

STATE DIAGRAMS

Introduction

• In object-oriented approaches, you draw a
state diagram
– for a single class, to show the lifetime

behavior of a single object

Example
• A controller for a secret panel in a castle.

– In this castle, you want to keep your valuables in a
safe that's hard to find.

– So to reveal the lock of the safe, you have to remove
a strategic candle from its holder, but this will reveal
the lock only while the door is closed.

– Once you can see the lock, you can insert your key to
open the safe.

– For extra safety, you make sure that you can open the
safe only if you replace the candle first.

– If a thief comes before you open the safe, you will
unleash a nasty monster to kill him.

Example

Events, States and Transitions
• An event is a significant occurrence.

– A telephone receiver is taken off the hook.
• A state is the condition of an object at a moment

in time—the time between events.
– A telephone is in the state of being "idle" after the

receiver is placed on the hook and until it is taken off
the hook.

• A transition is a relationship between two states
that indicates that when an event occurs, the
object moves from the prior state to the
subsequent state.
– When the event "off hook" occurs, transition the

telephone from the "idle" to "active" state.

Superstates

• Often, several states share common
transitions and internal activities.

• In these cases, you can make them
substates and move the shared behavior
into a superstate.

Superstates
• Without the superstate, you would have to

draw a cancel transition for all three states
within the Enter Connection Details state.

When to Use State Diagrams
• Good at describing the behavior of an object

across several use cases.
• Are not very good at describing behavior that

involves a number of objects collaborating.

• So, it is useful to combine state diagrams with
other techniques.
– interaction diagrams are good at describing the

behavior of several objects in a single use case,
– activity diagrams are good at showing the general

sequence of activities for several objects and use
cases.

When to Use State Diagrams
• If you do use state diagrams,

– Do not try to draw them for every class in the
system.

– Use state diagrams only for those classes that
exhibit interesting behavior, where building
the state diagram helps you understand what
is going on.

• Many people find that User Interface have
the kind of behavior that is useful to depict
with a state diagram .

ACTIVITY DIAGRAMS

Activity Diagrams

• Activity diagrams are a technique to
describe procedural logic, business
process, and work flow.

• Similar to flowcharts, but the principal
difference between them and flowchart
notation is that,
– they support parallel behavior.

Example
• We begin at the initial node action and then do the action

Receive Order.
• Once that is done, we encounter a fork.
• A fork has one incoming flow and several outgoing

concurrent flows.
• Fill Order, Send Invoice, and the subsequent actions
• occur in parallel.
• Essentially, this means that the sequence between them

is irrelevant.
• I could fill the order, send the invoice, deliver, and then

receive payment; or,
• I could send the invoice, receive the payment, fill the

order, and then deliver.

Activity Diagrams
• Useful for concurrent algorithms, in which

independent threads can do things in parallel.
• When you have parallelism, you'll need to

synchronize.
• We don't close the order until it is delivered and

paid for.
• We show this with the join before the Close

Order action.
• With a join, the outgoing flow is taken only when

all the incoming flows reach the join.
• So you can close the order only when you have

both received the payment and delivered .

Partitions
• Activity diagrams tell you what happens, but they

do not tell you who does what.

• In programming, this means that the diagram
does not express which class is responsible for
each action .

• If you want to show who does what, you can
divide an activity diagram into partitions,
– which show which actions one class or organization

unit carries out .

When to Use Activity Diagrams
• They support and encourage parallel

behavior. This makes them a great tool for
work flow and process modeling.

• You can also use an activity diagram as a
UML-compliant flowchart.

• You can take advantages of the forks and
joins to describe parallel algorithms for
concurrent programs.

• Often used to describe a use case .

