CLASS DIAGRAMS



UML Diagrams Used

« Requirements Analysis

— Use cases
« which describe how people interact with the system .

— A class diagram

« drawn from the conceptual perspective, which can be a
good way of building up a rigorous vocabulary of the
omain .

— An activity diagram

« which can show the work flow of the organization,
showing how software and human activities interact . An
activity diagram can show the context for use cases and
also the details of how a complicated use case works .

— A state diagram

« which can be useful if a concept has an interesting life
cycle, with various states and events that change that
state .



UML Diagrams Used

« Design
— Class diagrams

 from a software perspective . These show the classes in
the software and how they interrelate .

— Sequence diagrams

« for common scenarios . A valuable approach is to pick
the most important and interesting scenarios from the
use cases and use sequence diagrams to figure out what
happens in the software .

— Package diagrams

« to show the large-scale organization of the software.
— State diagrams

 for classes with complex life histories .

— Deployment diagrams
« to show the physical layout of the software .



Documentation

A package diagram

— makes a good logical road map of the system . This diagram helps
understand the logical pieces of the system and see the dependencies
and keep them under control .

A deployment diagram

— which shows the high-level physical picture, may also prove useful at
this stage .

A class diagram
— within each package.
— Don't show every operation on every class .
— Show only the important features that help understand what is in there.
— This class diagram acts as a graphical table of contents .

The class diagram should be supported by a handful of interaction
diagrams

— that show the most important interactions in the system . Again,
selectivity is important here.



Documentation

If a class has complex life-cycle behavior, draw a state
machine diagram
— Do this only if the behavior is sufflciently complex.

Include some important code, written in pseudecode.

If a particularly complex algorithm is involved, consider
using an activity diagram

— but only if it gives more understanding than the code alone .
One of the most important things to document is the
design alternatives you didn't take and why you
didn't do them

— That's often the most forgotten but most useful piece of external
documentation you can provide .



Class Diagrams

« Describe the types of objects in the system and
the various kinds of static relationships that exist
among them.

« Show the properties and operations of a class
and the constraints that apply to the way objects
are connected .

« The boxes in the diagram are classes, which are
divided into three compartments:
— the name of the class (in bold),
— its attributes, and
— Its operations



|
Order Fruttiplicity
dateReceived: Datef0..1) ll.li Customar
IsFr-mliﬂéEuﬂlaan[ﬂ o 1 name [1]
number: String [1] = =
price: Moy &~ | Badress10..1]
dispatch . -'Fhﬁ pelCreditRating(): Siring
clogse -
T e
1 B saratraint
'::I .:_r"' e I ’ i clases
{if Order.customer, getCrediRating is
“paor” then OrderisPrepaid must b
Erus]
role name
3 Butes Corporate Customer Personal Customer
_,' e -A contactName creditCardMumisar
limalhams ¥ ordensd) operations m::ﬂmnﬂ -
Ordear Lins k) billFarMonthiinteger)
remired|}
gquanrtily: Intager
prica. Moy * {getCredaRating() = "poor’}
w* salesRep ([, 0.1
rar gakbie
q l-'-"- Employes




Attributes

The full form of an attribute is :

— visibility name : type multiplicity = default {property-string}
An example of this is :

— - name : String [1] = "Untitled" {readOnly}

Only the name is necessary .
Visibility marker indicates whether the attribute is public (+) or private (-)

The type of the attribute indicates a restriction on what kind of object may
be placed in the attribute. You can think of this as the type of a field in a
programming language.

Multiplicity will be explained later.

The default value is the value for a newly created object if the attribute
isn't specified during creation.

The {property-string} allows you to indicate additional properties for the
attribute .

— {readOnly} indicates that clients may not modify the property.



Assoclations

« The other way to notate a property is as an
association .

« Much of the same information that you can show
on an attribute appears on an association.

« An association is a solid line between two
classes,
— directed from the source class to the target class.

— The name of the property goes at the target end of
the association, together with its multiplicity .

— The target end of the association links to the class
that is the type of the property .



Attributes vs. Associations

Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineltems: OrderlLine [*] {ordered}

Showing properties of an Order as attributes

0.1 * + isPrepaid
Date = Order P > Boolean
+ dateReceived 1
,,n‘““*‘:?‘ 1
spource
target
ﬁ& lineltems
* % {ordered}

OrderLine

Showing properties of an Order as associations



Attributes vs. Associations

« Although most of the same information appears
In both notations, some items are different.

— In particular, associations can show multiplicities at
both ends of the line.

« Why should you use one or the other?

— You can use attributes for small things, such as dates
or Booleans- in general, value types.

— You can use associations for more significant classes,
such as customers and orders .

— Also, you can use class boxes for classes that are
significant for the diagram,

« which leads to using associations, and attributes for things
less important for that diagram.



Multiplicity

The multiplicity of a property is an indication of how many objects
may fill the property. The most common multiplicities you will see
are:

— 1 (An order must have exactly one customer .)
— 0..1 (A corporate customer may or may not have a single sales rep.)

— * (A customer need not place an Order and there is no upper limit to the
number of Orders, a Customer may place-zero or more orders .)

More generally, multiplicities are defined with a lower bound and an
upper bound,

— such as 2..4 for players of a game.

The lower bound may be any positive number or zero; the upper is
any positive number or *(for unlimited).

If the lower and upper bounds are the same, you can use one
number;

— 1is equivalent to 1. .1
Because it's a common case, * is short for 0..* .



Multiplicity

 In attributes, you come across various terms that refer to
the multlpllc:lty
— Optional implies a lower bound of O .
— Mandatory implies a lower bound of 1 or possibly more .
— Single-valued implies an upper bound of 1.
— Multivalued implies an upper bound of more than 1 : usually *

« By default, the elements in a multivalued multiplicity form
a set, so if you ask a customer for its orders, they do not
come back in any order .

— If the ordering of the orders in association has meaning, you
need to add {ordered} to the association end.

— If you want to allow duplicates, add {nonunique}.

— If you want to explicitly show the default, you can use
{unordered} and {unique}.

— You may also see collection-oriented names, such as {bag} for
unordered, nonunique.

« The default multiplicity of an attribute is [1].



Programming Interpretation of
Properties

public class OrderlLine
private 1nt quantity ;
private Money price ;
private Order order ;

private Product product



Programming Interpretation of
Properties
 For private attributes, you may see the

fields exposed through accessor methods
(getters and setters).

A read-only attribute will have no setter
method (with fields).

« We might see the OrderLine's attributes
corresponding to the following methods :



Programming Interpretation of
Properties

public class OrderLine .

private int quantity ;

private Product product ;

public 1nt getQuantity () {
return quantity ;

}

public void setQuantity (int quantity) {
this.quantity = quantity ;

}

public Money getPrice () {
return product.getPrice() .multiply (quantity);

}



Programming Interpretation of
Properties

In this case, there is no data field for price;
—Instead, it's a computed value.
But as far as clients of the OrderLine class

are concerned, it looks the same as a
fleld.

Clients can't tell what is a field and what is
computed.

This information hiding is the essence of
encapsulation.



Programming Interpretation of

Properties

If an attribute is multivalued,
— this implies that the data concerned is a collection.

So an Order class would refer to a collection of
OrderLines.

Because this multiplicity is ordered, that
collection must be ordered, (such as a List in
Java).

If the collection is unordered, it should, strictly,
have no meaningful order and thus be
implemented with a set.

— You may use arrays, but the UML implies an unlimited
upper bound, so use a collection for data structure.



Programming Interpretation of
Properties

class Order {

private Set lineltems = new HashSet() ;

public Set getLineltems() {
return Collections.unmodifiableSet(lineltems) ;

}

public void addLineltem (Orderltem arg) {
lineltems.add(arg) ;

}

public void removeLineltem (Orderltem arg) {
lineltems.remove(arg) ;

}



Bidirectional Associlations

owner
Person e > Car
*

0..1

A bidirectional association is a pair of properties
that are linked together as inverses.
— the Car class has property owner :Person[0..1],
— the Person class has a property cars :Car["] .

« The inverse link between them implies that if you
follow both properties, you should get back to a
set that contains your starting point .

— For example, if you begin with a particular Mercedes,
find its owner, and then look at its owner's cars, that
set should contain the Mercedes that you started
from.



Operations

Operations correspond to the methods on a class .

Normally, you don't show those operations that simply manipulate
properties, because they can usually be inferred .

The full UML Syntax for operations is :
— visibility name (parameter-list) : return-type {property-string}

Visibility marker is public (+) or private (-).

The name is a string.

The parameter-list is the list of parameters for the operation .
The return-type is the type of the returned value, if there is one .

The property-string indicates property values that apply to the given
operation .



Operations

The parameters in the parameter list are notated in a

similar way to attributes .

The form is :

— direction name : type = default value

The name, type, and default value are the same as for

attributes .

The direction

— indicates whether the parameter is input (in), output (out) or both
(inout).

— If no direction is shown, it's assumed to be (in).

An example operation on account might be :

— + balanceOn (date : Date) : Money



Generalization

- Atypical example of generalization involves the personal
and corporate customers of a business .
— They have differences but also many similarities.

— The similarities can be placed in a general Customer class (the
Supertype), with Personal Customer and Corporate Customer as
subtypes.

- This phenomenon is also subject to various |
interpretations at the various perspectives of modeling .

— Conceptually, we can say that Corporate Customer is a subtype
of Customer if all instances of Corporate Customer are also, by
definition, instances of Customer .

— A Corporate Customer is then a special kind of Customer. The
key idea is that everything we say about a Customer
-associations, attributes, operations- is true also for a Corporate
Customer.



Generalization

With a software perspective, the obvious interpretation is
inheritance:
— The Corporate Customer is a subclass of Customer .
— In OO languages, the subclass inherits all the features of the
superclass and may override any superclass methods.
An important principle of using inheritance effectively is
substitutability.

— You should be able to substitute a Corporate Customer within
any code that requires a Customer, and everything should work
fine .

— This means that if you write code assuming you have a
Customer, you can freely use any subtype of Customer.



Notes and Comments

« Notes are comments in the diagrams .

« Notes can stand on their own, or they can
be linked with a dashed line to the
elements they are commenting

« Sometimes, it's useful to have an in-line
comment on a diagram element .

— You can do this by prefixing the text with two
dashes : --.



Dependency

A dependency exists between two elements
— if changes to the definition of one element (the supplier) may
cause changes to the other (the client) .
With classes, dependencies exist for various reasons:
— one class sends a message to another ;
— one class has another as part of its data ;
— one class mentions another as a parameter to an operation .

If a class changes its interface, any message sent to that
class may no longer be valid .

The UML allows you to depict dependencies between all
sorts of elements.

You use dependencies whenever you want to show how
changes in one element might alter other elements .



Dependency

client supplier

£
B
£
"g

Benelils
Window

...___k‘@_ ______ }

Employee

dependency

The Benefits Window class
Is dependent on

the Employee class: a domain object that captures the

essential behavior of the system.

Employee
Data Gateway

Benefits
Data Gateway

This means that if the Employee class changes its
interface, the Benefits Window may have to change .




