
Data Structures – Week #7

Hashing

October 1, 2021 Borahan Tümer, Ph.D. 2

Outline

• Motivation for Hashing

• Underlying Idea

• Hash Tables

• Hash Functions

• Separate Chaining

• Open Addressing

• Rehashing

October 1, 2021 Borahan Tümer, Ph.D. 3

Hashing

October 1, 2021 Borahan Tümer, Ph.D. 4

Motivation for Hashing

• Keeping a data set of dynamic (i.e., rapidly changing) nature in
an array is costly.

• Cost of operations such as search, insert and remove depends
upon how data resides in the array (i.e., ordered or not)

• Unordered data in array take linear time to search and
remove (and constant time to insert), while

• Ordered sequences make use of binary search and can be
searched in O(log2n) time, although insertion and removal
still take O(n), since a shift operation is required to follow
these operations for the data to remain contiguous after these
operations.

• The table on the following page summarizes the performance
of operations for ordered and unordered data.

October 1, 2021 Borahan Tümer, Ph.D. 5

Motivation for Hashing

Operation

(in arrays)

Unordered

Data

Ordered

Data

Insert O(1) O(n)

Remove O(n) O(n)

Search O(n) O(logn)

October 1, 2021 Borahan Tümer, Ph.D. 6

Motivation for Hashing

• Question: May we find a way to perform these

operations in average constant time (O(1))?

• Hash tables or hashing is the answer to the

above question.

• In the following pages, we will define what a

hash table is.

October 1, 2021 Borahan Tümer, Ph.D. 7

Underlying Idea

Consider a data set S={1,…,k},

k small (e.g. at most as large

as a reasonable array size).

You may place each number

into the corresponding cell

of an array of size k using a

one-to-one mapping.

In the figure, this is a linear

mapping. This mapping from keys

to the array index is called “direct

addressing.”

2
3

8
7 5

1 2 3 4 5 6 7 8 9 10

One-to-one function: f(key)=key

S

October 1, 2021 Borahan Tümer, Ph.D. 8

Underlying Idea

• To handle many real world case, it is reasonable to
assume data is generated from an inexhaustible
source. Hence we assume the infinity of data.

• Then, no array will be capable of holding the entire
data.

• Solution is to use an array of some sufficient size
m much less than the original data size k and to
allow many-to-one mapping. This array is called a
hash table and the many-to-one mapping is known
as the hash function. (Check next figure!)

October 1, 2021 Borahan Tümer, Ph.D. 9

Hash TablesHash Tables

a1
a2

a4
a5

1 2 3 … …m-1m m+1 ... M

Many-to-one mapping function

m=h(ak);

m is the hash value;

ak is the key.

A

a3

a6

aKak…
…

…

Here, the data size, K, is much greater

than the size of the array, M or

K >> M.

Hence, several keys may get mapped to

the same array cell according to the

given many-to-one mapping

mechanism.

The mapping mechanism used is called

the hash function.

The attempt to “hash” a key to an

occupied location of the hash table due

to the many-to-one nature of the hash

function is called a collision.

Following the discussion regarding hash

functions, we will discuss strategies

about how to avoid and resolve

collisions.

U

October 1, 2021 Borahan Tümer, Ph.D. 10

Hash Functions

• A hash function should

– be easy to compute;

– distribute keys evenly within the hash table

– ensure equally likely hash values.

• The performance of hashing depends on the

effectiveness of the hash function.

October 1, 2021 Borahan Tümer, Ph.D. 11

Making a Hash Function

• Typically,

1. the table size M is chosen to be a prime number

that is the first larger one than the necessary size

of the table if it is known (e.g., choose 11 if 10 is

enough);

2. some “natural” way is selected to convert keys to

large numbers r (i.e., ak  r), and

3. modulo M of this large number (r mod M) is

obtained as the hash value of the key.

October 1, 2021 Borahan Tümer, Ph.D. 12

Examples to Hash Functions

• “Natural” Ways to convert string keys to large numbers (i.e.,
ak r)

• Adding up ASCII values of characters in a string

Example: ali  97+108+105=310

A good hash function?

• Another method:

f(k)=key[0]+27*key[1]+729*key[2];

263 combinations possible for the first three letters

However, only around 2850 are meaningful.

• Horner’s Rule

October 1, 2021 Borahan Tümer, Ph.D. 13

A Hash Function

• Adding up the ASCII values of the characters in the string.

• Any problems with that strategy?

• Assume we chose a big hash table size (considering that we
will place strings or words in the structure, a large hash table is
not unreasonable at all) such as 10000 (or 10007 if you want to
make it prime).

• We usually use words composed at most of eight characters.

• This means that the first 1016 (why?) cells are most likely to
be allocated. The rest of the hash table space will mostly
remain empty.

• Hence, the data are not evenly distributed.

October 1, 2021 Borahan Tümer, Ph.D. 14

Another Hash Function

• Consider a hashing mechanism considering only the first three characters of
a word and processing it as follows:

• key[0]+key[1]*27+key[2]*272 mod tablesize

• Here 27 is selected regarding the fact that the English alphabet has 26
letters.

• This is a good selection provided that the occurrence of the first three
characters of English words are quite uniformly distributed over the set of
all three-character strings.

• Unfortunately, this is not true. Out of a total of 263=17576 possible
combinations, only 2851 three-character strings are meaningful, and hence,
encountered in an online English dictionary.

• Hence, even if no collisions happen in a table chosen as above, 28% of the
hash table would be full.

• For large tables this is not a good function to use.

October 1, 2021 Borahan Tümer, Ph.D. 15

Horner’s Rule

• Horner’s rule:
Another hash function proposed by Horner and
called Horner’s rule, has the formulation below:

• This mechanism is better than the two former
functions. If the strings are too long, it takes long
for hash values to compute. Then a certain substring
of the key may be used.

tablesizeikeysizekey
keysize

i

i mod37*]1[
1

0








October 1, 2021 Borahan Tümer, Ph.D. 16

Hash Functions for Integer Keys

Truncation Method: Take the first few or last few characters or
digits as the hash code. This method is easy and fast. e.g.,
Consider Example2, only a subset of the id digits can be used.
If 3 high-order digits are used then a table of size 1000 can be
created. Collisions?

• Division Method: We map a key k into one of m slots by taking
the remainder of k divided by m. Quite fast

e.g., k=34752 |1000 (maxItems = 1000)

34

752

• That is the hash function is h(k) = k mod m

October 1, 2021 Borahan Tümer, Ph.D. 17

More Examples to Hash Functions…

• Multiplication Method: Operates in two steps. First, we
multiply the key, k by a constant in the range 0<A<1 and
extract the fractional part. Then, we multiply this value by m
and take the floor of the result.

That is the hash function is h(k) = m (k A mod 1) 

e.g., k=123456, m=10000, and A = (5-1)/2

h(k) = 10000 * (123456* 0.61803… mod 1) 

= 10000 * 0.0041151…

= 41.151…

= 41

October 1, 2021 Borahan Tümer, Ph.D. 18

More Examples to Hash Functions…

• Midsquare Method: The key is multiplied by

itself (squared) and then the middle few digits

of the result are selected as the hash code.

• e.g., k = 510324 k2 = 260430584976

h(510324) = 058

October 1, 2021 Borahan Tümer, Ph.D. 19

More Examples to Hash Functions…

• Key is partitioned or divided into several pieces. Pieces are
operated upon in some way. Adding them together and taking
the required number of digits as the hash code is one of the
possibilities.

e.g., k = 510324
• Folding method 1: 51

03

24

78 For m=1000, h(k) = 078

• Folding method 2: Fold left and right sections 15

1 03 2 03

5 4 42

60

October 1, 2021 Borahan Tümer, Ph.D. 20

Separate Chaining

October 1, 2021 Borahan Tümer, Ph.D. 21

Open Addressing (Closed Hashing)

• The hash table has a fixed size, M.

• Any data point ak∊ A under consideration is
placed in the hash table.

• The hash table cell, m, the data point ak is
placed is determined by the hash function, h,
or m=h(ak).

• Since K>>M, sometimes collisions occur. To
resolve the collisions, we use collision
resolution strategies.

October 1, 2021 Borahan Tümer, Ph.D. 22

Analysis of Open Addressing

• We will express the performance of hash tables
in terms of the load factor a of the hash table.

• Load Factor: The number that specifies how
many elements of the hash table are full, or

a=n/m,

where

n is the number of occupied table cells, and

m is the table size.

October 1, 2021 Borahan Tümer, Ph.D. 23

Cost of Unsuccessful Search & Insert

• In an unsuccessful search, at the end of the search, we

find out that the key is not in the hash table once we

find an empty table cell.

• This is also what we do to insert a key into the hash

table. We insert the key when we find an available

space (unoccupied or empty table cell).

• Hence, for both operations, we will attempt to find

the expected number of checks (probes) we make

before we find an available table cell.

October 1, 2021 Borahan Tümer, Ph.D. 24

Cost of Unsuccessful Search & Insert

• Assume X is an RV and represents the number

of probes made in an unsuccessful search.

• The probability that X is at least i (i.e., x ≥ i)

probes before an empty slot is found is:

1

1

2

2

2

2

1

1
)(
























































 i

i

a
m

n

im

in

m

n

m

n

m

n
ixp 

October 1, 2021 Borahan Tümer, Ph.D. 25

Cost of Unsuccessful Search & Insert

The expected number of probes made in an

unsuccessful search is at most:

 

a
aaiXpXE

XpXp

XpXp

XpXp

XpXpXE

iXpiXpiiXipXE

i

i

i

i

i

ii







































1

1
)(][

)5(4)4(4

)4(3)3(3

)3(2)2(2

)2()1(][

)1()()(][

01

1

1

11



October 1, 2021 Borahan Tümer, Ph.D. 26

Cost of Successful Search

From the last slide we remember that the expected

number of probes for the insertion of a key is at most

1/(1-a), a being the load factor. If, for instance, the key

inserted is the (i+1)st key, then, the expected number of

probes cannot exceed:

im

m

a
m
i 





 1

1

1

1

October 1, 2021 Borahan Tümer, Ph.D. 27

Cost of Successful Search

Using this info, the expected number of probes for a

successful search can be found by averaging m/(m-i)

for the (i+1)st key over n keys as follows:

aa
nt

anm

m

ax

dx

aiaiia
nt

nmmmmaimn

m

im

m

n
nt

m
n

m

nm

m

nmi

nm

i

m

i

n

i

n

i






























































1

1
ln

1
)(

1

1
ln

1
ln

1111111
)(

1

1

2

1

1

11111
)(

111

1

0

1

0



October 1, 2021 Borahan Tümer, Ph.D. 28

Resolving Collisions in Hash Tables

• Collision Resolving Strategies

– Linear Probing

– Quadratic Probing

– Double Hashing

October 1, 2021 Borahan Tümer, Ph.D. 29

Linear Probing

• Given an ordinary hash function

h: A  {0,1,…, m-1}, the method of linear
probing uses the hash function

h (ak,i) = (h(ak) + i) mod m

where i is the number of collisions occurred for

the current key.

October 1, 2021 Borahan Tümer, Ph.D. 30

Linear Probing: Example
i\keys Empty 24 116 50 66 26 259 144 247 40 51

0 50 50 50 50 50 50 50 50

1 66 66 66 66 66 66 66

2 26 26 26 26 26 26

3 259 259 259 259 259

4 144 144 144 144

5 247 247 247

6 40 40

7 51

8

9

10

11 24 24 24 24 24 24 24 24 24 24

12 116 116 116 116 116 116 116 116 116

CF 0 0 2 0 2 4 3 5 5 8

October 1, 2021 Borahan Tümer, Ph.D. 31

Quadratic Probing

• Quadratic probing: uses a hash function of
the form

h (ak,i) = (h(ak) + c1i + c2 i2) mod m

where

• i is the number of collisions occurred for the
current key, and

• cis are the coefficients of the quadratic
function.

October 1, 2021 Borahan Tümer, Ph.D. 32

Quadratic Probing: Example
i\keys Empty 24 116 50 66 26 259 144 247 40 51

0 26 26 26 26 26 26

1 66 66 66 66 66 66 66

2 50 50 50 50 50 50 50 50

3 259 259 259 259 259

4 247 247 247

5 144 144 144 144

6

7

8 51

9

10 40 40

11 24 24 24 24 24 24 24 24 24 24

12 116 116 116 116 116 116 116 116 116

CF 0 0 2 0 0 2 2 2 3 3

October 1, 2021 Borahan Tümer, Ph.D. 33

Double Hashing

• Double hashing: is one of the best methods

available. It uses a hash function of the form

h (ak,i) = (h1 (ak) + i h2 (ak)) mod m

where

• i is the number of collisions occurred for the

current key, and

• h2 (ak) is the second hash function involved in

case of a collision.

October 1, 2021 Borahan Tümer, Ph.D. 34

Selecting the second Hash Function

• A popular form of the second hash function is:

h2 (ak)= R – (ak mod R)

where R is usually selected as the closest

smaller prime number than the table size.

• The reason for selecting R this way is to obtain

any second hash value equally likely.

October 1, 2021 Borahan Tümer, Ph.D. 35

Double Hashing: Example

i\keys Empty 24 116 50 66 26 259 144 247 40 51

0 26 26 26 26 26 26

1 66 66 66 66 66 66 66

2

3 50 50 50 50 50 50 50 50

4 259 259 259 259 259

5 40 40

6 247 247 247

7 51

8 144 144 144 144

9

10

11 24 24 24 24 24 24 24 24 24 24

12 116 116 116 116 116 116 116 116 116

CF 0 0 1 0 0 1 2 1 1 2

h2(ak) --- --- 5 --- --- 5 10 6 4 4

h2 (ak)=R – (ak mod R); R=11

October 1, 2021 Borahan Tümer, Ph.D. 36

Rehashing

• If more than half of the current hash table is loaded,

a new and larger hash table is constructed.

• All keys are placed in this new table using a new hash

function.

• This is called rehashing.

• A typical example to the selection of the size of the

new table is the first prime that is greater than two

times the size of the current hash table.

