What is UML

* Unified Modeling Language

* A language for modelling software systems
from requirements to specification

* The goal is to become a common language for

creating models of object oriented computer
software

Benefits of UML

You know exactly what you are getting
You will have lower development costs
Your software will behave as you expect it to. Fewer surprises

The right decisions are made before you are given poorly
written code. Less overall costs

We can develop more memory and processor efficient
systems

System maintenance costs will be lower. Less relearning
takes place

Working with a new developer will be easier.

Communication with programmers and outside contractors
will be more efficient

Types of UML Diagrams

* Use Case Diagram

— Description of a system’s behavior from a user’s
point of view

* Class Diagram

— Models class structure and contents using design
elements such as classes, packages, and objects

— Displays relationships such as containment and
inheritance

Types of UML Diagrams

* Sequence Diagram

— Shows the time-based dynamics of the interaction
between objects

— Two dimensions; time and different objects

* Collaboration Diagram

— Displays the interaction organized around the
objects and their links to one another

— Numbers are used to show the sequence of
messages

Types of UML Diagrams

« State Diagram

— Displays the sequences of states that an object of
an interaction goes through during its life in
response to received stimuli

* Activity Diagram
— Displays a special state diagram where most of
the states are action states and most of the

transitions are triggered by completion of the
actions in the source states

— Like a flowchart

Types of UML Diagrams

 Component Diagram

— Displays the high level packaged structure of the
code itself

— Dependencies among components are shown,
including source code, binary code, and
executable components

* Deployment Diagram

— Displays the configuration of run-time processing
elements and the software components,
processes, and objects that live on them

Use Case Diagrams

* Use case diagrams show how a system’s
users interact with it

— I.e. the system’s requirements

* Use case diagrams represent:

— Actors: things (often people) outside the system
that interact with it

— Use cases: tasks the system supports
— Associations between the two

Use Case Diagram Example

i hnigke appoimtmeant

P=tiant
Doctor

Use Case Diagrams

* Used in almost every project

* Helpful in exposing requirements analysis and
planning the project

* During the initial stage of a project most use
cases should be defined, but as the project
continues more might become visible

Use Case Diagram Example

Evolution of a UML Use Case Diagram

... Becomes ...

Heservation System

nitiaf
Design:

Check in
Passenger

Ticket Clerk

Add
PReservation

Cancel
PReservation

Sub-Diagram:

Check in
Passenger

YWeigh
Luggage

Assign Seat

To add detail
{(extension):

Check in

s SES=x Assign Seat

Passenger

wWeigh
Luggage

Assign Aisle
Seat

YWindow Seat

Class Diagrams

* Widely used to describe the types of objects in
a system and their relationships

* Model class structure and contents using

design elements such as classes, packages
and objects

* Describe three different perspectives when
designing a system; conceptual, specification,
and implementation

Clazs

Lizt of
Anbites /
wanables

Lizt of
methids

Class Diagrams

* Classes are composed of three components:

The &
(apiz

(apiz

asz name twpically has the first alphabet
i2ed. K you dfass has more than one words, and

28 the first alphiabet of both words and join the

ba, Foregq.; Student

Alit of attnbites of your dazs goes in here, The syitaris:

afmbute Tupe = tefault vake (any]”

Fore.q. studartld ;int OR
shudenthame ; Hing

Alizt of wur methods goes in here, The syntax is

a)

Methodham e[List o parameders [any]).fedum fype F

Fore.q.. #mng get Audert Namefint udertd)
Meitatien® Hurnanan Hridatian

Class Diagrams

* Used in nearly all Object Oriented software
designs

* Used to descibe the classes of the system and
their relationships to each other

Class Diagrams

* Relationships
Between Classes

— Inheritance angLage

dawa —++

— Composition

Circle @—> Point

— Associaton

Student > Address

Class Diagram Example

Person Address
Name S!reet
Phone Number 0 1 ek Et 1 | City
Email Address State
Postal Code
Purchase Parking Pass Country
f Validate
Qutput As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Class Diagram Example

Student

Name

Address

Phone Number
Email Address
Student Number
Average Mark

-

Is Eligible To Enroll
(zet Seminars Taken

; e ; Enrollmant 1 :
enrolle iy Wi
» Marks Received = Seminar
Get Avarage To Date Name
(et Final Mark Seminar Number
dered, FIFO Fees
D“_{ur o } on waiting list 0."
Add Student
0.." | Drop Student
Professor
Name instructs
Address 0.1
Phone Mumber .
Email Addrass
Salary

YSome seminars may
not have an

instructor?

Class Diagrams

* Use of templates,
interfaces, and
types

* Can even specify
body of methods

& ;_'?'pE =
Object

Y elemants

=implemantationClags.
HashTable

“ ';gpe-a
Set

addElement(Objact)
removeElament{Objact)
testElement(Object).Boclean

PaliceStation

dlert (}

1 station

BurglarAlarm

isTripped: Boolean = false

POt (e ——— o = e ——— —

E body

simplementationClassy
HashTableSet

addElemeant{Ohjsct)
removeElementOhject)
testElement{Object):Boolaan
setTablaSize(Intager)

{if isTripped

than s1a=imn.alert{self}ﬁ

Sequence Diagrams

* Dynamic model view

* Details how operation are carried out, what
messages are sent and when

* Two dimensions:
— Time
— Objects

Sequence Diagram Example

astudent: Student . Seminar . Course

enrollStudent(aStudent)

getSeminarHistary()

I

I

I

I

I

I

I
=
I
h——,—,—,—,—-—- - - - - - - - ——— —] d4—-——— - ———— = =
I

I

I

I
F
I

I

I

I

I

I

Example Sequence Diagram

jb.receiveTime
-asendTime < 1 sec.}

jc.receivelime
- bsendTime < 10 sec.;

The call is
routed through
the network.

{d.receiveTime
- d.sendTime =< 5 sec.}

At this point
the parties
can talk.

a: lift receiver

b dial tone

c: dial digit

nnging tone phone rings
P =
Joanswer phone
stop tone stop ringin
le P rnging

iﬂ 1 sec.

Collaboration Diagrams

* Give the same information as sequence
diagrams but they focus on object roles
iInstead of the times that messages are sent

* Object roles are vertices and messages are
the connecting links

* Each message has a sequence number

Collaboration Diagram Example

create) — | : Order
heckout

Customer

1.1 * getTntalﬂ+

1: getTotal() ==
Order
1.2:
orderTotal := ‘
calculateTotal)
2: dehitﬂ# -
3.1: getlnfuiﬁ
: Credit 3: display)| : Checkout
Card Page
P ayment
2.1: reserve() —p. : Payment
2.2 commit(— | Processor

<<gystems>

3.1: getinfo) —gw

1.1.1: getPrice
{numherﬂrdered}*

3.1.1: getinfo() h

: Orderltem

: ltem

State Diagrams

* Shows the possible states of the object and
the transitions that cause a change in state

* Initial state is a dummy to start the action

* Final states are also dummy states that
terminate the action

State Diagram Example

heduled w
.—)[Proposed J&){ Sehaduled Jup&n

cancalied

cancelled

student enrolled

|seat avallable] l

addStudent()

j’ Qpen For EnnyllrmamfII

cancelied

entry/ logize()

o

student anrollad

o seal available] |
ddToWaitingList
TN | seatavaee v
[Rl) (Closed to Enrolment
seminar Epll'l. anroll student / chased
add ToWaitingList;); i entry! notifylnstructor]
sludent dropped | considerSpi) J /

[no seal available]

canceled

closed

LY
student dropped pappellad

[seal available]
enralFromWaibngLisl()

A

Example State Diagram

Active

Timaout 1'

clod play m msagﬂ‘]

after (15 sac.)

I r DialTene | dial cagiting

aftar (15 sec.}

i | do/ play dial tone]

resCalver

gial degitinginvahd

fgat dial tonea

chal degetin)
[Incomplatal

chial digitinj[vahld|

foonnecl

[invalid
\

ldie

dof play m f.‘!'-‘.‘:'é-f-]-_“.jf.'.'J

[-l: on nvactin-g]

DUSY

l
=

r

Busy

play busy
] =

ANSWEars
hangs up

fdizconnact

calles Lﬂ:_n-'
callar callea nangs up

connectas

¥

-

Talking

Callesd answears
K‘- lanable spaach

Ringing

do play fingmng

tore J __/‘I

Activity Diagrams

* Similar to state diagrams

— Activity diagram focuses on the flow of activities
involved in a single process

— State diagram focuses attention on an object
undergoing a process

* |s essentialy a fancy flowchart

Activity Diagram Example

UML In Real Practice

* You don't typically use all the diagrams
— You'll choose between them based on preference and
particular situation
* You typically use many diagrams
— A single use case may not capture all scenarios

— If you are going to use statecharts, there are probably /ots
of objects with states

— Each sequence/collaboration diagram only shows one
Interaction

Example: Student Registration
System

* Not going to do all the diagrams

— Not all types, not even all that completely specify
the system

* But this is an application you know, so the
examples may help make sense

Student Registration Class Diagram

Transcript

courseGrades

gradeForCourse:
takenCourse:

1

CourseGrade

course
x| grade

creditHours
prerequisites

Student
1
transcript] L
schedule Registrar
registrar Section COUTSes
enrollinClass: course x+ 1| sections
gradelnCourse: daysAndTime getSectionsFor:
takenCourse: roster enrollinSection:
* addStudent dropFromSection:
removeStudent | * 1
1
Department L3 . Course -
courgez c name —|
requiredCourses umber
department é3

prereqgs

termEnrolled

Partial Use Case Diagram

Apply for
Admission %
Enroll in N
the University Admissions

Enroll in
a Course

Withdraw
from a Course

Student \

States of a Student

Apply [Must be accepted first] { Enrolled j

EnrollinClass (Add A Transcript)

Registered | agdcourse

Graduate [All courses must be completed]

,.@

Sequence Diagram: Registering for
Course

aStudent theRegistrar aSection theTranscript

getSectionsFor:]_JI_

return sections

enrollinSection:

: 2
‘takenCourse: prerequisite

takenCourse:jprerequisite

il
have prereq

addStudent:
=g

enrolled L enrolled

I T |

