SEQUENCE DIAGRAMS

SEQUENCE DIAGRAMS

* A sequence diagram captures the behavior of a
single scenario.

* The diagram shows a number of example
objects and the messages that are passed
between these objects within the use case.

* Sequence diagrams show the interaction by
showing each participant with a lifeline that runs
vertically down the page and the ordering of
messages by reading down the page.

Example Scenario

* We have an order and are going to invoke a
command on it to calculate its price.

* To do that, the order needs to look at all the line
items on the order and determine their prices,
which are based on the pricing rules of the order
line's products.

* Having done that for all the line items, the order
then needs to compute an overall discount,
which is based on rules tied to the customer.

an Order an Order Line aProduct aCustamer
'h__.
calculatePrice | . —[l |
o— - getUuantity "
A |
] “a |ifeline
$ getProduct | participant | | I
found aProduct | I
message = | les--—————————— .
¥-. activation
getPricingDetails " return | |
' g3 '
, | I |
calculateBasePrice [aemsesn self-cail] |
'ﬁﬁ =
[t | |
H‘Iﬂtd_ﬁﬂgt
calculateDiscounts I | y |
- ! | getDiscountinfo | -

Example Scenario

* You can see that, an instance of order sends
getQuantity and getProduct messages to the
order line.

* You can also see how we show the order
invoking a method on itself and how that
method sends getDiscountinfo to an instance of
customer.

. Thﬁ diagram does not show everything very
well.

— The sequence of messages getQuantity, getProduct,
getPricingDetails, and calculateBasePrice needs to
be done for each order line on the order, while
calculateDiscounts is invoked just once.

SEQUENCE DIAGRAMS

* Each lifeline has an activation bar that
shows when the participant is active in the
interaction.

* This corresponds to one of the
participant's methods being on the stack .

an Order an Order Line aFroduct aCustomer
calculatePrice | | | - parameter
L - | [
calculatePrice &
=— petPrice(guantity: number)
getDiscountedValue (an Ordar)
— — — p— — _-.
gelBaseValue
.+ return
&

— o e e N

discountedValue

- O e .

Another Sequence Diagram

The Order asks each Order Line to calculate its
own Price.

The Order Line itself further hands off the
calculation to the Product;
— note how to show the passing of a parameter.

Similarly, to calculate the discount, the Order
invokes a method on the Customer.

Because it needs information from the Order to
do this, the Customer makes a reentrant call
(getBaseValue) to the Order to get the data .

Centralized vs. Distributed Control

* The first exmple uses centralized control,
with one participant pretty much doing all
the processing and other participants there
to supply data.

* The second example uses distributed
control, in which the processing is split
among many participants, each one doing
a little bit of the algorithm.

Create/Delete Objects

Sequence diagrams show some extra notation for
creating and deleting participants.

To create a participant, you draw the message arrow
directly into the participant box.

A message name is optional here if you are using a
constructor, but | usually mark it with "new" in any case.

If the participant immediately does something once it's
created, such as the query command, you start an
activation right after the participant box.

Deletion of a participant is indicated by big X.

A message arrow going into the X indicates one
participant explicitly deleting another; an X at the end of
a lifeline shows a participant deleting itself.

a Handler

query daiabase

|

a Query
Command
new a Dalabase
Statemen
- -
deletion
. o from other
results s
extract results /
| .
|: | 2
N

___>T<E

“* self-deletion

When to Use Sequence Diagrams

* You should use sequence diagrams when
you want to look at the behavior of several
objects within a single use case.

* Sequence diagrams are good at showing
collaborations among the objects.

* They are not so good at precise definition
of the behavior.

* If you want to look at the behavior of a
single object across many use cases,

— use a state diagram

* If you want to look at behavior across
many use cases or many threads,

— use an activity diagram

COMMUNICATION
DIAGRAMS

Communication vs. Sequence
Diagrams

* Communication diagrams, emphasize the data
links between the various participants in the
interaction.

* Instead of drawing each participant as a lifeline
and showing the sequence of messages by
vertical direction as the sequence diagrams
does,

— the communication diagram allows free placement of
participants, allows you to draw links to show how the
participants connect, and use numbering to show the
sequence of messages.

* With a communication diagram, we can show
how the participants are linked together.

self link ..,

-
5 calculateBasaPrice {R

&: calculateDiscounts() L an Order

T

. 1:calculatePrica

L

Jh

]
: i
4 ¥
"]
E

2 non

bissssganannasy

7. gelDiscountinfo
—=

]

2; getQuantity)
3; getProduct ()

—

L

5 dan Crder Line

oy

4: getPricingDetalls

* narmative N,
v

|"- k]
a Customer
t ,
transient link
L e
j:_.
.
a Product
L

When to Use Communication
Diagrams

* The main question with communication
diagrams is when to use them rather than
the more common sequence diagrams.

— A strong part of the decision is personal
preference

* A more rational approach says that

— sequence diagrams are better when you want
to emphasize the sequence of calls and

— communication diagrams are better when you
want to emphasize the links

