What is UML

* Unified Modeling Language

* A language for modelling software systems
from requirements to specification

* The goal is to become a common language for

creating models of object oriented computer
software



Benefits of UML

You know exactly what you are getting
You will have lower development costs
Your software will behave as you expect it to. Fewer surprises

The right decisions are made before you are given poorly
written code. Less overall costs

We can develop more memory and processor efficient
systems

System maintenance costs will be lower. Less relearning
takes place

Working with a new developer will be easier.

Communication with programmers and outside contractors
will be more efficient



Types of UML Diagrams

* Use Case Diagram

— Description of a system’s behavior from a user’s
point of view

* Class Diagram

— Models class structure and contents using design
elements such as classes, packages, and objects

— Displays relationships such as containment and
inheritance



Types of UML Diagrams

* Sequence Diagram

— Shows the time-based dynamics of the interaction
between objects

— Two dimensions; time and different objects

* Collaboration Diagram

— Displays the interaction organized around the
objects and their links to one another

— Numbers are used to show the sequence of
messages



Types of UML Diagrams

« State Diagram

— Displays the sequences of states that an object of
an interaction goes through during its life in
response to received stimuli

* Activity Diagram
— Displays a special state diagram where most of
the states are action states and most of the

transitions are triggered by completion of the
actions in the source states

— Like a flowchart



Types of UML Diagrams

 Component Diagram

— Displays the high level packaged structure of the
code itself

— Dependencies among components are shown,
including source code, binary code, and
executable components

* Deployment Diagram

— Displays the configuration of run-time processing
elements and the software components,
processes, and objects that live on them



Use Case Diagrams

* Use case diagrams show how a system’s
users interact with it

— I.e. the system’s requirements

* Use case diagrams represent:

— Actors: things (often people) outside the system
that interact with it

— Use cases: tasks the system supports
— Associations between the two



Use Case Diagram Example
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Use Case Diagrams

* Used in almost every project

* Helpful in exposing requirements analysis and
planning the project

* During the initial stage of a project most use
cases should be defined, but as the project
continues more might become visible



Use Case Diagram Example

Evolution of a UML Use Case Diagram

... Becomes ...
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Class Diagrams

* Widely used to describe the types of objects in
a system and their relationships

* Model class structure and contents using

design elements such as classes, packages
and objects

* Describe three different perspectives when
designing a system; conceptual, specification,
and implementation
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Class Diagrams

* Used in nearly all Object Oriented software
designs

* Used to descibe the classes of the system and
their relationships to each other



Class Diagrams

* Relationships
Between Classes

— Inheritance angLage
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— Composition
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— Associaton
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Class Diagram Example
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Class Diagram Example
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Class Diagrams

* Use of templates,
interfaces, and
types

* Can even specify
body of methods
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Sequence Diagrams

* Dynamic model view

* Details how operation are carried out, what
messages are sent and when

* Two dimensions:
— Time
— Objects



Sequence Diagram Example
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Example Sequence Diagram

jb.receiveTime
-asendTime < 1 sec.}

jc.receivelime
- bsendTime < 10 sec.;

The call is
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iﬂ 1 sec.



Collaboration Diagrams

* Give the same information as sequence
diagrams but they focus on object roles
iInstead of the times that messages are sent

* Object roles are vertices and messages are
the connecting links

* Each message has a sequence number



Collaboration Diagram Example
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State Diagrams

* Shows the possible states of the object and
the transitions that cause a change in state

* Initial state is a dummy to start the action

* Final states are also dummy states that
terminate the action



State Diagram Example
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Example State Diagram
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Activity Diagrams

* Similar to state diagrams

— Activity diagram focuses on the flow of activities
involved in a single process

— State diagram focuses attention on an object
undergoing a process

* |s essentialy a fancy flowchart



Activity Diagram Example




UML In Real Practice

* You don't typically use all the diagrams
— You'll choose between them based on preference and
particular situation
* You typically use many diagrams
— A single use case may not capture all scenarios

— If you are going to use statecharts, there are probably /ots
of objects with states

— Each sequence/collaboration diagram only shows one
Interaction



Example: Student Registration
System

* Not going to do all the diagrams

— Not all types, not even all that completely specify
the system

* But this is an application you know, so the
examples may help make sense



Student Registration Class Diagram
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Partial Use Case Diagram
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States of a Student
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Sequence Diagram: Registering for
Course
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