
What is UML
• Unified Modeling Language

• A language for modelling software systems
from requirements to specification

• The goal is to become a common language for
creating models of object oriented computer
software

Benefits of UML
• You know exactly what you are getting
• You will have lower development costs
• Your software will behave as you expect it to. Fewer surprises
• The right decisions are made before you are given poorly

written code. Less overall costs
• We can develop more memory and processor efficient

systems
• System maintenance costs will be lower. Less relearning

takes place
• Working with a new developer will be easier.
• Communication with programmers and outside contractors

will be more efficient

Types of UML Diagrams
• Use Case Diagram

– Description of a system’s behavior from a user’s
point of view

• Class Diagram
– Models class structure and contents using design

elements such as classes, packages, and objects
– Displays relationships such as containment and

inheritance

Types of UML Diagrams
• Sequence Diagram

– Shows the time-based dynamics of the interaction
between objects

– Two dimensions; time and different objects
• Collaboration Diagram

– Displays the interaction organized around the
objects and their links to one another

– Numbers are used to show the sequence of
messages

Types of UML Diagrams
• State Diagram

– Displays the sequences of states that an object of
an interaction goes through during its life in
response to received stimuli

• Activity Diagram
– Displays a special state diagram where most of

the states are action states and most of the
transitions are triggered by completion of the
actions in the source states

– Like a flowchart

Types of UML Diagrams
• Component Diagram

– Displays the high level packaged structure of the
code itself

– Dependencies among components are shown,
including source code, binary code, and
executable components

• Deployment Diagram
– Displays the configuration of run-time processing

elements and the software components,
processes, and objects that live on them

Use Case Diagrams
• Use case diagrams show how a system’s

users interact with it
– i.e. the system’s requirements

• Use case diagrams represent:
– Actors: things (often people) outside the system

that interact with it
– Use cases: tasks the system supports
– Associations between the two

Use Case Diagram Example

Use Case Diagrams
• Used in almost every project

• Helpful in exposing requirements analysis and
planning the project

• During the initial stage of a project most use
cases should be defined, but as the project
continues more might become visible

Use Case Diagram Example

• Widely used to describe the types of objects in
a system and their relationships

• Model class structure and contents using
design elements such as classes, packages
and objects

• Describe three different perspectives when
designing a system; conceptual, specification,
and implementation

Class Diagrams

Class Diagrams
• Classes are composed of three components:

Class Diagrams
• Used in nearly all Object Oriented software

designs

• Used to descibe the classes of the system and
their relationships to each other

Class Diagrams
• Relationships

Between Classes
– Inheritance

– Composition

– Associaton

Circle Point

Student Address

Class Diagram Example

Class Diagram Example

• Use of templates,
interfaces, and
types

• Can even specify
body of methods

Class Diagrams

Sequence Diagrams
• Dynamic model view

• Details how operation are carried out, what
messages are sent and when

• Two dimensions:
– Time
– Objects

Sequence Diagram Example

Example Sequence Diagram

Collaboration Diagrams
• Give the same information as sequence

diagrams but they focus on object roles
instead of the times that messages are sent

• Object roles are vertices and messages are
the connecting links

• Each message has a sequence number

Collaboration Diagram Example

State Diagrams
• Shows the possible states of the object and

the transitions that cause a change in state

• Initial state is a dummy to start the action

• Final states are also dummy states that
terminate the action

State Diagram Example

Example State Diagram

Activity Diagrams
• Similar to state diagrams

– Activity diagram focuses on the flow of activities
involved in a single process

– State diagram focuses attention on an object
undergoing a process

• Is essentialy a fancy flowchart

Activity Diagram Example

UML in Real Practice
• You don't typically use all the diagrams

– You'll choose between them based on preference and
particular situation

• You typically use many diagrams
– A single use case may not capture all scenarios
– If you are going to use statecharts, there are probably lots

of objects with states
– Each sequence/collaboration diagram only shows one

interaction

Example: Student Registration
System

• Not going to do all the diagrams
– Not all types, not even all that completely specify

the system
• But this is an application you know, so the

examples may help make sense

Student Registration Class Diagram

*

prereqs

0..30..30..3

prereqs

0..30..30..3

Course

name
number
department
creditHours
prerequisites

1

*****1

CourseGrade

course
grade
termEnrolled

Transcript

courseGrades

gradeForCourse:
takenCourse:

1 ***

1

1..3 ******

*

111111

Department

courses
requiredCourses

111
Student

transcript
major

enrollInClass:
gradeInCourse:
takenCourse:

SectionSection

course
daysAndTimedaysAndTime
roster

addStudentaddStudent

removeStudentremoveStudent **

1** sectionssections

Registrar

courses

getSectionsFor:getSectionsFor:

enrollInSection:enrollInSection:

dropFromSection:dropFromSection:

scheduleschedule
registrarregistrar

1**

1

Partial Use Case Diagram

Withdraw
from a Course

Apply for
Admission

Student

Enroll in
the University

Enroll in
a Course

Admissions

States of a Student

EnrollInClass (Add a Transcript)

Enrolled
Apply [Must be accepted first]

Graduate [All courses must be completed]

AddCourseRegisteredWithdraw

Sequence Diagram: Registering for
Course

theRegistrar aSection theTranscriptaStudent

state of prereq
have prereq

enrolled

enrollInSection:

return sections

getSectionsFor:

addStudent:

enrolled

takenCourse: prerequisite

takenCourse: prerequisite

