
Data Structures – Week #9

Sorting

October 1, 2021 Borahan Tümer, Ph.D. 2

Outline

• Motivation

• Types of Sorting

• Elementary (O(n2)) Sorting Techniques

• Other (O(n*log(n))) Sorting Techniques

October 1, 2021 Borahan Tümer, Ph.D. 3

Sorting

October 1, 2021 Borahan Tümer, Ph.D. 4

Motivation

• Sorting is a fundamental task in many

computer science problems.

• To sort a set of data is to put the data points

(or records) in some order with regard to some

feature of data.

• In a student registration system, an example to

sorting would be to put the student records in

ascending order with respect to students’ IDs.

October 1, 2021 Borahan Tümer, Ph.D. 5

Types of Sorting

• Sorting techniques may be classified based on
whether the entirety of data fits in the main
memory.

• Sorting techniques for data that entirely fit in
the main memory are called the internal
sorting techniques.

• Those for data that do not are called the
external sorting techniques.

• We will discuss internal sorting techniques.

October 1, 2021 Borahan Tümer, Ph.D. 6

Elementary Sorting (O(n2))Techniques

• We discuss three (internal) sorting

techniques

– Selection Sort

– Insertion Sort

– Bubble Sort

October 1, 2021 Borahan Tümer, Ph.D. 7

Selection Sort

void selectionSort(unsigned int *a, unsigned int n)
//sorts n integers in ascending order (i.e., a[n]<a[n+1])
{

int i, j, min, t;
for (i=1; i<n; i++) {

// ith smallest number gets placed in its correct position.
min=i;
for (j=i+1; j<=n; j++)

if (a[j] < a[min]) min=j;
t=a[min]; a[min]=a[i]; a[i]=t;

}
}

October 1, 2021 Borahan Tümer, Ph.D. 8

Selection Sort Example

20 1248 16 24 8 32 54 72

for (i=1; i<n; i++) {

min:=i;

for (j=i+1; j<=n; j++)

if (a[j] < a[min]) min:=j;

t:=a[min]; a[min]=a[i]; a[i]=t;

}

i j

a[j] < a[min]

min

October 1, 2021 Borahan Tümer, Ph.D. 9

Selection Sort Example

20 124816 248 32 54 72

for (i=1; i<n; i++) {

min:=i;

for (j=i+1; j<=n; j++)

if (a[j] < a[min]) min:=j;

t:=a[min]; a[min]=a[i]; a[i]=t;

}

i j

a[j] < a[min]

min

etc.

October 1, 2021 Borahan Tümer, Ph.D. 10

Algorithm Analysis of Selection Sort

• Barometer statement (or piece of code): the

condition of if (a[j] < a[min])

• We find how many times it is executed

• The outer loop turns n-1 times.

• Inner loop turns n-i times at the ith turn of the

outer loop.

)(
222

)1(

)(1

2
2

2

1

1 1

1

1 11

nO
nnnn

n

inin
n

i

n

ij

n

i

n

i

n

i






   


 



 

October 1, 2021 Borahan Tümer, Ph.D. 11

Insertion Sort

• Insertion sort keeps the left portion of the array

sorted.

• The insertion sort algorithm places the current

(i.e., ith) element at its correct position at the ith

turn of the outer loop.

October 1, 2021 Borahan Tümer, Ph.D. 12

Insertion Sort Algorithm

void insertionSort()
{

int i, j, v;
int smallest; // boolean variable
for (i=2; i<=n; i++) { // a single element array is sorted as is.

v=a[i]; j=i; smallest=0;
while (a[j-1] > v && !smallest) {

a[j] =a[j-1]; j=j-1;
if (j <= 1) smallest=1;

}
a[j]=v;

}
}

October 1, 2021 Borahan Tümer, Ph.D. 13

Insertion Sort Example

20 1248 16 24 8 32 54 72

Initial sequence

20 1216 48 24 8 32 54 72

After first turn of for loop

After second turn of for loop

20 1216 24 48 8 32 54 72

v=16<a[j-1]=48

v=24<a[j-1]=48

After third turn of for loop

48 1216 20 24 8 32 54 72

v=20<a[j-1]={24,48}

After fourth turn of for loop

24 128 16 20 48 32 54 72

v=8<a[j-1]={16,...,48}

v=12<a[j-1]={16,...,48}
After fifth turn of for loop

20 488 12 16 24 32 54 72

v=32<a[j-1]={16,...,48}
After sixth turn of for loop

20 328 12 16 24 48 54 72

v=54<a[j-1]=48 false!
After seventh turn of for loop

20 328 12 16 24 48 54 72

v=72<a[j-1]=54 false!

After eighth turn of for loop

20 328 12 16 24 48 54 72

October 1, 2021 Borahan Tümer, Ph.D. 14

Algorithm Analysis of Insertion Sort

• Here, the inner loop has a stochastic condition.

Hence, we either have to work using expected

execution times or make a worst case analysis.

• Barometer statement (or piece of code): j=j-1

• We find how many times it is executed

• The outer loop again turns n-1 times.

• In the worst case, inner loop turns i-1 times at

the ith turn of the outer loop.

October 1, 2021 Borahan Tümer, Ph.D. 15

Algorithm Analysis of Insertion Sort

…cont’d

)(
22

)1(1
2

)1(
)1(1 2

2

2

1

1 2

nO
nn

n
nn

i
n

i

i

j

n

i




 




 

October 1, 2021 Borahan Tümer, Ph.D. 16

Bubble Sort

• Pass through the array of elements

• Exchange adjacent elements, if necessary

• When no exchanges are required, then array is

sorted.

• Make as many passes as the number of

elements of the array

October 1, 2021 Borahan Tümer, Ph.D. 17

Algorithm of Bubble Sort

void bubbleSort()

{

int i, j, t;

for (i=n; i>=1; i--)

for (j=2; j<=i; j++) do

if (a[j-1] > a[j]) {

t:=a[j-1]; a[j-1]:=a[j]; a[j]:=t;

}

}

October 1, 2021 Borahan Tümer, Ph.D. 18

Bubble Sort Example

20 1248 16 24 8 32 54 72

Initial sequence

After first turn of outer for loop

After second turn of outer for loop

a[j-1]>a[j]→swap

......

8 3216 24 20 12 48 54 72

a[j-1]>a[j]→swap

12 3216 20 8 24 48 54 72

inner loop swaps

outer loop swaps

After third turn of outer for loop

a[j-1]>a[j]→swap

20 3216 8 12 24 48 54 72

a[j-1]>a[j]→swap

After fourth turn of outer for loop

20 328 12 16 24 48 54 72

Final sequence

20 328 12 16 24 48 54 72Keys in purple spots are those

that have been swapped to move

towards their correct position.

No more swaps necessary!

October 1, 2021 Borahan Tümer, Ph.D. 19

Algorithm Analysis of Bubble Sort

• Barometer statement (or piece of code): the
condition of if (a[j-1] > a[j])

• We find how many times it is executed

• The outer loop turns n times.

• Inner loop turns i-1 times at the ith turn of the
outer loop.

)(
222

)1(

1)1(1

2
2

1 2 1 11

nO
nn

n
nn

ii
n

i

i

j

n

i

n

i

n

i




  
   

October 1, 2021 Borahan Tümer, Ph.D. 20

Other (O(n*lg(n))) Sorting Techniques

• We discuss three (internal) sorting

techniques

– Heapsort

– Mergesort

– Quicksort

October 1, 2021 Borahan Tümer, Ph.D. 21

Heapsort

• Idea: Delete_Min operation in a minimum heap
removes the key in root.

• The hole at the root percolates down where, in the
array we keep the minimum heap, proper keys are
moved left accordingly.

• The last cell in the array becomes available for
storing another key.

• If we perform the delete_min operation n times in an
n-element min heap and place the ith key removed at
the available cell A[n-i], we will obtain a sorted
sequence of the keys in the heap in descending order.

October 1, 2021 Borahan Tümer, Ph.D. 22

Algorithm of Heapsort

int heapsort(Elmnt_Type *A)

{ // sorts keys in minheap A in descending order...

Elmnt_Type x;

for (i=1;i<=n;i++)

{

x=DeleteMin(A); // O(lgn)

A[n-i]=x; // O(1)

}

}

October 1, 2021 Borahan Tümer, Ph.D. 23

Heapsort Example

Empty 8 15 21 46 37 27 23 111 98 9592 93 45 116 42 87 34 66

Empty 15 37 21 46 45 27 23 111 98 892 93 95 116 42 87 34 66

Empty 21 37 23 46 45 27 34 111 15 892 93 95 116 42 87 98 66

October 1, 2021 Borahan Tümer, Ph.D. 24

Heapsort Example

Empty 21 37 23 46 45 27 34 111 15 892 93 95 116 42 87 98 66

Empty 23 37 27 46 45 42 34 21 15 892 93 95 116 111 87 98 66

Empty 27 37 34 46 45 42 66 21 15 892 93 95 116 111 87 98 23

October 1, 2021 Borahan Tümer, Ph.D. 25

Heapsort Example

Empty 27 37 34 46 45 42 66 21 15 892 93 95 116 111 87 98 23

Empty 34 37 42 46 45 87 66 21 15 892 93 95 116 111 98 27 23

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 37 45 42 46 95 87 66 21 15 892 93 98 116 111 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 26

Heapsort Example

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 37 45 42 46 95 87 66 21 15 892 93 98 116 111 34 27 23

Empty 42 45 66 46 95 87 111 21 15 892 93 98 116 37 34 27 23

Empty 45 46 66 92 95 87 111 21 15 8116 93 98 42 37 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 27

Heapsort Example

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 46 92 66 93 95 87 111 21 15 8116 98 45 42 37 34 27 23

Empty 45 46 66 92 95 87 111 21 15 8116 93 98 42 37 34 27 23

Empty 66 92 87 93 95 98 111 21 15 8116 46 45 42 37 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 28

Heapsort Example

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 66 92 87 93 95 98 111 21 15 8116 46 45 42 37 34 27 23

Empty 87 92 98 93 95 116 111 21 15 866 46 45 42 37 34 27 23

Empty 92 93 98 111 95 116 87 21 15 866 46 45 42 37 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 29

Heapsort Example

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 92 93 98 111 95 116 87 21 15 866 46 45 42 37 34 27 23

Empty 93 95 98 111 116 92 87 21 15 866 46 45 42 37 34 27 23

Empty 95 111 98 116 93 92 87 21 15 866 46 45 42 37 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 30

Heapsort Example

Shifts by are performed to restore the heap order property of the minimum heap.

Empty 95 111 98 116 93 92 87 21 15 866 46 45 42 37 34 27 23

Empty 98 111 116 95 93 92 87 21 15 866 46 45 42 37 34 27 23

Empty 111 116 98 95 93 92 87 21 15 866 46 45 42 37 34 27 23

October 1, 2021 Borahan Tümer, Ph.D. 31

Heapsort Example

Empty 111 116 98 95 93 92 87 21 15 866 46 45 42 37 34 27 23

Empty 116 111 98 95 93 92 87 21 15 866 46 45 42 37 34 27 23

Empty 116 111 98 95 93 92 87 21 15 866 46 45 42 37 34 27 23

Sequence in the array is sorted in descending order!

October 1, 2021 Borahan Tümer, Ph.D. 32

Algorithm Analysis of Heap Sort

• Every turn of the for loop:

– One delete_min is performed, O(lg n);

– Key in the root is placed in last element of the current
queue, O(1).

• For loop is executed n times for a heap with n
elements

• Hence, running time of heap sort is O(n lgn).

October 1, 2021 Borahan Tümer, Ph.D. 33

Merging two sorted lists

• Consider two sorted lists L1, L2 and an empty list R.

• The following algorithm merges L1 and L2 in R:

– a and b point to first element of L1 and L2,
respectively,

– c points to the empty resulting list;

– while both lists have elements left

• select as the next element of resulting list min(L1[a],L2[b]);

• advance the pointers or indices of the result list and the
input list with the smaller element

– Append rest of longer list (among L1 and L2) to R

October 1, 2021 Borahan Tümer, Ph.D. 34

Merging two sorted lists: Algorithm

struct nodetype {
int k;
struct node * next;

}
typedef struct nodetype nodetype;
typedef nodetype * nodeptrtype;
int N,M; nodeptrtype z;// z is a special header
nodeptrtype merge (nodeptrtype a, nodeptrtype b)
{

nodeptrtype c;
c=z;
do

if (a->k <=b->k) {c->next=a; c=a; a=a->next;}
else {c->next=b; c=b; b=b->next;}

while (c->k < maxint);
merge=z->next; z->next=z;

}

main();
{

scanf (“%d %d”, &M, &N);
z=malloc(nodetype);
z->k=maxint; z->next=z;
… /* Lists a and b are
constructed here */
merge (a,b);

}

October 1, 2021 Borahan Tümer, Ph.D. 35

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R

c

z

October 1, 2021 Borahan Tümer, Ph.D. 36

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R 14

a

b

c

a<b

z

October 1, 2021 Borahan Tümer, Ph.D. 37

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R
14

a

b

c

a<b

15
z

October 1, 2021 Borahan Tümer, Ph.D. 38

15

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R

14

a

b

c

a<b

31z

October 1, 2021 Borahan Tümer, Ph.D. 39

3115

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R 14

a

b

c

a<b

37

z

October 1, 2021 Borahan Tümer, Ph.D. 40

373115

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R 14

a

b

c

a<b

40

z

October 1, 2021 Borahan Tümer, Ph.D. 41

40373115

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R 14

a

b

c

a<b

42

null

z

October 1, 2021 Borahan Tümer, Ph.D. 42

4240373115

Merging two sorted lists: Example

14 31 43 65

15 37 40 42

L1

L2

R 14

a

b

c

a<b

43 65

z

October 1, 2021 Borahan Tümer, Ph.D. 43

Mergesort: Idea

• This is a divide & conquer algorithm.

• Given the merge algorithm, we may sort a sequence
of n keys by
– dividing the sequence into (divide section)

• 2 subsequences each of n/2 elements,

• 4 subsequences each of n/4 elements,

• 8 subsequences each of n/8 elements,

• ...

• n subsequences each of 1 element,

– recursively sort (using mergesort) each consecutive pair of
sequences, (conquer section)

– merge the two sorted subsequences to obtain the sorted
sequence (combine section)

October 1, 2021 Borahan Tümer, Ph.D. 44

Mergesort: Algorithm

nodeptrtype sort (nodeptrtype c; int N)

{

nodeptrtype a,b; int i;

if (c->next == z) return c;

else {

a=c;

for (i=1;i<N/2;i++;c=c->next);

b=c->next; c->next=z;

return merge(sort(a,N/2), sort(b,N-(N/2))

}

}

October 1, 2021 Borahan Tümer, Ph.D. 45

1465154340

Mergesort: Example

37 42
z

434037z

z

146515 42

a

b

sort

October 1, 2021 Borahan Tümer, Ph.D. 46

Mergesort: Example

434037z

a

434037z

a

z

bsort

October 1, 2021 Borahan Tümer, Ph.D. 47

Mergesort: Example

4340

40z

a

z

b

43z

bsort

merge

4340z

a

October 1, 2021 Borahan Tümer, Ph.D. 48

Mergesort: Example

434037z

a

434037z

a

z

b

merge

October 1, 2021 Borahan Tümer, Ph.D. 49

Mergesort: Example
z

146515 42

b

sort

z

6515

a

z

14 42

b

October 1, 2021 Borahan Tümer, Ph.D. 50

Mergesort: Example

sort

z

6515

a

z

14 42

b

sort

z

15

a

65

z

b

42

z

b

14

z

a

October 1, 2021 Borahan Tümer, Ph.D. 51

Mergesort: Example

z

6515

a

z

14 42

b

z

15

a

65

z

b

42

z

b

14

z

a
merge merge

October 1, 2021 Borahan Tümer, Ph.D. 52

Mergesort: Example

z

421514 65

a

z

6515

a

z

14 42

b
merge

October 1, 2021 Borahan Tümer, Ph.D. 53

Mergesort: Example

434240371514 65z

434037z

a

merge

z

421514 65

b

a

October 1, 2021 Borahan Tümer, Ph.D. 54

Algorithm Analysis of Mergesort

• The maximum number of comparisons per merging of
two sequences for a total of n elements is

n-1= Θ(n).

• How many partitions of how many elements are
merged?

– Merging once n/2 keys with n/2 keys = n/2+n/2-1

– Merging twice n/4 keys with n/4 keys = 2(n/4+n/4-1)

– Merging 4 times n/8 keys with n/8 keys = 4(n/8+n/8-1)

– ...

– Merging n/2 times one key with another key = n/2.

October 1, 2021 Borahan Tümer, Ph.D. 55

Algorithm Analysis of Mergesort

   

 
 

 

 
 



 nnnt

nnnt

nnnt

nO

n
nnO

n

i

n

i

i
n

i

i

n

n
n

lg)(

)12(lg)(

22)(

)(

)lg(

1lg

0

12
21

21

1lg

0

1lg

0

lg

lg
lg


























 






Hence, running time of mergesort is Θ(n lgn).

October 1, 2021 Borahan Tümer, Ph.D. 56

Quicksort: Idea

• Another popular divide & conquer sort
algorithm.

• The idea here is that, at every call of a specific
partitioning algorithm, a selected key (pivot) is
placed at its correct position, and all keys less
are moved to left while those greater than that
key are carried over to the right of the key.

• The original partitioning algorithm used in
quicksort is devised by C.A.R. Hoare.

October 1, 2021 Borahan Tümer, Ph.D. 57

Quicksort: Idea

• After partitioning, the original sequence is

divided into three subsequences:

1. Numbers to the left of pivot (still needs sorting)

2. Pivot (correctly placed)

3. Numbers to the right of pivot (still needs sorting)

• Recursively calling quicksort function for the

left and right subsequences, we sort the entire

array.

October 1, 2021 Borahan Tümer, Ph.D. 58

Quicksort: Algorithm

Quicksort(A,l,r)
{ //A is the array holding the key sequence

// l,r are the lowest and highest index values of
// the key sequence in respective order.
// m is the index value of the pivot.
if (l<r)

m=partition(A,l,r);
Quicksort(A,l,m-1);
Quicksort(A,m+1,r);

}

October 1, 2021 Borahan Tümer, Ph.D. 59

Quicksort: Conceptual Example

34
47 11

56

23 82
5178

9569

6

28

61

pivot

34
47

11 23

51 6

28

82

78
95

69
61

56

October 1, 2021 Borahan Tümer, Ph.D. 60

Quicksort: Conceptual Example

34
47

11 23

51 6

28

82

78
95

69
61

56

pivot

11 236
34

47

51
28

October 1, 2021 Borahan Tümer, Ph.D. 61

Quicksort: Conceptual Example

82

78
95

69
61

56

11

23

6

34
47

51
28

pivot

116

Empty!
pivot

23116

October 1, 2021 Borahan Tümer, Ph.D. 62

Quicksort: Conceptual Example

82

78
95

69
61

56
34

47

51
2823116

pivot

82

78
95

69
61

5623116 34 4728 51

October 1, 2021 Borahan Tümer, Ph.D. 63

Quicksort: Conceptual Example

82

78
95

69
61

5634 472823116 51

pivot

82

78
95

69
61

5634 472823116 51

pivot

82

78
95

69
61

5634 472823116 51

October 1, 2021 Borahan Tümer, Ph.D. 64

Quicksort: Conceptual Example

82

78
95

69
61

5634 472823116 51

pivot

82

78
95

69
61

5634 472823116 51

The right subsequence of the original sequence is sorted similarly.

October 1, 2021 Borahan Tümer, Ph.D. 65

Partitioning*: Idea

• The idea here is to group keys so that
– all keys less than pivot are at left of pivot, and

– all greater keys are at the right of pivot,

• The pivot is the last key of the sequence.

• At any time, the rest of the sequence consists of three
subsequences:
1. the left subsequence holds keys less than the pivot;

2. the middle subsequence holds keys greater than the pivot;

3. the right subsequence holds keys not yet sorted;

• Initially, the left and middle subsequences are empty. Any
time a key in the right subsequence is processed (i.e.,
compared with pivot), it is purged from the right and placed
to the left or middle sequence.

*main reference for this algorithm is [1]

October 1, 2021 Borahan Tümer, Ph.D. 66

Partitioning: Algorithm

Partition(A,l,r)
{

x=A[r]; // x is the pivot!
i=l-1;
for (j=l;j<r; j++) {

if (A[j]<=x) {i++; swap(A[i],A[j])}
}
swap(A[i+1],A[r]);
return i+1;

}
*main reference for this algorithm is [1]

October 1, 2021 Borahan Tümer, Ph.D. 67

Partitioning: Example

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ri l j

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 1st turn of for loop

Initial Sequence

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 2nd turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 68

Partitioning: Example

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 3rd turn of for loop

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 4th turn of for loop

62 8 15 46 92 37 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 5th turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 69

Partitioning: Example

62 8 15 46 37 92 27 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 6th turn of for loop

62 8 15 46 37 27 92 23 111 98 6621 93 45 116 42 87 34 95

ril j
After 7th turn of for loop

62 8 15 46 37 27 23 92 111 98 6621 93 45 116 42 87 34 95

ril j
After 8th turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 70

Partitioning: Example

62 8 15 46 37 27 23 21 111 98 6692 93 45 116 42 87 34 95

ril j
After 9th turn of for loop

62 8 15 46 37 27 23 21 111 98 6692 93 45 116 42 87 34 95

ril j
After 10th turn of for loop

62 8 15 46 37 27 23 21 111 98 6645 93 92 116 42 87 34 95

ril j
After 11th turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 71

Partitioning: Example

62 8 15 46 37 27 23 21 111 98 6645 93 92 116 42 87 34 95

ril j
After 12th turn of for loop

62 8 15 46 37 27 23 21 111 98 6645 42 92 116 93 87 34 95

ril j
After 13th turn of for loop

62 8 15 46 37 27 23 21 111 98 6645 42 92 116 93 87 34 95

ril j
After 14th turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 72

Partitioning: Example

62 8 15 46 37 27 23 21 111 98 6645 42 34 116 93 87 92 95

ril j
After 15th turn of for loop

62 8 15 46 37 27 23 21 111 98 6645 42 34 116 93 87 92 95

ril jAfter 16th turn of for loop

62 8 15 46 37 27 23 21 111 98 6645 42 34 116 93 87 92 95

ril j
After 17th and 18th turn of for loop

October 1, 2021 Borahan Tümer, Ph.D. 73

Partitioning: Example

62 8 15 46 37 27 23 21 111 98 11645 42 34 66 93 87 92 95

ril j
After execution of return statement

October 1, 2021 Borahan Tümer, Ph.D. 74

Hoare’s Partitioning: Idea

• The idea is to simply check the sequence

starting at both ends to see that

–no keys less than pivot should remain to right of

pivot, and

–no greater keys to left,

• If any two such keys exist, they are swapped to

have them at their correct sides.

October 1, 2021 Borahan Tümer, Ph.D. 75

Hoare’s Partitioning: Idea
• To accomplish this, two pointers (e.g., i and j) start at

both ends of the sequence to scan through moving
towards each other.

• Whenever a pointer locates a key in an incorrect
position (i.e., a greater key to left of pivot or a key
less than the pivot at its right), it stops moving. When
both pointers stop, the keys they point to are swapped
and they restart moving.

• Scanning terminates when pointers pass crossing each
other, and the key is placed at the position pointed to
by j.

October 1, 2021 Borahan Tümer, Ph.D. 76

Hoare’s Partitioning: Algorithm

Partition_Hoare(A,l,r)
{

x=A[l];
i=l-1; j=r+1;
while true

do j-=1 while A[j]>x;
do i+=1 while A[i]<x;
if (i<j) swap A[i]↔A[j];
else {

swap(A[j],A[l])
return j;

}
}

October 1, 2021 Borahan Tümer, Ph.D. 77

Hoare’s Partitioning: Example

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

ri l j
Initial Sequence

62 8 15 34 46 37 27 23 111 98 6621 93 45 116 42 87 92 95

ril jAfter 1st turn of while loop

62 8 15 34 46 37 27 23 111 98 6621 42 45 116 93 87 92 95

ril j
After 2nd turn of while loop

i>j, not exchanged

October 1, 2021 Borahan Tümer, Ph.D. 78

Hoare’s Partitioning: Example

45 8 15 34 46 37 27 23 111 98 6621 42 62 116 93 87 92 95

ril jAt the end of partitioning

Pivot correctly placed

  
keys < pivot

  
keys > pivot

October 1, 2021 Borahan Tümer, Ph.D. 79

Algorithm Analysis for Quicksort

Average case:

Each pivot at position m has a left and a right

subsequence with m-1 and n-m keys, respectively, to

sort. Hence, the running time f(n) of quicksort for n

elements can be expressed as follows

f(n)=f(m-1)+f(n-m)+Θ(n).

The term “Θ(n)” is the time that partitioning takes to

place the key selected as pivot at its correct position m.

October 1, 2021 Borahan Tümer, Ph.D. 80

Algorithm Analysis for Quicksort

m and n-m can be any number between between 1 and n.

To come up with a general solution, we can average f(m-1) and

f(n-m):

 

 

 

))lg(())lg(()(

)()(
2

)(

)()(
2

)(

)()()1(
1

)(

1

2

1

2

1

nnOnnnOnf

nmfE
n

nfE

nmf
n

EnfE

nmnfmf
n

EnfE

n

m

n

m

n

m

















































October 1, 2021 Borahan Tümer, Ph.D. 81

Algorithm Analysis for Quicksort

Best Case: The pivot is placed always in the middle.

f(n)=2f(n/2)+Θ(n);

))lg(())lg(()(

lg)(

lg2;22)(

0)2(:

;2)1(2)(

2);()2/(2)(

21

21

2

nnOnnnOnf

nncncnf

nknkcckf

xCE

ckfkf

nnnfnf

kkk

k

k













October 1, 2021 Borahan Tümer, Ph.D. 82

Algorithm Analysis for Quicksort

Worst Case: The sequence is sorted in the opposite order..

f(n)=f(n-1)+Θ(n);

)()1()(

;)(

0)1(:

;)1()(

);()1()(

22

2

221

3

nOnnOnf

ncnccnf

xCE

cnnfnf

nnfnf











October 1, 2021 Borahan Tümer, Ph.D. 83

Selecting the pivot...

• Pivot selection method may essentially affect quicksort
performance.

• Selecting the first (or the last) would work alright if the
sequence is purely randomly built. If not, the worst case is not
totally unlikely to occur.

• Selecting the pivot randomly works well. However, the
random number generator should generate numbers
sufficiently randomly. Furthermore, random number
generation is an expensive process.

• Median-of-3 partitioning (median of a sequence is the n/2
highest among n keys in a sequence) is to select as the pivot
the second largest among the leftmost, rightmost and middle
keys in the sequence.

October 1, 2021 Borahan Tümer, Ph.D. 84

A O(n)-Expected-Time Selection

Algorithm

Quicksort can be modified to select the kth largest

key in the sequence.

1. Select a pivot

2. Have it placed at its correct position m

3. If (k<m) recursively call quicksort for the
left subsequence only

4. Else recursively call quicksort for the
right subsequence only.

October 1, 2021 Borahan Tümer, Ph.D. 85

Conceptual Example: O(n)-Expected-

Time Selection

62 8 15 92 46 37 27 23 111 98 6621 93 45 116 42 87 34 95

Initial Sequence

45 8 15 34 46 37 27 23 21 42 62
62 placed at array cell 10… Since 2 < 10,

we consider only numbers less than 62

Problem: Find third smallest key (i.e., key at cell 2)!Pivot

21 8 15 34 42 37 27 23 45

45 placed at array cell 8… Since 2 < 8,

we consider only numbers less than 45

15 8 21 34 42 37 27 23

21 placed at array cell 2… Since 2=2 ,

we stop. Third smallest key is 21.

October 1, 2021 Borahan Tümer, Ph.D. 86

Reference...

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein,

“Introduction to Algorithms,” 2nd edition, MIT Press,

2003

[2] M.A. Weiss, “Data Structures and Algorithm

Analysis in C,” 2nd edition, Addison-Wesley, 1997

