last

rotation performed.

else consider X, its parent P and grandparent G.

Two cases and their symmetries to consider

Zig-zag case, and

Zig-zig case.

October 1, 2021 Borahan Tümer, Ph.D. 36

Zig-zag case

G

P

XA

D

B C

X

P

A B C D

GHeight h

Height h+1

Height h+2

This is the same operation as an AVL double rotation in an R/L violation.

October 1, 2021 Borahan Tümer, Ph.D. 37

Zig-zig case

G

P D

B

C

X

A

B

C

P

Height h

Height h+1

Height h+2

A

X

D

G

Height h+3

as is LC(P)

LC(G)

as is

LC(P): left child of node P

RC(P): right child of node P

October 1, 2021 Borahan Tümer, Ph.D. 38

Animated Example
10

2 11

1 4

3 9

5

8

6

7

Initial BST

October 1, 2021 Borahan Tümer, Ph.D. 39

Animated Example
10

2 11

1 4

3 9

5

8

6

7

G

P

X

Zig-zig

case

Node with 6 accessed!

G stands for Grandparent

P stands for Parent

X denotes the current node

October 1, 2021 Borahan Tümer, Ph.D. 40

Animated Example
10

2 11

1 4

3 9

5

6

Node with 6 accessed!

7

8

G

P

X

Zig-zag

case

October 1, 2021 Borahan Tümer, Ph.D. 41

Animated Example
10

2 11

1

3

5

Node with 6 accessed!

9

7

8

6

G

P

X

Zig-zig

case
4

31

5

9

7

8

October 1, 2021 Borahan Tümer, Ph.D. 42

Animated Example
10

11

4

Node with 6 accessed!

31

5

9

7

8

6

2

X

R

1 3

2

4

5 9

7

8

October 1, 2021 Borahan Tümer, Ph.D. 43

Animated Example
6

10

Node with 6 accessed!

11

1 3

2

4

5 9

7

8

October 1, 2021 Borahan Tümer, Ph.D. 44

B-Trees

October 1, 2021 Borahan Tümer, Ph.D. 45

Motivation for B-Trees

• Two technologies for providing memory capacity in a
computer system

– Primary (main) memory (silicon chips)

– Secondary storage (magnetic disks)

• Primary memory

– 5 orders of magnitude (i.e., about 105 times) faster,

– 2 orders of magnitude (about 100 times) more expensive,
and

– by at least 2 orders of magnitude less in size

than secondary storage due to mechanical operations
involved in magnetic disks.

October 1, 2021 Borahan Tümer, Ph.D. 46

Motivation for B-Trees

• During one disk read or disk write ((4-8.5msec for
7200 RPM sequential disks (not SSDs!)), MM can be
accessed about 105 times (100 nanosec per access).

• To reimburse (compensate) for this time, at each
disks access, not a single item, but one or more
equal-sized pages of items (each page 211-214 bytes)
are accessed.

• We need some data structure to store these equal
sized pages in MM.

• B-Trees, with their equal-sized leaves (as big as a
page), are suitable data structures for storing and
performing regular operations on paged data.

October 1, 2021 Borahan Tümer, Ph.D. 47

B-Trees

• A B-tree is a rooted tree with the following

properties:

• Every node x has the following fields:

– n[x], the number of keys currently stored in x.

– the n[x] keys themselves, in non-decreasing order,

so that

key1[x] ≤ key2[x] ≤ ... ≤ keyn[x][x] ,

– leaf[x], a boolean value, true if x is a leaf.

October 1, 2021 Borahan Tümer, Ph.D. 48

B-Trees

• Each internal (non-leaf) node has n[x]+1
pointers, c1[x],..., cn[x]+1[x], to its children. Leaf
nodes have no children, hence no pointers!

• The keys separate the ranges of keys stored in
each subtree: if ki is any key stored in the
subtree with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ ... ≤ keyn[x][x] ≤ kn[x]+1 .

• All leaves have the same depth, h, equal to the
tree’s height.

October 1, 2021 Borahan Tümer, Ph.D. 49

B-Trees

• There are lower and upper bounds on the

number of keys a node may contain. These

bounds can be expressed in terms of a fixed

integer t ≥ 2 called the minimum degree of the

B-Tree.

– Lower limits

• All nodes but the root has at least t-1 keys.

• Every internal node but the root has at least t children.

• A non-empty tree’s root must have at least one key.

October 1, 2021 Borahan Tümer, Ph.D. 50

B-Trees

– Upper limits

• Every node can contain at most 2t-1 keys.

• Every internal node can have at most 2t children.

• A node is defined to be full if it has exactly 2t-1 keys.

• For a B-tree of minimum degree t ≥ 2 and n

nodes

2

1
log

n
h t

October 1, 2021 Borahan Tümer, Ph.D. 51

Basic Operations on B-Trees

• B-tree search

• B-tree insert

• B-tree removal

October 1, 2021 Borahan Tümer, Ph.D. 52

Disk Operations in B-Tree operations

• Suppose x is a pointer to an object.

• It is accessible if it is in the main memory.

• If it is on the disk, it needs to be transferred to

the main memory to be accessible. This is

done by DISK_READ(x).

• To save any changes made to any field(s) of

the object pointed to by x, a DISK_WRITE(x)

operation is performed.

October 1, 2021 Borahan Tümer, Ph.D. 53

Search in B-Trees

• Similar to search in BSTs with the exception

that instead of a binary, a multi-way (n[x]+1-

way) decision is made.

137 17

5321 77

82 88 9358 65 7134 43 49

keyi(x) ci(x)

October 1, 2021 Borahan Tümer, Ph.D. 54

Search in B-Trees

B-tree-Search(x,k)

{ i=1;

while (i ≤ n[x] and k > keyi[x]) i++;

if (i ≤ n[x] and k = keyi[x]) // if key found

return (x,i);

if (leaf[x]) // if key not found at a leaf

return NULL;

else {DISK_READ(ci[x]); // if key < keyi[x]

return B-tree-Search(ci[x],k);}

}

October 1, 2021 Borahan Tümer, Ph.D. 55

Insertion in B-Trees

• Insertion into a B-tree is more complicated than that
into a BST, since the creation of a new node to place
the new key may violate the B-tree property of the
tree.

• Instead, the key is put into a leaf node x if it is not
full.

• If full, a split is performed, which splits a full node
(with 2t-1 keys) at its median key, keyt[x], into two
nodes with t-1 keys each.

• keyt[x] moves up into the parent of x and identifies
the split point of the two new trees.

October 1, 2021 Borahan Tümer, Ph.D. 56

Insertion in B-Trees

• A single-pass insertion starts at the root

traversing down to the leaf into which the key

is to be inserted.

• On the path down, all full nodes are split

including a full leaf that also guarantees a

parent with an available position for the

median key of a full node to be placed.

October 1, 2021 Borahan Tümer, Ph.D. 57

Insertion in B-Trees: Example
69 inserted...

1 4 6

137 17

5321 77

82 88 9358 65 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799

October 1, 2021 Borahan Tümer, Ph.D. 58

Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 65 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799

5369 inserted...

October 1, 2021 Borahan Tümer, Ph.D. 59

Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 676870 737476 787981 848586 899092

949799

5369 inserted...

65

October 1, 2021 Borahan Tümer, Ph.D. 60

Insertion in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163

67 70

737476 787981 848586 899092

949799

5369 inserted...

65

68

69

October 1, 2021 Borahan Tümer, Ph.D. 61

Insertion in B-Trees:B-tree-Insert
B-tree-Insert(T,k)

{ r=root[T];

if (n[r] == 2t-1) {

s=malloc(new-B-tree-node);

root[T]=s;

leaf[s]=false;

n[s]=0;

c1[s]=r;

B-tree-Split-Child(s,1,r);

B-tree-Insert-Nonfull(s,k); }

elseB-tree-Insert-Nonfull(r,k);

}

October 1, 2021 Borahan Tümer, Ph.D. 62

Insertion in B-Trees:B-tree-Split-Child
B-tree-Split-Child(x,i,y)
{ z=malloc(new-B-tree-node);

leaf[z]=leaf[y];
n[z]=t-1;

for (j = 1; j < t) keyj[z]=keyj+t[y]; A
if (!leaf[y])

for (j = 1; j <= t;j++) cj[z]=cj+t[y]; B
n[y]=t-1;

for (j=n[x]+1; j>=i+1; j--) cj+1[x]=cj[x]; C

ci+1[x]=z; D

for (j=n[x]; j>=i; j--) keyj+1[x]=keyj[x]; E

keyi[x]=keyt[y]; n[x]++; F
DISK_WRITE(y);
DISK_WRITE(z);
DISK_WRITE(x);

}

October 1, 2021 Borahan Tümer, Ph.D. 63

B-tree-Split-Child: Example

x

...

5321 77

58 716555 76

y

t=3

... ...
71 76

A

B

z

October 1, 2021 Borahan Tümer, Ph.D. 64

B-tree-Split-Child: Example

5321 65

5855

y

x

t=3

...
71 76

C

z

77

D

E

F

October 1, 2021 Borahan Tümer, Ph.D. 65

B-tree-Split-Child: Example

5321 65

5855

y

x

t=3

...
71 76

z

77

October 1, 2021 Borahan Tümer, Ph.D. 66

Insertion in B-Trees:B-tree-Insert-
Nonfull

B-tree-Insert-Nonfull(x,k)
{ i=n[x];

if (leaf[x]) {
while (i≥1 and k < keyi[x]) {keyi+1[x]=keyi[x]; i--;}
keyi+1[x]=k;
n[x]++;
DISK_WRITE(x);

}
else {

while (i≥1 and k < keyi[x]) i--;
i++;
DISK_READ(ci[x]);
if (n[ci[x]]==2t-1) {

B-tree-Split-Child(x,i, ci[x]);
if (k > keyi[x]) i++;

}
B-tree-Insert-Nonfull(ci[x],k);

}
}

if x is a leaf

then place key in x;

write x on disk;

else find the node (root of

subtree) key goes to;

read node from disk;

if node full

split node at key’s

position;

recursive call with

node split and key;

October 1, 2021 Borahan Tümer, Ph.D. 67

Removing a key from a B-Tree

• Removal in B-trees is different than insertion
only in that a key may be removed from any
node, not just from a leaf.

• As the insertion algorithm splits any full node
down the path to the leaf to which the key is to
be inserted, a recursive removal algorithm may
be written to ensure that for any call to
removal on a node x, the number of keys in x is
at least the minimum degree t.

October 1, 2021 Borahan Tümer, Ph.D. 68

Various Cases of Removing a key from

a B-Tree

1. If the key k is in node x and x is a leaf,

remove the key k from x.

2. If the key k is in node x and x is an internal

node, then

a. If the child y that precedes k in node x has at least

t keys, then find the predecessor k’ of k in the

subtree rooted at y. Recursively delete k’, and

replace k by k’ in x. Finding k’ and deleting it

can be performed in a single downward pass.

October 1, 2021 Borahan Tümer, Ph.D. 69

Various Cases of Removal a key from

a B-Tree

b. Symmetrically, if the child z that follows k in
node x has at least t keys, then find the successor
k’ of k in the subtree rooted at z. Recursively
delete k’, and replace k by k’ in x. Finding k’ and
deleting it can be performed in a single
downward pass.

c. Otherwise, if both y and z have only t-1 keys,
merge k and all of z into y so that x loses both k
and the pointer to z and y now contains 2t-1 keys.
Free z and recursively delete k from y.

October 1, 2021 Borahan Tümer, Ph.D. 70

Various Cases of Removal a key from

a B-Tree
3. If k is not present in internal node x,

determine root ci[x] of the subtree that must

contain k, if k exists in the tree. If ci[x] has

only t-1 keys, execute step 3a or 3b as

necessary to guarantee that we descend to a

node containing at least t keys. Then finish

by recursing on the appropriate child of x.

October 1, 2021 Borahan Tümer, Ph.D. 71

Various Cases of Removal a key from

a B-Tree
a. If ci[x] has only t-1 keys but has an immediate

sibling with at least t keys, give ci[x] an extra key
by moving a key from x down into ci[x], moving a
key from ci[x]’s immediate left or right sibling up
into x, and moving the appropriate child pointer
from the sibling into ci[x].

b. If ci[x] and both of ci[x]’s immediate siblings have
t-1 keys, merge ci[x] with one sibling, which
involves moving a key from x down into the new
merged node to become the median key for that
node.

October 1, 2021 Borahan Tümer, Ph.D. 72

Removal in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163

67 70

737476 787981 848586 899092

949799

53initial tree...

65

68

69

74 to delete...

October 1, 2021 Borahan Tümer, Ph.D. 73

Removal in B-Trees: Example

1 4 6

137 17

21 77

82 88 9358 7134 43 49

9 1112 141516 181920 272932 404142 454748 505152 545557 606163 67 7376 787981 848586 899092

949799

5374 removed...

21 to delete...

65

68

7069

Pred. Of 21
Case 1

October 1, 2021 Borahan Tümer, Ph.D. 74

Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 67 7376 787981 848586 899092

949799

5321 removed...

65 to remove...

65

68

7069

Case 2a

Succ. of 65

October 1, 2021 Borahan Tümer, Ph.D. 75

Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 68 7376 787981 848586 899092

949799

5365 removed...

69 to remove...

67

69

70

Case 2b recursively

followed by case 3a

Merge 69 & 70 into

node of 68 and

recursively delete 69!

October 1, 2021 Borahan Tümer, Ph.D. 76

Removal in B-Trees: Example

1 4 6

137 17

20 77

82 88 9358 7134 43 49

9 1112 141516 1819 272932 404142 454748 505152 545557 606163 7376 787981 848586 899092

949799

5369 removed...

67

Case 2c recursively

followed by case 1

7068

Example RBT

October 1, 2021 Borahan Tümer, Ph.D. 79

32

4816

8

4

2

24 36

4642

1

60

6

34 44
20 28

22

12

10

Rotations

October 1, 2021 Borahan Tümer, Ph.D. 80

N1

N2A

CB

N2

A

CN1

B

Example RBT
Right-Rotate(T,16)

October 1, 2021 Borahan Tümer, Ph.D. 81

32

4816

8

4

2

24 36

4642

1

60

6

34 44
20 28

22

12

10

LS stands for « Left Subtree of »

Example Rotation
Right-Rotate(T,16)

October 1, 2021 Borahan Tümer, Ph.D. 82

32

48

16

8

4

2 24

36

46421

60

6 34 44

20 28

22

12

10

Insertion O(lgn)

• RB-INSERT(T,z)

• /*z inserted to T in O(logn)

• y←nil[T]; x← root[T];

• while x≠ nil[T] do
– y ←x

– if (key[z]<key[x])

• x ←left[x]

– else x ←right[x]

• p[z]=y

• if y=nil[T]
– root[T]←z

– else if (key[z]<key[y])

– left[y] ←z

• else right[y] ←z

• left[z] ← nil[T]; right[z] ← nil[T];

• color[z]← RED;

• RB-INSERT-FIXUP(T,z)

October 1, 2021 Borahan Tümer, Ph.D. 83

Fixing Up Colors after Insertion

• RB-INSERT-FIXUP(T,z)

• while color[p[z]] == RED do

• if (p[z] == left[p[p[z]]])
– y=right[p[p[z]]];

– if (color[y]==RED)
• color[p[z]]=BLACK

• color[y]=BLACK

• color[p[p[z]]]=RED

• z=p[p[z]]

– else if (z==right[p[z]])
– z=p[z]

– LEFT-ROTATE(T,z)

• color[p[z]]=BLACK

• color[p[p[z]]]=RED

• RIGHT-ROTATE(T,p[p[z]])

October 1, 2021 Borahan Tümer, Ph.D. 84

• else //** if (p[z] ≠ left[p[p[z]]])
– y=left[p[p[z]]];

– if (color[y]==RED)
• color[p[z]]=BLACK

• color[y]=BLACK

• color[p[p[z]]]=RED

• z=p[p[z]]

– else if (z==left[p[z]])
– z=p[z]

– RIGHT-ROTATE(T,z)

• color[p[z]]=BLACK

• color[p[p[z]]]=RED

• LEFT-ROTATE(T,p[p[z]])

• color[root[T]]=BLACK;

Case 1

Case 2

Case 3

Case 1

Case 2

Case 3

Example: Case 1

October 1, 2021 Borahan Tümer, Ph.D. 87

32

4816

8 24 60

20 28

22z

Case 1: z’s uncle y is red.

Example: Case 1 solved

October 1, 2021 Borahan Tümer, Ph.D. 88

32

4816

8 24 60

20 28

22

z

Turned to black

Turned to red

Example: Case 2

October 1, 2021 Borahan Tümer, Ph.D. 89

32

4816

8 24 60

20 28

22

z

Case 2: z’s uncle y is black and z is a right child

Example: Case 2 solved

October 1, 2021 Borahan Tümer, Ph.D. 90

32

4824

16 28 60

20

22

z

8

Example: Case 3

October 1, 2021 Borahan Tümer, Ph.D. 91

32

4824

16 28 60

20

22

z

8

Case 3: z’s uncle y is black and z is a left child

Example: Case 3 solved

October 1, 2021 Borahan Tümer, Ph.D. 92

24

3216

28 4820

22

z

8

60

