
18-Apr-21 Borahan Tümer 1

CSE344

Software Engineering

(SWE)

18-Apr-21 Borahan Tümer 2

Week – 2

SW Processes

18-Apr-21 Borahan Tümer 3

What is a SW process?
• A set of activities to develop/evolve SW.

• Generic activities in all SW processes are:

o Specification - what the system should do and its

development constraints

o Development – how to produce the SW system

o Validation & Verification (V&V) - checking that

▪ the SW product is what the customer really wants, and

▪ the SW product does what it is supposed to.

▪ two questions symbolizing V&V:

➢ Am I doing the right product? ↔ Validation

➢ Am I doing the product right? ↔ Verification

o Evolution - changing the software in response to changing

demands.

18-Apr-21 Borahan Tümer 4

SW Process Model...

Definition:

A SW process model is an abstract

representation of a process. It presents a

description of a process from some particular

perspective.

18-Apr-21 Borahan Tümer 5

Generic SW Process models
• Waterfall:

o Separate and distinct phases of specification and
development.

• Evolutionary development

o Specification, development and validation are
interleaved.

• Component-based software engineering

o The system is assembled from existing components.

• Variants of these models e.g., formal development:
▪ a waterfall-like process is used

▪ a formal specification refined through several stages to an
implementable design.

18-Apr-21 Borahan Tümer 6

Waterfall model

19-Apr-21 Borahan Tümer 7

Waterfall model phases

• Requirements analysis and definition

• System and software design

• Implementation and unit testing

• Integration and system testing

• Operation and maintenance

• Main drawback:

o Inflexible to change after the process is underway.
One phase has to be complete before moving onto
the next phase.

19-Apr-21 Borahan Tümer 8

Waterfall model problems

• Inflexible partitioning of process into stages: Hard to

handle changing customer requirements.

• Hence, waterfall is appropriate for projects with stable

and well-understood requirements and hence, with

limited changes during the design process.

• Few business systems have stable requirements.

• The waterfall model is mostly used for large systems

engineering projects where a system is developed at

several sites.

19-Apr-21 Borahan Tümer 9

Evolutionary development

• Exploratory development

o Objective is to work with customers and to evolve a

final system from an initial outline specification.

Should start with well-understood requirements and

add new features as proposed by the customer.

• Throw-away prototyping

o Objective is to understand the system requirements.

Should start with poorly understood requirements to

clarify what is really needed.

19-Apr-21 Borahan Tümer 10

Evolutionary development

19-Apr-21 Borahan Tümer 11

Evolutionary development

• Problems

o Lack of process visibility;

o Systems are often poorly structured;

o Special skills (e.g. in languages for rapid
prototyping) may be required.

• Applicability

o For small or medium-size interactive systems;

o For parts of large systems (e.g. the user interface);

o For short-lifetime systems.

19-Apr-21 Borahan Tümer 12

Component-based software engineering

• Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems.

• Process stages

o Component analysis;

o Requirements modification;

o System design with reuse;

o Development and integration.

• This approach is becoming increasingly used as
component standards have emerged.

19-Apr-21 Borahan Tümer 13

Reuse-oriented development

19-Apr-21 Borahan Tümer 14

Process iteration

• System requirements always evolve during a

project so process iteration where earlier stages

are reworked is always part of the process for

large systems.

• Iteration can be applied to any of the generic

process models.

• Two (related) approaches

o Incremental delivery;

o Spiral development.

19-Apr-21 Borahan Tümer 15

Incremental delivery

• Not a single delivery;

• Development and delivery in increments

• Each increment satisfies part of the required

functionality.

• User requirements are prioritised and the higher

the priority of a requirement the sooner it is

delivered.

• Current increment’s requirements are frozen; but

requirements for later increments may evolve.

19-Apr-21 Borahan Tümer 16

Incremental development

19-Apr-21 Borahan Tümer 17

Incremental development advantages

• Delivery of increments provides earlier

availability of the system functionality.

• Early increments act as a prototype to help elicit

requirements for later increments.

• Lower risk of overall project failure.

• The highest priority system services tend to

receive the most testing.

19-Apr-21 Borahan Tümer 18

Extreme programming

• A derivative of incremental development.

• An approach to development based on the

development and delivery of very small (even

weekly or biweekly) increments of functionality.

• Relies on

o constant code improvement,

o user involvement in the development team and

o pairwise programming.

19-Apr-21 Borahan Tümer 19

Spiral development

• Spiral representation of the process rather than

as a sequence of activities with backtracking.

• Each loop in the spiral represents a phase in the

process.

• No fixed phases such as specification or design -

loops in the spiral are chosen depending on what

is required.

• Risks are explicitly assessed and resolved

throughout the process.

19-Apr-21 Borahan Tümer 20

Spiral model of the software process

19-Apr-21 Borahan Tümer 21

Spiral model sectors

• Objective setting

o Specific objectives for the phase are identified.

• Risk assessment and reduction

o Risks are assessed and activities put in place to reduce
the key risks.

• Development and validation

o A development model for the system is chosen which
can be any of the generic models.

• Planning

o The project is reviewed and the next phase of the spiral is
planned.

19-Apr-21 Borahan Tümer 22

Process activities

• Software specification

• Software design and implementation

• Software validation & verification

• Software evolution

19-Apr-21 Borahan Tümer 23

Software specification

• The process of establishing what services are

required and the constraints on the system’s

operation and development.

• Requirements engineering process

o Feasibility study;

o Requirements elicitation and analysis;

o Requirements specification;

o Requirements validation.

19-Apr-21 Borahan Tümer 24

The requirements engineering process

19-Apr-21 Borahan Tümer 25

Software design and implementation

• The process of converting the system

specification into an executable system.

• Software design

o Design a software structure that realises the

specification;

• Implementation

o Translation of design to an executable program;

• Design and implementation may be inter-leaved.

19-Apr-21 Borahan Tümer 26

Design process activities

• Architectural design

• Abstract specification

• Interface design

• Component design

• Data structure design

• Algorithm design

19-Apr-21 Borahan Tümer 27

The software design process

19-Apr-21 Borahan Tümer 28

Structured methods

• Systematic approaches to developing a software
design.

• The design is usually documented as a set of
graphical models.

• Possible models

o Object model;

o Sequence model;

o State transition model;

o Structural model;

o Data-flow model.

19-Apr-21 Borahan Tümer 29

Programming and debugging

• Design  program + error removal.

• Programming is a personal activity - there is no

generic programming process.

• Programmers carry out some program testing to

discover faults in the program and remove these

faults in the debugging process.

19-Apr-21 Borahan Tümer 30

The debugging process

19-Apr-21 Borahan Tümer 31

Software validation & verification

• Verification and validation (V & V) is intended
to show that a system conforms to its
specification and meets the requirements of the
system customer.

• Involves checking and review processes and
system testing.

• System testing involves executing the system
with test cases that are derived from the
specification of the real data to be processed by
the system.

19-Apr-21 Borahan Tümer 32

The testing process

19-Apr-21 Borahan Tümer 33

Testing stages
• Component or unit testing

o Individual components are tested
independently;

o Components may be functions or objects or
coherent groupings of these entities.

• System testing

o Testing of the system as a whole. Testing of
emergent properties is particularly important.

• Acceptance testing

o Testing with customer data to check that the
system meets the customer’s needs.

19-Apr-21 Borahan Tümer 34

Testing phases

19-Apr-21 Borahan Tümer 35

Software evolution

• Software is inherently flexible and can change.

• As requirements change through changing

business circumstances, the software that

supports the business must also evolve and

change.

• Although there has been a isolation between

development and evolution (maintenance) this is

increasingly irrelevant as fewer and fewer

systems are completely new.

19-Apr-21 Borahan Tümer 36

System evolution

19-Apr-21 Borahan Tümer 37

The Rational Unified Process

• A modern process model derived from the work

on the UML and associated process.

• Normally described from 3 perspectives

o A dynamic perspective that shows phases over time;

o A static perspective that shows process activities;

o A practice perspective that suggests good practice.

19-Apr-21 Borahan Tümer 38

RUP phase model

Phase iteration

Inception Elaboration Construction Transition

19-Apr-21 Borahan Tümer 39

RUP phases

• Inception

o Establish the business case for the system.

• Elaboration

o Develop an understanding of the problem domain

and the system architecture.

• Construction

o System design, programming and testing.

• Transition

o Deploy the system in its operating environment.

19-Apr-21 Borahan Tümer 40

Inception

SW System
External entities

People & other

systems

Interactions of

SW System with

external entities

• Identify all external entities and their interactions with

the SW system

19-Apr-21 Borahan Tümer 41

RUP good practice

• Develop software iteratively

• Manage requirements

• Use component-based architectures

• Visually model software

• Verify software quality

• Control changes to software

19-Apr-21 Borahan Tümer 42

Static workflows

Workflow Description

Business modelling The business processes are modelled using bu siness use cases.

Requirements Actors who interact with the system are identified and use cases are

developed to model the system requirements.

Analysis and design A design model is created and documented using a rchitectural

models, component models, object models and sequence mod els.

Implementation The components in the system are implemented and structured into

implementation sub-systems. Automatic code generation from design

models helps accelerate this process.

Test Testing is an iterative process that is carried out in conjunction with

implementation. System testing follows the completion of the

implementation.

Deployment A product release is created, distributed to users and installed in their

workplace.

Configuration and

change management

This supporting workflow managed change s to the system (see

Chapter 29).

Project management This supporting workflow manage s the system development (see

Chapter 5).

Environment This workflow is concerned with making appropriate software tools

available to the software development team.

19-Apr-21 Borahan Tümer 43

Computer-aided software engineering

(CASE)

• ... denotes software to support software development

and evolution processes.

• ... automates process activities

o Graphical editors for system model development;

o Data dictionary to manage design entities;

o Graphical UI builder for user interface construction;

o Debuggers to support program fault finding;

o Automated translators to generate new versions of a

program.

19-Apr-21 Borahan Tümer 44

CASE technology

• ... has led to significant improvements in software

process, but not the order-of-magnitude (i.e.,essential)

improvements as once predicted

o Software engineering requires creative thought - this

is not readily automated;

o Software engineering is a team activity and, for large

projects, much time is spent in team interactions.

CASE technology does not really support these.

19-Apr-21 Borahan Tümer 45

CASE classification

• Classification helps us understand the different types

of CASE tools and their support for process activities.

• Functional perspective

o Tools are classified according to their specific function.

• Process perspective

o Tools are classified according to process activities that

are supported.

• Integration perspective

o Tools are classified according to their organisation into

integrated units.

19-Apr-21 Borahan Tümer 46

Functional tool classification

Tool type Examples

Planning tools PERT tools, estimation tools, spreadsheets

Editing tools Text editors, diagram editors, word processors

Change management tools Requirements traceability tools, change control systems

Configuration management tools Version management systems, system building tools

Prototyping tools Very high-level languages, user interface generators

Method-support tools Design editors, data dictionaries, code generators

Language-processing tools Compilers, interpreters

Program analysis tools Cross refe rence generators, static analysers, dynamic analysers

Testing tools Test data generators, file comparators

Debugging tools Interactive debugging systems

Documentation tools Page layout programs, image editors

Re-engineering tools Cross-reference systems, program re-structuring systems

19-Apr-21 Borahan Tümer 47

Activity-based tool classification

Specification Design Implementation Verification

and

Validation

Re-eng ineering tools

Testing tools

Debugg ing tools

Prog ram analy sis tools

Language-processing

tools

Method suppor t tools

Prototyping tools

Configuration

management tools

Change management tools

Documentation tools

Editing tools

Planning tools

19-Apr-21 Borahan Tümer 48

CASE integration

• Tools

o Support individual process tasks such as design
consistency checking, text editing, etc.

• Workbenches

o Support a process phase such as specification or
design, Normally include a number of integrated
tools.

• Environments

o Support all or a substantial part of an entire software
process. Normally include several integrated
workbenches.

19-Apr-21 Borahan Tümer 49

Tools, workbenches, environments

Single-method

workbenches

General-purpose

workbenches

Multi-method

workbenches

Langua ge-specific

workbenches

Pro gramming Testing
Analysis and

design

Integ rated

en vironments

Process-centr ed

en vironments

File

compar ators
CompilersEditors

EnvironmentsWor kbenchesTools

CASE

technolo gy

19-Apr-21 Borahan Tümer 52

References

[1] Ian Sommerville, Software Engineering, 8th ed. 2007

[2] P. Naur, R.Randell (eds.): Software Engineering: A Report on a

Conference Sponsored by the NATO Science Committee, 1968

