
Data Structures – Week #8

Heaps (Priority Queues)

October 1, 2021 Borahan Tümer, Ph.D. 2

Outline

• Motivation for Heaps

• Implementation Alternatives of PQs

• Binary Heaps

• Basic Heap Operations (Insert, DeleteMin)

• Other Heap Operation

– BuildHeap, DecreaseKey, IncreaseKey, Delete

• d-Heaps

• Leftist Heaps

• Binomial Heaps

October 1, 2021 Borahan Tümer, Ph.D. 3

Motivation for Heaps

• Priority queues are queues in which jobs with
different priorities are enqueued and handled
accordingly.

• Heaps are data structures that are used to implement
priority queues.

• Heaps can be represented in an array since a complete
binary tree is very regular.

• Two basic operations

– Insert (average O(1), worst case O(log n)), and

– DeleteMin (O(log n)).

October 1, 2021 Borahan Tümer, Ph.D. 4

Implementation Issues

Implementation Insertion DeleteMin

Array (Cmplt BT) O(1) O(log(n))

Linked List O(1) O(n)

Linked List (sorted) O(n) O(1)

BST O(log(n)) O(log(n))

October 1, 2021 Borahan Tümer, Ph.D. 5

Keys in Heaps

• In the scope of this class (CSE 225),

– a key in a heap is the priority value of the

corresponding node which determines the position

of its node in the heap;

– i.e., in a min-heap the node with the minimum key

is the node with the highest priority, hence it is the

root.

October 1, 2021 Borahan Tümer, Ph.D. 6

Binary Heaps

• A binary heap is

– a completely filled binary tree with the possible

exception of the bottom level, (known as a

complete binary tree)

– filled from left to right

– with two properties:

• Structure property

• Heap order property

October 1, 2021 Borahan Tümer, Ph.D. 7

Structure Property

If a complete binary tree is represented in

an array, then for any element in array

position i, the left child is in position 2i

and the right child in 2i+1 iff they exist

(i.e., 2i < n and 2i+1 < n, respectively).

October 1, 2021 Borahan Tümer, Ph.D. 8

(Min)Heap Order Property

In a heap, for every node X, the key in the

parent of X is smaller than (or equal to) the

key in X, with the exception of the root since it

has no parent. (Depending on the application,

the opposite of this may be considered as the

heap order property, too!!!)

October 1, 2021 Borahan Tümer, Ph.D. 9

Insertion

• Steps of Insertion operation

– Create a hole in the next available location;

– If heap order property is not violated

• Then we are done;

• Else

– loop

» exchange the hole with the parent node

– until the heap property is restored (i.e., percolate the hole up)

• Worst time best upper bound: O(log(n))

October 1, 2021 Borahan Tümer, Ph.D. 10

Insert Function

void insert(ElmntType x, PrQ h)

{ // array starts at cell #1 not #0

int i;

if (isFull(h)){

display(“queue full: unsuccessful insertion”);

return;

}

for (i = ++h->Size; h->elements[i/2] > x; i/=2)

h->elements[i] = h->elements[i/2];

h->elements[i] = x;

}

October 1, 2021 Borahan Tümer, Ph.D. 11

48

48

Animated Insertion Example – Current

Heap
16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

October 1, 2021 Borahan Tümer, Ph.D. 12

48

48

Inserting 4…

16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

4

4

4 < 20

October 1, 2021 Borahan Tümer, Ph.D. 13

48

48

Inserting 4…

16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

4

4

4 < 20

October 1, 2021 Borahan Tümer, Ph.D. 14

48

48

Inserting 4…

16 24 20

4

8

16

8

12

12

24

32

32

54

54

72

72

4

20

4 < 16

October 1, 2021 Borahan Tümer, Ph.D. 15

48

48

Inserting 4…

16 24 20 8

8

12

12

24

32

32

54

54

72

72

4

20

16

4

4 < 16

October 1, 2021 Borahan Tümer, Ph.D. 16

48

48

Inserting 4…

16 24 20 8

8

12

12

24

32

32

54

54

72

72

4

20

4

16

4 < 8

October 1, 2021 Borahan Tümer, Ph.D. 17

48

48

Inserting 4…

16 24 20 8 12

12

24

32

32

54

54

72

72

4

20

16

4 < 8

4

8

October 1, 2021 Borahan Tümer, Ph.D. 18

48

48

Inserting 4…

16 24 20 8 12

12

24

32

32

54

54

72

72

4

20

16

8

4

October 1, 2021 Borahan Tümer, Ph.D. 19

DeleteMin Operation

• Steps of DeleteMin operation

– Remove the minimum element (at the root) from

the heap;

– If the last element can be placed in the hole

• Then we are done;

• Else

– Loop

» exchange the hole with the smaller child node

– until the last element moves in the heap (i.e., percolate the hole

down).

October 1, 2021 Borahan Tümer, Ph.D. 20

DeleteMin Operation

ElmntType DeleteMin(PrQ h)

{

int i, chld;

ElmntType minelm, lastelm;

if isEmpty(h){

display(“queue empty”)

return (h->elements[0]);

}

minelm=h->elements[1];

lastelm=h->elements[h->size--];

... Cont’d at the next page!

October 1, 2021 Borahan Tümer, Ph.D. 21

DeleteMin Operation... (cont’d)
for (i=1; i * 2 <= h->size; i=chld) {

// find smaller child

chld=i*2;

if (chld != h->size && h->elements[chld+1] < h->elements[chld]) chld++;

// percolate one level

if (lastelm > h->elements[chld])

h->elements[i] = h->elements[chld];

else break;

}

h->elements[i] =lastelm;

//restore min-heap property in case it is violated by placing lastelm to heap’s ith node

for (j = i; h->elements[j/2] > lastelm; j/=2)

h->elements[j] = h->elements[j/2];

h->elements[j] = lastelm;

return minelm;

}

October 1, 2021 Borahan Tümer, Ph.D. 22

DeleteMin Operation
8

15 21

46 37 27 23

92 93 45 116 42 87 34 66

98111

Empty 8 15 21 46 37 27 23 111 98 9592 106 45 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

95

October 1, 2021 Borahan Tümer, Ph.D. 23

Removing 8 ...
8

15 21

46 37 27 23

92 93 45 116 42 87 34 66

98111

Empty 8 15 21 46 37 27 23 111 98 9592 93 45 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

95

minelm lastelm

hsizei

Child (index pointing to child with smaller key)

child minelm

i

October 1, 2021 Borahan Tümer, Ph.D. 24

Removing 8 ...
15

21

46 37 27 23

92 93 45 116 42 87 34 66

98111

Empty 15 21 46 37 27 23 111 98 9592 93 45 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

95

minelm lastelm

hsizei

Child (index pointing to child with smaller key)

child minelm

i

October 1, 2021 Borahan Tümer, Ph.D. 25

Removing 8 ...
15

37 21

46 27 23

92 93 45 116 42 87 34 66

98111

Empty 15 37 21 46 27 23 111 98 9592 93 45 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

95

minelm lastelm

hsizei

Child (index pointing to child with smaller key)

child minelm

i

October 1, 2021 Borahan Tümer, Ph.D. 26

Removing 8 ...
15

37 21

46 45 27 23

92 93 116 42 87 34 66

98111

Empty 15 37 21 46 45 27 23 111 98 9592 93 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

95

minelm lastelm

hsizei

Child (index pointing to child with smaller key)

child minelm

i
No children for node i !!!

October 1, 2021 Borahan Tümer, Ph.D. 27

Removing 8 ...
15

37 21

46 45 27 23

92 93 95 116 42 87 34 66

98111

Empty 15 37 21 46 45 27 23 111 9892 93 95 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

minelm lastelm

hsizei

child minelm

i
No children for node i !!!

null

October 1, 2021 Borahan Tümer, Ph.D. 28

8 Removed!
15

37 21

46 45 27 23

92 93 95 116 42 87 34 66

98111

Empty 15 37 21 46 45 27 23 111 9892 93 95 116 42 87 34 66

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

October 1, 2021 Borahan Tümer, Ph.D. 29

Other Heap Operations

• Other Heap Operations

• DecreaseKey(I,D,HeapHeader);

• IncreaseKey(I,D,HeapHeader);

• Delete(I,HeapHeader);

• BuildHeap(HeapHeader);

October 1, 2021 Borahan Tümer, Ph.D. 30

DecreaseKey and IncreaseKey

• DecreaseKey (I,D,HeapHeader) & IncreaseKey
(I,D,HeapHeader)

• These two operations decrease or increase the key at
position i of the heap the root of which is pointed to
by the HeapHeader by the amount D, respectively.

• Any of these two operations may violate the heap
order. By percolating the modified key up or down
after the DecreaseKey operation or IncreaseKey
operation, respectively, the heap order property may
be restored.

October 1, 2021 Borahan Tümer, Ph.D. 31

Removal of any Key

• Delete (I,HeapHeader)

• This operation removes any key in the heap structure.

• Again, after the removal of the element from the
heap, the heap order property may be violated.

• In this case, we may consider

– the node of the key removed as the root, and

– the corresponding subtree as the tree we perform a
DeleteMin on.

• Then using the DeleteMin operation, the heap order
property is restored.

October 1, 2021 Borahan Tümer, Ph.D. 32

BuildHeap

• BuildHeap(HeapHeader)

• This operation is used to build a heap from a set of
input data (e.g., numbers).

• Assuming that a set of numbers are arbitrarily (i.e.,
with no consideration of the heap order property)
placed in a complete binary tree, we build a binary
heap in the complete BT.

• For n numbers, this operation can be performed in n
successive inserts. Since an insert takes O(1) in
average and O(log(n)) worst case, Buildheap takes an
average time of n*O(1)=O(n) and n*O(log(n)) =
O(n*log(n)) in the worst case.

October 1, 2021 Borahan Tümer, Ph.D. 33

BuildHeap Algorithm

• Starting from

– the rightmost subtree with a height of 1,

– Loop

• compare the children and find the smaller child

• compare the smaller child with the parent

• exchange the smaller child with the parent.

– until all nodes in the tree are processed.

• Subtrees with roots of height greater than 1,

– the parent must be percolated down until the heap order
property is restored.

• An example follows.

October 1, 2021 Borahan Tümer, Ph.D. 34

48

48

Constructing a MinHeap – Animation

October 1, 2021 Borahan Tümer, Ph.D. 35

16

48

48

Constructing a MinHeap – Animation

16

48 > 16

October 1, 2021 Borahan Tümer, Ph.D. 36

16

48

48

Constructing a MinHeap – Animation

16

48 > 16

October 1, 2021 Borahan Tümer, Ph.D. 37

48

16

48

Constructing a MinHeap – Animation

16 24

24

OK!

October 1, 2021 Borahan Tümer, Ph.D. 38

48

16

20

48

Constructing a MinHeap – Animation

16 24

48 > 20

24

20

October 1, 2021 Borahan Tümer, Ph.D. 39

48

16

20

48

Constructing a MinHeap – Animation

16 24

48 > 20

24

20

October 1, 2021 Borahan Tümer, Ph.D. 40

20

16

48

48

Constructing a MinHeap – Animation

16 24

24

20

October 1, 2021 Borahan Tümer, Ph.D. 41

20

16

48

48

Constructing a MinHeap – Animation

16 24 20

8

20 > 8

24

8

October 1, 2021 Borahan Tümer, Ph.D. 42

20

16

48

48

Constructing a MinHeap – Animation

16 24 20

8

20 > 8

24

8

October 1, 2021 Borahan Tümer, Ph.D. 43

8

16

48

48

Constructing a MinHeap – Animation

16 24 20

20

24

8

16 > 8

October 1, 2021 Borahan Tümer, Ph.D. 44

48

48

Constructing a MinHeap – Animation

16 24 20

20

24

8

16 > 8

8

16

October 1, 2021 Borahan Tümer, Ph.D. 45

48

48

Constructing a MinHeap – Animation

16 24 20

20

24

8

16

8

12

12

24 > 12

October 1, 2021 Borahan Tümer, Ph.D. 46

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

24 > 12

24

12

October 1, 2021 Borahan Tümer, Ph.D. 47

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

12

24

32

32

OK!

October 1, 2021 Borahan Tümer, Ph.D. 48

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

12

24

32

32

54

54

OK!

October 1, 2021 Borahan Tümer, Ph.D. 49

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

OK!

October 1, 2021 Borahan Tümer, Ph.D. 50

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

4

4

4 < 20

October 1, 2021 Borahan Tümer, Ph.D. 51

48

48

Constructing a MinHeap – Animation

16 24 20

20

8

16

8

12

12

24

32

32

54

54

72

72

4

4

4 < 20

October 1, 2021 Borahan Tümer, Ph.D. 52

48

48

Constructing a MinHeap – Animation

16 24 20

4

8

16

8

12

12

24

32

32

54

54

72

72

4

20

4 < 16

October 1, 2021 Borahan Tümer, Ph.D. 53

48

48

Constructing a MinHeap – Animation

16 24 20 8

8

12

12

24

32

32

54

54

72

72

4

20

16

4

4 < 16

October 1, 2021 Borahan Tümer, Ph.D. 54

48

48

Constructing a MinHeap – Animation

16 24 20 8

8

12

12

24

32

32

54

54

72

72

4

20

4

16

4 < 8

October 1, 2021 Borahan Tümer, Ph.D. 55

48

48

Constructing a MinHeap – Animation

16 24 20 8 12

12

24

32

32

54

54

72

72

4

20

16

4 < 8

4

8

October 1, 2021 Borahan Tümer, Ph.D. 56

48

48

Constructing a MinHeap – Animation

16 24 20 8 12

12

24

32

32

54

54

72

72

4

20

16

8

4

October 1, 2021 Borahan Tümer, Ph.D. 57

48

Constructing a MinHeap – Classwork

12

24 32

54 72 20

16

8

4

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

October 1, 2021 Borahan Tümer, Ph.D. 58

20

Constructing a MinHeap

24

12 32

54 72 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 3084

October 1, 2021 Borahan Tümer, Ph.D. 59

20

Constructing a MinHeap

24

12 32

54 72 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 3084

October 1, 2021 Borahan Tümer, Ph.D. 60

20

Constructing a MinHeap -

24

12 32

54 30 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 61

20

Constructing a MinHeap -

24

12 32

54 30 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

64 17 6096 98

68 36 7284

OK

October 1, 2021 Borahan Tümer, Ph.D. 62

20

Constructing a MinHeap -

24

12 32

54 30 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

OK

October 1, 2021 Borahan Tümer, Ph.D. 63

20

Constructing a MinHeap -

24

12 32

54 30 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

OK

October 1, 2021 Borahan Tümer, Ph.D. 64

20

Constructing a MinHeap -

24

12 32

54 30 4

8

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 65

20

Constructing a MinHeap -

24

12 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 66

20

Constructing a MinHeap -

24

12 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

OK

October 1, 2021 Borahan Tümer, Ph.D. 67

20

Constructing a MinHeap -

24

12 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 68

20

Constructing a MinHeap -

12

24 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 69

20

Constructing a MinHeap -

12

17 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 24 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 70

20

Constructing a MinHeap -

12

24 32

54 30 8

4

16

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 71

20

Constructing a MinHeap -

12

24 32

54 30 8

16

4

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 72

20

Constructing a MinHeap -

12

24 32

54 30 16

8

4

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 73

20

Constructing a MinHeap -

12

24 32

54 30 16

8

4

48

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 74

20

Constructing a MinHeap -

12

24 32

54 30 16

8

48

4

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 75

20

Constructing a MinHeap -

12

24 32

54 30 16

48

8

4

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 76

20

Constructing a MinHeap -

12

24 32

54 30 48

16

8

4

1720 12 64 68 3060 98 84 3648 16 24 8 32 54 72 4 96

54545454 64 17 6096 98

68 36 7284

October 1, 2021 Borahan Tümer, Ph.D. 77

d-Heaps

• d-Heaps

• A simple generalization to binary heaps is a

d-heap,

• which is exactly like a binary heap except that

all nodes have d children (i.e., a binary heap is

a 2-heap).

October 1, 2021 Borahan Tümer, Ph.D. 78

Leftist Heaps

October 1, 2021 Borahan Tümer, Ph.D. 79

Motivation for Leftist Heaps

• Leftist heaps make merging possible in O(log n) time
(log n insertions each with O(1) average time) using
only an array as in binary heaps.

• LHs have both

– a structural property, and

– an ordering property.

• A LH has the same heap order property.

• A LH is a binary tree.

• Difference between a LH and a binary heap is

– a LH is not perfectly balanced.

October 1, 2021 Borahan Tümer, Ph.D. 80

Leftist Heap Property

• Definition:

– Null path length of a node X, Npl(X), is defined as the

length of the shortest path from X to a node without two

children.

• By definition, Npl(NULL)=-1.

• Npl(leaf)=0.

• LH property is that for every node X in the heap,

– Npl(LCX)  Npl(RCX)

– where LCX and RCX denote the left child and the right

child of node X, respectively.

October 1, 2021 Borahan Tümer, Ph.D. 81

Two binary trees

Both are leftist heaps?

October 1, 2021 Borahan Tümer, Ph.D. 82

Leftist Heap Operations (Merging)

• The fundamental operation is merging.

• Two solutions

– recursive version

– non-recursive version

• Check and make sure that both binary trees are

actually LHs!

October 1, 2021 Borahan Tümer, Ph.D. 83

Recursive Merging Algorithm

1. Input: two LHs.

2. First check that both binary trees are LHs.

3. If either heap is empty, then the result of the

merge is the other heap.

4. If not, then compare the roots

5. Recursively merge the heap with the larger

root with right subheap of the heap with the

smaller root.

October 1, 2021 Borahan Tümer, Ph.D. 84

Recursive Merging Algorithm

6. The recursive function at Step 5 will invoke itself
until the base condition at Step 3 (i.e., that one LH
is empty) will be attained. At this point the
execution will start returning step by step to the
original function call while building up the merged
heap starting from the bottom level.

7. At each step, check if the LH property is violated.
If so, swap the right child and the left child.

8. After each swap, compute the new Npl(LH) by
adding 1 to the Npl(new RC)

9. End of the recursive algorithm

October 1, 2021 Borahan Tümer, Ph.D. 85

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

0 0

0 0 0 -1

01

11

H1 H2

0 -1

0 -1

01

00

October 1, 2021 Borahan Tümer, Ph.D. 86

Recursive Merging Algorithm

1. Input: two LHs H1 and H2 (on slide 65).

2. Both binary trees are LHs.

3. No heap is empty.

4. 12 < 15

5. Recursively merge the heap with 15 with

right subheap of the heap with 12.

October 1, 2021 Borahan Tümer, Ph.D. 87

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

H1 H2

October 1, 2021 Borahan Tümer, Ph.D. 88

Recursive Merging Algorithm

1. Input: two LHs H1 (within the red ellipse)

and H2 (see slide 67).

2. Both binary trees are LHs.

3. No heap is empty.

4. 15 < 18

5. Recursively merge the heap with 18 with

right subheap of the heap with 15.

October 1, 2021 Borahan Tümer, Ph.D. 89

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

H1 H2

October 1, 2021 Borahan Tümer, Ph.D. 90

Recursive Merging Algorithm

1. Input: two LHs H1 and H2 (both within the

red ellipses) (see slide 69).

2. Both binary trees are LHs.

3. No heap is empty.

4. 18 < 21

5. Recursively merge the heap with 21 with

right subheap of the heap with 18.

October 1, 2021 Borahan Tümer, Ph.D. 91

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

H1 H2

October 1, 2021 Borahan Tümer, Ph.D. 92

Recursive Merging Algorithm

1. Input: two LHs H1 and H2 (both within the

red ellipses) (see slide 71).

2. Both binary trees are LHs.

3. No heap is empty.

4. 21 < 56

5. Recursively merge the heap with 56 with

right subheap of the heap with 21.

October 1, 2021 Borahan Tümer, Ph.D. 93

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

H1 H2

October 1, 2021 Borahan Tümer, Ph.D. 94

Recursive Merging Algorithm

1. Input: two LHs H1 and H2 (both within the red
ellipses) (see slide 73).

2. Both binary trees are LHs.

3. The right child of 21 is null. Hence, the resulting
heap of merging the heap with root 56 (H1) and the
right subheap of heap with root 21 (i.e., an empty
heap) is H1 (the heap with root 56).

7. H1’ is still a LH. No swaps necessary!

8. Skip;

9. The execution returns with H1’ (see slide 75).

October 1, 2021 Borahan Tümer, Ph.D. 95

Merging Example

12

39 18

46 45 38

42 87

56

76

15

37 21

86 55 91

102

H1’

H2

October 1, 2021 Borahan Tümer, Ph.D. 96

Recursive Merging Algorithm

6. The return address of execution is step 6 of the
instance of merge algorithm at which H1 was the
heap with root 56 and H2 was the heap with 21 (see
slide 71!). Now, the new H1 (H1’) is the same
heap; but it is the result of the last recursive merge.
At this step, H1’ is merged with the current H2 (see
slide 75!)

7. H2’ is still a LH. No swaps necessary!

8. Skip;

9. The execution returns with H2’ (see slide 77).

October 1, 2021 Borahan Tümer, Ph.D. 97

Merging Example

12

39 18

46 45 38

42 87

56

76

15

37 21

86 55 91

102

H2’H1

October 1, 2021 Borahan Tümer, Ph.D. 98

Recursive Merging Algorithm

6. The return address of execution is step 6 of
the instance of merge algorithm at which H1
was the heap with root 18 and H2 was the
heap with 21 (see slide 69!). Now, H2’ is
merged with the current H1 (see slide 77!)

7. H1’ is still a LH. No swaps necessary!

8. Skip;

9. The execution returns with H1’ (see slide
79).

October 1, 2021 Borahan Tümer, Ph.D. 99

Merging Example

12

39 18

46 45 38

42 87

15

37

86 55

56

76

21

91

102

H1’

1 1

H2

October 1, 2021 Borahan Tümer, Ph.D. 100

Recursive Merging Algorithm

6. The return address of execution is step 6 of
the instance of merge algorithm at which H1
was the heap with root 18 and H2 was the
heap with 15 (see slide 67!). Now, H1’ is
merged with the current H2 (see slide 79!)

7. H2’ is not a LH (Npl(LC)<Npl(RC)). (see
slide 81!)

8. We swap LC and RC of 15!

9. Execution returns with H2’’ (see slide 82).

October 1, 2021 Borahan Tümer, Ph.D. 101

Merging Example

12

39

46 45

15

37

86 55

H1

18

38

42 87 56

76

21

91

102

1 2

H2’

October 1, 2021 Borahan Tümer, Ph.D. 102

Merging Example

12

39

46 45

15

37

86 55

H1

18

38

42 87 56

76

21

91

102

H2’’

October 1, 2021 Borahan Tümer, Ph.D. 103

Recursive Merging Algorithm

6. The return address of execution is step 6 of

the instance of merge algorithm at which H1

was the heap with root 12 and H2 was the

heap with 15 (see slide 65!). Now, H2’’ is

merged with the current H1 (see slide 84!)

7. H1’ is not a LH (Npl(LC)<Npl(RC)).

8. We swap LC and RC of 12!

9. Execution returns with H1’’ (see slide 85).

October 1, 2021 Borahan Tümer, Ph.D. 104

Merging Example
12

39

46 45

H1’

15

37

86 55

18

38

42 87 56

76

21

91

102

1 2

October 1, 2021 Borahan Tümer, Ph.D. 105

Merging Example
12

39

46 45

H1’’

15

37

86 55

18

38

42 87 56

76

21

91

102

October 1, 2021 Borahan Tümer, Ph.D. 106

Non-Recursive Merging Algorithm:

First Pass

• Two passes

• First pass:

– arrange the nodes on the right-most path of both

LHs in sorted order, keeping their respective left

children;

– create a new tree from the two LHs;

• sort and arrange the nodes above,

• make them the right path of the new tree.

October 1, 2021 Borahan Tümer, Ph.D. 107

Non-Recursive Merging Algorithm:

Second Pass

• Start a bottom-up analysis to

– check and determine the nodes at which the

leftist heap property is violated, and

– perform a swap at these nodes.

October 1, 2021 Borahan Tümer, Ph.D. 108

Merging Example

12

39 18

46 45 38 56

42 87 76

15

37 21

86 55 91

102

H1 H2

October 1, 2021 Borahan Tümer, Ph.D. 109

Merging Example: First Pass

12 1518 2156

• Nodes on the right-most path of both heaps arranged!
12

15

18

21

56

• A new tree made with the above as its right-most path!

October 1, 2021 Borahan Tümer, Ph.D. 110

Merging Example: First Pass

12

15

18

21

56

• Left children maintained!

39

46 45 37

86 55 38

42 87 91

102 76

LH property violated at these nodes!

October 1, 2021 Borahan Tümer, Ph.D. 111

Merging Example: Second Pass
12

15 39

46 4537

86 55

18

21

56

38

42 87 91

102 76

October 1, 2021 Borahan Tümer, Ph.D. 112

Time Analysis of Merging using LHs

Performing the recursive solution is

proportional to the sum of the length of the right

paths. The work done at each node visited on

the right path is constant.

We have O(log(n)) nodes on the right path in a

LH with n nodes.

October 1, 2021 Borahan Tümer, Ph.D. 113

Binomial Heaps

October 1, 2021 Borahan Tümer, Ph.D. 114

Motivation for Binomial Heaps

• Leftist Heaps support
– merging, insertion, removal, and deleteMin

• in O(log(n)) time per operation.

• We know binary heaps have a constant (i.e., O(1))
insertion time.

• Question: May there be a data structure providing

• O(1) time for insertion, and

• O(log(n)) time for each other operation.

• This data structure is the so-called binomial heaps
(BHs) or queues.

• To study BHs we first need to discuss binomial trees.

October 1, 2021 Borahan Tümer, Ph.D. 115

Binomial Trees

• A binomial tree Bk is an ordered tree (i.e., a
rooted tree in which the children of each node
are ordered; the order of the children matters)
defined recursively.

• The binomial tree B0 consists of a single node.
A binomial tree Bk of height k is formed by
attaching a Bk-1 to the root of another Bk-1.

• In the next slide, we see two B3s combined to
form a B4.

October 1, 2021 Borahan Tümer, Ph.D. 116

Binomial Trees

Two binomial trees of height 3, B3

A binomial tree of height 4, B4

Depth 0

Depth 1

Depth 2

Depth 3

B0 B1 B2 B3

B3

B3

October 1, 2021 Borahan Tümer, Ph.D. 117

Binomial Trees

• A binomial tree Bk has

– a height of k;

– n=2k nodes (!!!);

– k+1 depth levels ranging within 0,...,k.

– nodes at depth level d.

– a root and a B0, B1, B2, B3,..., Bk-1 connected to

it in respective order (see slide 116!).

)!(!

!

dkd

k

d

k












October 1, 2021 Borahan Tümer, Ph.D. 118

Binomial Heaps (BHs)

• BHs differ from other heap structures in that

– a BH is not a heap-ordered tree but rather a collection of

heap ordered trees, a forest.

– each heap-ordered tree is of a constrained form known as a

binomial tree.

• Each binomial tree in a BH obeys min-heap or heap

order property.

• There is at most one Bk of each height k in a BH.

• In the next slide, we see an 11-node BH.

October 1, 2021 Borahan Tümer, Ph.D. 119

An 11-element Binomial Heap

21

69

77

41

61

57

89

72

12

34

4

B3
B1B0

October 1, 2021 Borahan Tümer, Ph.D. 120

• BH_Create()

– Creates the special header node for the BH.

• BH_Find_Min()

– Finds the minimum key in the BH.

• BH_Merge(H1,H2)

– Merges two BHs H1 and H2.

• BH_Insert(H1,x)

– Inserts x into H.

• BH_Delete-Min(H)

– Deletes the minimum key in H.

• In preparing algorithms/pseudocode for these operations, [1] has been the main reference.

Operations on Binomial Heaps

October 1, 2021 Borahan Tümer, Ph.D. 121

Operations on Binomial Heaps

• Assumptions

– Each node x in a BH contains

• a key field key[x],

• a parent pointer, p[x],

• a child pointer to its left-most child, child[x],

• a pointer to its immediate right sibling, sibling[x],

• a field holding the number of children, degree[x].

parent[x]

key[x]

degree[x]

child[x] sibling[x]

x

October 1, 2021 Borahan Tümer, Ph.D. 122

Creating an Empty Heap

BH_Header * BH_Create()

{ // creates a special header node for a BH.

BH_Header *BH_hdr;

BH_hdr=(BH_Header *) malloc(sizeof(BH_Header));

... // here, proper values are assigned to special header
fields.

BH_hdr->first=NULL;

return BH_hdr;

}

Running time: Θ(1)

October 1, 2021 Borahan Tümer, Ph.D. 123

Finding Minimum Key in a BH

BH_Find_Min(BH_hdr)

{ // finds minimum key in the BH.

y=NULL; x=BH_hdr->first; min=∞;

while (x != NULL)

if (key[x]<min) { min=key[x]; y=x; }

x = sibling[x];

return y;

}

Running time: O(lg(n)) Why?

October 1, 2021 Borahan Tümer, Ph.D. 124

Obtaining a Bk from two Bk-1s

Get_a_BT_k(y,z)

{ // obtains a Bk from two Bk-1s. Root of new B is z.

p[y]=z;

sibling[y]=child[z];

child[z]=y;

degree[z]++;

}

Running time: Θ(1)

October 1, 2021 Borahan Tümer, Ph.D. 125

Get_a_BT_k(y,z) illustrated...

k-1

y

k-1

z

k

z

k-1

ychild[y] child[z]

sibling[y] sibling[z]

k-2

Before Get_a_BT_k(y,z) After Get_a_BT_k(y,z)

Get_a_BT_k(y,z)

{ p[y]=z;

sibling[y]=child[z];

child[z]=y;

degree[z]++;

}

October 1, 2021 Borahan Tümer, Ph.D. 126

Merging two BHs

BH_Merge(BH1_hdr,BH2_hdr)
{ // merges two BH1 and BH2.

BH_hdr= BH_Create();
BH_hdr->first=Merge_Root_Lists(); // Merges root lists of BH1 and BH2 into one sorted by

// ascending degree.

if (BH_hdr->first == NULL) return BH_hdr->first;
q=NULL; x=BH_hdr->first; r=sibling[x];
while (r !=NULL)

if (degree[r]!=degree[x] || sibling[r]!=NULL &&
degree[sibling[r]]==degree[x]) {q=x; x=r;}

else if (key[x]<=key[r]){sibling[x]=sibling[r];Get_a_BT_k(r,x);}
else { if (q == NULL) BH_hdr->first=r; else sibling[q]=r;
Get_a_BT_k(x,r); x=r;

}
r=sibling[x];

return BH_hdr;
}
Running time: O(lg(n))

October 1, 2021 Borahan Tümer, Ph.D. 127

Illustration of Various Cases in Merging

ba c d

q x r sibling[r]

degree[r] ≠ degree[x]

ba c d

q x r

Bk Bk+c Bk Bk+c

sibling[r] ≠ NULL && degree[sibling[r]]=degree[x])

ba c d

q x r sibling[r]

ba c d

q x r

Bk Bk BkBk Bk Bk

October 1, 2021 Borahan Tümer, Ph.D. 128

Bk+c

Illustration of Various Cases in Merging

 1kB

key[x]>key[r])

ba c d

q x r sibling[r]

b

a c d

q x r

Bk Bk

Bk

Bk
Bk+c

key[x]≤key[r])

Bk+c

ba c d

q x r sibling[r]

c

a b d

q x r

Bk Bk

Bk

BkBk+c

 1kB

October 1, 2021 Borahan Tümer, Ph.D. 129

An 11-element BH

21

69

77

41

61

57

89

72

12

34

4

B3
B1B0

October 1, 2021 Borahan Tümer, Ph.D. 130

Another 11-element BH

13

89

95

24

46

37

99

93

18

49

25

B3
B1B0

October 1, 2021 Borahan Tümer, Ph.D. 131

Two BHs merged...

21

69

77

41

61

57

89

72

12

34

418

49

25 13

89

95

24

46

37

99

93

October 1, 2021 Borahan Tümer, Ph.D. 132

Two BHs merged... into a 22-element

BH

21

69

77

41

61

57

89

72

12

34

4

18

49

25

13

89

95

24

46

37

99

93

October 1, 2021 Borahan Tümer, Ph.D. 133

Inserting a node into a BH

• Insertion of a node into a BH is the same as merging a single-
node BH with another BH.

BH_Insert(BH_hdr,x)

{ //inserts x into BH.

BH1_hdr=BH_Create();

// makes a single-node (degree-0) BH out of x.

p[x]=child[x]=sibling[x]=NULL; degree[x]=0;

BH1_hdr->first=x;

BH_hdr=BH_Merge(BH1_hdr,BH_hdr);

}

Running time: worst case: O(lg(n))

October 1, 2021 Borahan Tümer, Ph.D. 134

Delete-Min in a BH

BH_Delete-Min(BH_hdr)

{ //deletes the minimum key in the BH.
– Find the root x with minimum key //(wc: O(lg(n)))

– Remove x

– BH1_hdr=BH_Create();

– Establish a LL of x’s children //(wc: O(lg(n))

– BH1_hdr->first=pointer to node with degree=0

– BH_hdr=BH_Merge(BH1_hdr,BH_hdr); //(wc: O(lg(n))

}

Running time: O(lg(n))

October 1, 2021 Borahan Tümer, Ph.D. 135

A 22-element BH... Delete-min

21

69

77

41

61

57

89

72

12

34

13

18

49

25

4

89

95

24

46

37

99

93

October 1, 2021 Borahan Tümer, Ph.D. 136

4 removed...

21

69

77

41

61

57

89

72

89

95

24

46

37

99

93

12

34

13

18

49

25
BH

BH1

October 1, 2021 Borahan Tümer, Ph.D. 137

BH merged with BH1... 2 B1s, 2B2s

89

93

99

95

1224

46

37

18

BH...

21

69

77

41

61

57

89

72

13

34

49

25

Merge two B1s

to a B2

Merge two B2s to a B3

October 1, 2021 Borahan Tümer, Ph.D. 138

BH merged with BH1... 3B2s

89

93

99

95

24

BH...

21

69

77

41

61

57

89

72

13

34

49

25

3B2s... Merge the last

two to a B3

12

18

46

37

October 1, 2021 Borahan Tümer, Ph.D. 139

BH merged with BH1... 2 B3s

24

BH...

21

69

77

41

61

57

89

72

2 B3s to merge to a B4

12

18

46

37

13

89

95

34

49

25

99

93

October 1, 2021 Borahan Tümer, Ph.D. 140

BH merged with BH1... Final

appearance

24

BH...

21

69

77

41

61

57

89

72

12

18

46

37

13

89

95

34

49

25

99

93

October 1, 2021 Borahan Tümer, Ph.D. 141

Reference...

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,

“Introduction to Algorithms,” 2nd edition, MIT Press,

2003

