Data Structures - Week \#6

Special Trees

Outline

- Adelson-Velskii-Landis (AVL) Trees
- Splay Trees
- B-Trees

AVL Trees

Motivation for AVL Trees

- Accessing a node in a BST takes $O\left(\log _{2} n\right)$ in average.
- A BST can be structured so as to have an average access time of $O(n)$. Can you think of one such $B S T ?$
- Q: Is there a way to guarantee a worst-case access time of $O\left(\log _{2} n\right)$ per node or can we find a way to guarantee a BST depth of $O\left(\log _{2} n\right)$?
- A: AVL Trees

Definition

An AVL tree is a BST with the following balance condition:
for each node in the BST, the height of left and right sub-trees can differ by at most 1 , or

$$
\left|h_{N_{L}}-h_{N_{R}}\right| \leq 1 .
$$

Remarks on Balance Condition

- Balance condition must be easy to maintain:
- This is the reason, for example, for the balance condition's not being as follows: the height of left and right sub-trees of each node have the same height.
- It ensures the depth of the BST is $O\left(\log _{2} n\right)$.
- The height information is stored as an additional field in BTNodeType.

Structure of an AVL Tree

 struct BTNodeType \{ infoType *data; unsigned int height; struct BTNodeType *left; struct BTNodeType *right; $\}$
Rotations

Definition:

- Rotation is the operation performed on a BST to restore its AVL property lost as a result of an insert operation.
- We consider the node α whose new balance violates the AVL condition.

Rotation

- Violation of AVL condition
- The AVL condition violation may occur in four cases:
- Insertion into left subtree of the left child (L/L)
- Insertion into right subtree of the left child (R / L)
- Insertion into left subtree of the right child (L/R)
- Insertion into right subtree of the right child (R / R)
- The outside cases 1 and 4 (i.e., L / L and R/R) are fixed by a single rotation.
- The other cases (i.e., R/L and L/R) need two rotations called double rotation to get fixed.
- These are fundamental operations in balanced-tree algorithms.

Single Rotation (L/L)

Single Rotation (R/R)

before single rotation
after single rotation

Double Rotation (R/L)

Single rotation cannot fix the AVL condition violation!!!

Double Rotation (R/L)

The symmetric case (L / R) is handled similarly left as an exercise to you!

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48}1
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

```
48
```


Constructing an AVL Tree - Animation

Height versus Number of Nodes

- The minimum number of nodes in an AVL tree recursively relates to the height of the tree as follows:

$$
\begin{gathered}
\qquad S(h)=S(h-1)+S(h-2)+1 \\
\text { Initial Values: } S(0)=1 ; S(1)=2
\end{gathered}
$$

Homework: Solve for $S(h)$ as a function of $h!$

Splay Trees

Motivation for Splay Trees

- We are looking for a data structure where, even though some worst case $(O(n))$ accesses may be possible, m consecutive tree operations starting from an empty tree (inserts, finds and/or removals) take $O\left(m * \log _{2} n\right)$.
- Here, the main idea is to assume that, $O(n)$ accesses are not bad as long as they occur relatively infrequently.
- Hence, we are looking for modifications of a BST per tree operation that attempts to minimize $O(n)$ accesses.

Splaying

- The underlying idea of splaying is to move a deep node accessed upwards to the root, assuming that it will be accessed in the near future again.
- While doing this, other deep nodes are also carried up to smaller depth levels, making the average depth of nodes closer to $O\left(\log _{2} n\right)$.

Splaying

- Splaying is similar to bottom-up AVL rotations
- If a node X is the child of the root R ,
- then we rotate only X and R, and this is the last rotation performed. else consider X, its parent P and grandparent G. Two cases and their symmetries to consider

$$
\begin{aligned}
& \text { Zig-zag case, and } \\
& \text { Zig-zig case. }
\end{aligned}
$$

Zig-zag case

This is the same operation as an AVL double rotation in an R / L violation.

Zig-zig case

$L C(P)$: left child of node P $R C(P)$: right child of node P

Height h+2

Height $\mathrm{h}+3$

Animated Example

Animated Example

Animated Example

Animated Example

Node with 6 accessed!

Animated Example

Node with 6 accessed!

B-Trees

Motivation for B-Trees

- Two technologies for providing memory capacity in a computer system
- Primary (main) memory (silicon chips)
- Secondary storage (magnetic disks)
- Primary memory
- 5 orders of magnitude (i.e., about 10^{5} times) faster,
- 2 orders of magnitude (about 100 times) more expensive, and
- by at least 2 orders of magnitude less in size
than secondary storage due to mechanical operations involved in magnetic disks.

Motivation for B-Trees

- During one disk read or disk write ((4-8.5msec for 7200 RPM sequential disks ($n o t$ SSDs!)), MM can be accessed about 10^{5} times (100 nanosec per access).
- To reimburse (compensate) for this time, at each disks access, not a single item, but one or more equal-sized pages of items (each page $2^{11}-2^{14}$ bytes) are accessed.
- We need some data structure to store these equal sized pages in MM.
- B-Trees, with their equal-sized leaves (as big as a page), are suitable data structures for storing and performing regular operations on paged data.

B-Trees

- A B-tree is a rooted tree with the following properties:
- Every node x has the following fields:
$-n[x]$, the number of keys currently stored in x.
- the $n[x]$ keys themselves, in non-decreasing order, so that

$$
\operatorname{key}_{1}[x] \leq \operatorname{key}_{2}[x] \leq \ldots \leq \operatorname{key}_{n[x]}[x]
$$

- leaf[x], a boolean value, true if x is a leaf.

B-Trees

- Each internal (non-leaf) node has $n[x]+1$ pointers, $c_{1}[x], \ldots, c_{n[x]+1}[x]$, to its children. Leaf nodes have no children, hence no pointers!
- The keys separate the ranges of keys stored in each subtree: if k_{i} is any key stored in the subtree with root $c_{i}[x]$, then

$$
k_{1} \leq k e y_{1}[x] \leq k_{2} \leq k e y_{2}[x] \leq \ldots \leq k e y_{n[x]}[x] \leq k_{n[x]+1}
$$

- All leaves have the same depth, h, equal to the tree's height.

B-Trees

- There are lower and upper bounds on the number of keys a node may contain. These bounds can be expressed in terms of a fixed integer $t \geq 2$ called the minimum degree of the B-Tree.
- Lower limits
- All nodes but the root has at least t-1 keys.
- Every internal node but the root has at least t children.
- A non-empty tree's root must have at least one key.

B-Trees

- Upper limits
- Every node can contain at most 2t-1 keys.
- Every internal node can have at most $2 t$ children.
- A node is defined to be full if it has exactly $2 t-1$ keys.
- For a B-tree of minimum degree $t \geq 2$ and n nodes

$$
h \leq \log _{t} \frac{n+1}{2}
$$

Basic Operations on B-Trees

- B-tree search
- B-tree insert
- B-tree removal

Disk Operations in B-Tree operations

- Suppose x is a pointer to an object.
- It is accessible if it is in the main memory.
- If it is on the disk, it needs to be transferred to the main memory to be accessible. This is done by DISK_READ(x).
- To save any changes made to any field(s) of the object pointed to by x, a DISK_WRITE (x) operation is performed.

Search in B-Trees

- Similar to search in BSTs with the exception that instead of a binary, a multi-way ($n[x]+1-$ way) decision is made.

Search in B-Trees

```
B-tree-Search( \(\mathrm{x}, \mathrm{k}\) )
\{ i=1;
    while ( \(\mathrm{i} \leq \mathrm{n}[\mathrm{x}]\) and \(\mathrm{k}>\mathrm{key}_{\mathrm{i}}[\mathrm{x}]\) ) \(\mathrm{i}++\);
    if ( \(\mathrm{i} \leq \mathrm{n}[\mathrm{x}]\) and \(\mathrm{k}=\mathrm{key}_{\mathrm{i}}[\mathrm{x}]\) )
        // if key found
        return ( \(\mathrm{x}, \mathrm{i}\) );
    if (leaf[x])
        // if key not found at a leaf
        return NULL;
    else \{DISK_READ( \(\left.c_{i}[x]\right)\); // if key < key \([x]\)
        return B-tree-Search \(\left(\mathrm{c}_{i}[\mathrm{x}], \mathrm{k}\right)\);\}
\}
```


Insertion in B-Trees

- Insertion into a B-tree is more complicated than that into a BST, since the creation of a new node to place the new key may violate the B-tree property of the tree.
- Instead, the key is put into a leaf node x if it is not full.
- If full, a split is performed, which splits a full node (with $2 t-1$ keys) at its median key, $\mathrm{key}_{t}[x]$, into two nodes with $t-1$ keys each.
- $k e y_{t}[x]$ moves up into the parent of x and identifies the split point of the two new trees.

Insertion in B-Trees

- A single-pass insertion starts at the root traversing down to the leaf into which the key is to be inserted.
- On the path down, all full nodes are split including a full leaf that also guarantees a parent with an available position for the median key of a full node to be placed.

Insertion in B-Trees: Example

69 inserted...

Insertion in B-Trees: Example

Insertion in B-Trees: Example

Insertion in B-Trees: Example


```
Insertion in B-Trees:B-tree-Insert
B-tree-Insert(T,k)
{ r=root[T];
    if (n[r] == 2t-1) {
    s=malloc(new-B-tree-node);
    root[T]=s;
    leaf[s]=false;
    n[s]=0;
    c
    B-tree-Split-Child(s,1,r);
    B-tree-Insert-Nonfull(s,k); }
    elseB-tree-Insert-Nonfull(r,k);
}
```


Insertion in B-Trees:B-tree-Split-Child

 B-tree-Split-Child(x,i,y)\{ \quad =malloc(new-B-tree-node); leaf[z]=leaf[y];
$\mathrm{n}[\mathrm{z}]=\mathrm{t}-1$;

$\mathrm{n}[\mathrm{y}]=\mathrm{t}-1$;
for ($j=n[x]+1 ; j>=i+1 ; j--) c_{j+1}[x]=c_{j}[x] ; \quad C$
$c_{i+1}[x]=z ;$
for $(j=n[x] ; j>=i ; j--)$ key $_{j+1}[x]=\operatorname{key}_{j}[x]$;
$\operatorname{key}_{i}[\mathrm{x}]=\mathrm{key}_{\mathrm{t}}[\mathrm{y}] ; \mathrm{n}[\mathrm{x}]++$;
DISK_WRITE(y);
DISK_WRITE(z);
DISK_WRITE(x);

B-tree-Split-Child: Example

B-tree-Split-Child: Example

B-tree-Split-Child: Example

Insertion in B-Trees:B-tree-InsertNonfull

```
B-tree-Insert-Nonfull(x,k)
{ i=n[x];
    if (leaf[x]) {
                while (i\geq1 and k < key; [x]) {key }\mp@subsup{\mp@code{i+1}}{[x]=\mp@subsup{key}{i}{[}[x]; i--;}}{}
                key }\mp@subsup{\mathrm{ i+1 }}{[x]=k;}{
            n[x]++;
            DISK_WRITE(x);
    }
    else {
            while (i\geq1 and k < key;[x]) i--;
            i++;
            DISK_READ(c.[x]);
            if (n[cic[x]]==2t-1) {
                    B-tree-Split-Child(x,i, ci[x]);
                        if (k > key[[x]) i++;
            }
            B-tree-Insert-Nonfull(c; [x],k);
        }
}
```


Removing a key from a B-Tree

- Removal in B-trees is different than insertion only in that a key may be removed from any node, not just from a leaf.
- As the insertion algorithm splits any full node down the path to the leaf to which the key is to be inserted, a recursive removal algorithm may be written to ensure that for any call to removal on a node x, the number of keys in x is at least the minimum degree t.

Various Cases of Removing a key from

 a B-Tree1. If the key k is in node x and x is a leaf, remove the key k from x.
2. If the key k is in node x and x is an internal node, then
a. If the child y that precedes k in node x has at least t keys, then find the predecessor k ' of k in the subtree rooted at y. Recursively delete k^{\prime}, and replace k by k ' in x. Finding k ' and deleting it can be performed in a single downward pass.

Various Cases of Removal a key from a B-Tree

b. Symmetrically, if the child z that follows k in node x has at least t keys, then find the successor k ' of k in the subtree rooted at z. Recursively delete k^{\prime}, and replace k by k^{\prime} in x. Finding k^{\prime} and deleting it can be performed in a single downward pass.
c. Otherwise, if both y and z have only $t-1$ keys, merge k and all of z into y so that x loses both k and the pointer to z and y now contains $2 t-1$ keys. Free z and recursively delete k from y.

Various Cases of Removal a key from

 a B-Tree3. If k is not present in internal node x, determine root $c_{i}[x]$ of the subtree that must contain k, if k exists in the tree. If $c_{i}[x]$ has only $t-1$ keys, execute step $3 a$ or $3 b$ as necessary to guarantee that we descend to a node containing at least t keys. Then finish by recursing on the appropriate child of x.

Various Cases of Removal a key from a B-Tree

a. If $c_{i}[x]$ has only $t-1$ keys but has an immediate sibling with at least t keys, give $c_{i}[x]$ an extra key by moving a key from x down into $c_{i}[x]$, moving a key from $c_{i}[x]$'s immediate left or right sibling up into x, and moving the appropriate child pointer from the sibling into $c_{i}[x]$.
b. If $c_{i}[x]$ and both of $c_{i}[x]$'s immediate siblings have $t-1$ keys, merge $c_{i}[x]$ with one sibling, which involves moving a key from x down into the new merged node to become the median key for that node.

Removal in B-Trees: Example

Example RBT

Rotations

Example RBT Right-Rotate(T,16)

LS stands for «Left Subtree of »

Example Rotation Right-Rotate(T,16)

Insertion $\mathrm{O}(\operatorname{lgn})$

- RB-INSERT(T,z)
- $/ *$ z inserted to T in $O(\log n)$
- $\mathrm{y} \leftarrow \operatorname{nil}[\mathrm{T}] ; \mathrm{x} \leftarrow \operatorname{root}[\mathrm{T}] ;$
- while $\mathrm{x} \neq \mathrm{nil}[\mathrm{T}]$ do
$-\mathrm{y} \leftarrow \mathrm{x}$
- if (key[z]<key[x])
- $x \leftarrow \operatorname{left}[x]$
$-\quad$ else $x \leftarrow \operatorname{right}[x]$
- $\mathrm{p}[\mathrm{z}]=\mathrm{y}$
- if $\mathrm{y}=\mathrm{nil}[\mathrm{T}]$
$-\operatorname{root}[\mathrm{T}] \leftarrow \mathrm{Z}$
- else if (key[z]<key[y])
$-\operatorname{left}[y] \leftarrow \mathrm{z}$
- else right[y] $\leftarrow \mathrm{z}$
- left[z] $\leftarrow \operatorname{nil}[T] ; \operatorname{right}[z] \leftarrow \operatorname{nil}[T] ;$
- color[z] \leftarrow RED;
- RB-INSERT-FIXUP(T,z)

Fixing Up Colors after Insertion

- RB-INSERT-FIXUP(T,z)
- while color[p[z]] == RED do
- if $(\mathrm{p}[\mathrm{z}]==\operatorname{left}[\mathrm{p}[\mathrm{p}[\mathrm{z}]]])$
- $\mathrm{y}=\mathrm{right}[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]$;
- if (color[y]==RED)
- color[p[z]]=BLACK

Case 1 • color[y]=BLACK

- color $[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]=$ RED
- $\mathrm{z}=\mathrm{p}[\mathrm{p}[\mathrm{z}]]$
- else if (z==right[p[z]])

Case 2

- $\mathrm{z}=\mathrm{p}[\mathrm{z}]$
- LEFT-ROTATE(T,z)
- color $[\mathrm{p}[\mathrm{z}]]=$ BLACK

Case 3 • color $[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]=$ RED

- RIGHT-ROTATE(T,p[p[z]])
- else $/ /{ }^{* *}$ if $(p[z] \neq \operatorname{left}[p[p[z]]])$
- $\mathrm{y}=\operatorname{left}[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]$;
- if (color[y]==RED)
- color[p[z]]=BLACK
- color[y]=BLACK
- color $[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]=$ RED
- $\mathrm{z}=\mathrm{p}[\mathrm{p}[\mathrm{z}]]$
- else if (z==left[p[z]])
- $\mathrm{z}=\mathrm{p}[\mathrm{z}]$
- RIGHT-ROTATE(T,z)
- color $[\mathrm{p}[\mathrm{z}]]=$ BLACK
- $\operatorname{color}[\mathrm{p}[\mathrm{p}[\mathrm{z}]]]=\mathrm{RED}$
- LEFT-ROTATE(T,p[p[z]])
- color[root[T]]=BLACK;

Example: Case 1

Case $1: z$'s uncle y is red.

Example: Case 1 solved

Example: Case 2

Case 2: z 's uncle y is black and z is a right child

Example: Case 2 solved

Example: Case 3

Case 3: z 's uncle y is black and z is a left child

Example: Case 3 solved

