STATE DIAGRAMS

Introduction

* In object-oriented approaches, you draw a
state diagram

— for a single class, to show the lifetime
behavior of a single object

Example

* A controller for a secret panel in a castle.

— In this castle, you want to keep your valuables in a
safe that's hard to find.

— So to reveal the lock of the safe, you have to remove
a strategic candle from its holder, but this will reveal
the lock only while the door is closed.

— Once you can see the lock, you can insert your key to
open the safe.

— For extra safety, you make sure that you can open the
safe only if you replace the candle first.

— If a thief comes before you open the safe, you will
unleash a nasty monster to kill him.

Example

safe closed [Onen
:ﬁ pe
transition
key turned [candle in] / open safe
initial peeudostate
s v
F l candle removed [door closed] / reveal lock
Wait J Lock
E
key turned [candle out] / release killer rabbit
state . V

ﬁﬂaf Etate R odd o R @

Events, States and Transitions

* An event is a significant occurrence.
— A telephone receiver is taken off the hook.

* A state is the condition of an object at a moment
In time—the time between events.
— A telephone is in the state of being "idle" after the

receiver is placed on the hook and until it is taken off
the hook.

* A transition is a relationship between two states
that indicates that when an event occurs, the
object moves from the prior state to the
subsequent state.

— When the event "off hook" occurs, transition the
telephone from the "idle" to "active" state.

Telephone

~ off hook ~ _ H
(|dle | }_I,-'" Active | Q-r+-*"7" state

transition H avant H

Superstates

* Often, several states share common
transitions and internal activities.

* In these cases, you can make them
substates and move the shared behavior
into a superstate.

Superstates

* Without the superstate, you would have to
draw a cancel transition for all three states
within the Enter Connection Details state.

[Show Connections}(

new /

save

\ cancel

Enter Connection Details

T

] next f’ 1 next a
."‘"l-_
Enter Phone — | Choose Shared Enter Name
Number or Solo
back \ back \.

M

When to Use State Diagrams

* Good at describing the behavior of an object
across several use cases.

* Are not very good at describing behavior that
involves a number of objects collaborating.

* S0, it is useful to combine state diagrams with
other techniques.

— interaction diagrams are good at describing the
behavior of several objects in a single use case,

— activity diagrams are good at showing the general
sequence of activities for several objects and use
cases.

When to Use State Diagrams

* If you do use state diagrams,
— Do not try to draw them for every class in the
system.

— Use state diagrams only for those classes that
exhibit interesting behavior, where building
the state diagram helps you understand what

IS going on.
* Many people find that User Interface have
the kind of behavior that is useful to depict
with a state diagram .

ACTIVITY DIAGRAMS

Activity Diagrams

* Activity diagrams are a technique to
describe procedural logic, business
process, and work flow.

* Similar to flowcharts, but the principal
difference between them and flowchart
notation Is that,

— they support parallel behavior.

[o

dAecinion

Example

We begin at the initial node action and then do the action
Receive Order.

Once that is done, we encounter a fork.

A fork has one incoming flow and several outgoing
concurrent flows.

Fill Order, Send Invoice, and the subsequent actions
occur in parallel.

Essentially, this means that the sequence between them
IS irrelevant.

| could fill the order, send the invoice, deliver, and then
receive payment; or,

| could send the invoice, receive the payment, fill the
order, and then deliver.

Activity Diagrams

Useful for concurrent algorithms, in which
independent threads can do things in parallel.

When you have parallelism, you'll need to
synchronize.

We don't close the order until it is delivered and
paid for.

We show this with the join before the Close
Order action.

With a join, the outgoing flow is taken only when
all the incoming flows reach the join.

So you can close the order only when you have
both received the payment and delivered .

Partitions

* Activity diagrams tell you what happens, but they
do not tell you who does what.

* In programming, this means that the diagram

does not express which class is responsible for
each action .

* If you want to show who does what, you can
divide an activity diagram into partitions,

— which show which actions one class or organization
unit carries out .

Fuifillment Customer Sarvica ! Financea

Racaive

Crdar |

| Fill Order Send
Inwvaice

- | ——

2L

Heceive
Payment

When to Use Activity Diagrams

* They support and encourage parallel
behavior. This makes them a great tool for
work flow and process modeling.

* You can also use an activity diagram as a
UML-compliant flowchart.

* You can take advantages of the forks and
joins to describe parallel algorithms for
concurrent programs.

* Often used to describe a use case .

