
SOFTWARE DESIGN

(YAZILIM TASARIMI)
Week 5

Doç.Dr. Borahan Tümer 2

Principles of Design

• Design emerges from a need to solve a problem.

• Design is a creative process to meet the need to

solve the problem.

• Design has two phases:

– Inspiration phase

– Expression or communication phase.

• Design – as applied by nature – is a bottom-up

process.

Doç.Dr. Borahan Tümer 3

Design: Inspiration Phase

• The original (i.e., inspired) idea or thought is

disordered or chaotic.

• It is not expressible/communicatible as inspired.

• A powerful communication basis is required to

express the inspired thought(s) in an organized

manner.

Doç.Dr. Borahan Tümer 4

Design: Communication Phase

• Idea or thought is disorganized as inspired.

• Words form a tool to communicate inspired thoughts.

• Words are components to express/communicate thoughts
in a comprehensible manner.

• Designer is not confined in her inspirations; but restricted
to the expessive power of the words she selects to
communicate her thought(s).

• The quality of the communicated thought depends upon
the expressive power of the words and the potential of the
designer to use words.

Doç.Dr. Borahan Tümer 5

Conclusion from Last Page

It is inevitable that the designer should have a

well-established basis of knowledge on

the set of communication tool(s) to use

them to her best.

Doç.Dr. Borahan Tümer 6

Nature’s Tradition of Perfect Design

• Nature designs perfectly since nature bases

its designs upon the (to a significant extent

unknown) internal reasons originating from

an incredible level of balance in an

enourmously diverse system of adaptable

(evolving) organisms.

Doç.Dr. Borahan Tümer 7

Nature’s Multi-Levelled Approach

to Design

• Nature has created the tiger to do whatever

it achieves to survive in its environment;

through evolution nature has excelled its

design (i.e., all aspects ranging from its

most detailed cellular to most general

systemic level) to progressively fit its

environment.

• The same is valid for a leaf or a snail or us.

Doç.Dr. Borahan Tümer 8

Photography: Andreas Feininger

Doç.Dr. Borahan Tümer 9

Photography: Andreas Feininger

Doç.Dr. Borahan Tümer 10

Nature Designs in a Bottom-up

Fashion!

• Nature’s way of design ranging from the

most detailed cellular to most general

systemic level to provide an organism with

all necessary and sufficient properties to

survive its current environment is explained

by its bottom-up approach to design along

with its equipping these organisms with

evolvability.

Doç.Dr. Borahan Tümer 11

Means of SW Design

• UML

• Prototyping language (if required)

• Formal Language, corresponding IDE

• Environment: O/S, hardware, network.

• Graphic tools (if necessary)

• Others?

Doç.Dr. Borahan Tümer 12

SW Design: A Top-Down &

Bottom-up Process
• Designer is required to establish a sufficient

background on all tools employed in any part of SW

design.

• Establishing the required level of background on

tools of use, the designer naturally follows a bottom-

up approach to SW design.

• Time that nature has is what designer does not.

Hence, top-down approach is an option as a

structuring approach to design in scarcity of time

Doç.Dr. Borahan Tümer 13

Key Points

• Look for solutions as simple as possible;

• Nature’s choice is also for as simple/optimal as

can be. We appreciate this fact from our everyday

experience on living organisms that they have the

simplest necessary equipment for the given

functionality;

• Remember! Among a number of solution

alternatives to a problem, the best one is the

simplest one! (Occam’s razor!);

Doç.Dr. Borahan Tümer 14

Key Points

• Learn all necessary means of SW design (i.e.,
those we have considered on page 11) to your best
and expand your experience on using them;

• Just as one who possesses a large vocabulary and
is talented (and/or educated) to use words
meaningfully and correctly can more powerfully
express her/his thoughts than an ordinary person,
a SW engineer well equipped with/experienced on
necessary tools is more likely to come up with
better SW designs in general.

Doç.Dr. Borahan Tümer 15

Architectural Design

Doç.Dr. Borahan Tümer 16

Architectural Design

• ... is the design stage for identifying

– the sub-systems making up a system and

– the framework for sub-system control

and communication.

Doç.Dr. Borahan Tümer 17

Architectural design ...2

• an early stage of the system design.

• a link between specification and design.

• ... involves identifying major system

components and their communications.

• especially cost-effective for large scale

systems.

Doç.Dr. Borahan Tümer 18

Advantages of explicit architecture

• Stakeholder communication

– a focus of discussion by system stakeholders.

• System analysis

– Architectural design at an early stage requires
system analysis. This in turn makes analysis
possible of whether the system can meet its
non-functional requirements.

• Large-scale reuse

– architecture reusable?

Doç.Dr. Borahan Tümer 19

Architecture and system characteristics
• Performance

– Localise critical operations and minimise communications. Use
larger rather than finer components.

• Security

– Use layered architecture with critical assets in the inner layers.

• Safety

– Localise safety-critical features in a small number of sub-
systems.

• Availability

– Include redundant components and mechanisms for fault
tolerance.

• Maintainability

– Use finer, replaceable components.

Doç.Dr. Borahan Tümer 20

Architectural conflicts

• A high performance and maintainable

system?

• Availability (i.e., redundant data) and

security (i.e., layered architecture) together?

• A safe (safety-related features means more

communication) and high performance

system?

Doç.Dr. Borahan Tümer 21

System structuring

• decomposing the system into interacting

sub-systems.

• normally expressed as a block diagram

presenting an overview of the system

structure.

• showing how sub-systems

– share data,

– are distributed and

– interface with each other.

Doç.Dr. Borahan Tümer 22

Packing robot control system

Doç.Dr. Borahan Tümer 23

Architectural design decisions

• Is there a generic application architecture that can be

used?

• How will the system be distributed?

• What architectural styles are appropriate?

• What approach will be used to structure the system?

• How will the system be decomposed into modules?

• What control strategy should be used?

• How will the architectural design be evaluated?

• How should the architecture be documented?

Doç.Dr. Borahan Tümer 24

Architectural models

• Static structural model that shows the major

system components.

• Dynamic process model that shows the process

structure of the system.

• Interface model that defines sub-system

interfaces.

• Relationships model such as a data-flow model

that shows sub-system relationships.

• Distribution model that shows how sub-systems

are distributed across computers.

Doç.Dr. Borahan Tümer 25

System organisation

• Reflects the basic strategy that is used to

structure a system into its subsystems.

• Three organisational styles are widely used:

– A shared data repository style;

– A shared services and servers style;

– An abstract machine or layered style.

Doç.Dr. Borahan Tümer 26

The repository model

• Sub-systems exchange data in two ways:

– Shared data is held in a central database or
repository and may be accessed by all sub-
systems;

– Each sub-system maintains its own database
and passes data explicitly to other sub-systems.

• When large amounts of data are to be
shared, the repository model of sharing is
most commonly used.

Doç.Dr. Borahan Tümer 27

CASE toolset architecture

Doç.Dr. Borahan Tümer 28

Repository model characteristics

• Advantages

– Efficient way to share large amounts of data;

– Sub-systems need not be concerned with how data is
produced. Centralised management e.g. backup,
security, etc.

• Disadvantages

– Sub-systems must agree on a repository data model.
Inevitably a compromise;

– Data evolution is difficult and expensive;

– Difficult to distribute efficiently.

Doç.Dr. Borahan Tümer 29

Client-server model

• Distributed system model which shows how
data and processing is distributed across a
range of components.

• Set of stand-alone servers which provide
specific services such as printing, data
management, etc.

• Set of clients which request for these
services.

• Network which allows clients to access
servers.

Doç.Dr. Borahan Tümer 30

Film and picture library

Doç.Dr. Borahan Tümer 31

Client-server characteristics

• Advantages

– Distribution of data is straightforward;

– Makes effective use of networked systems. May require

cheaper hardware;

– Easy to add new servers or upgrade existing servers.

• Disadvantages

– No shared data model so sub-systems use different data

organisation. Data interchange may be inefficient;

– Redundant management in each server;

– No central register of names and services - it may be

hard to find out what servers and services are available.

Doç.Dr. Borahan Tümer 32

Abstract machine (layered) model

• Used to model the interfacing of sub-systems.

• Organises the system into a set of layers (or

abstract machines) each of which provide a set of

services.

• Supports the incremental development of sub-

systems in different layers. When a layer interface

changes, only the adjacent layer is affected.

• However, often artificial to structure systems in

this way.

Doç.Dr. Borahan Tümer 33

Modular decomposition styles

• Styles of decomposing sub-systems into

modules.

• No rigid distinction between system

organisation and modular decomposition.

Doç.Dr. Borahan Tümer 34

Sub-systems and modules

• A sub-system is a system in its own right

whose operation is independent of the

services provided by other sub-systems.

• A module is a system component that

provides services to other components but

would not normally be considered as a

separate system.

Doç.Dr. Borahan Tümer 35

Modular decomposition

• Two modular decomposition models covered

– An object model where the system is decomposed into

interacting object;

– A pipeline or data-flow model where the system is

decomposed into functional modules which transform

inputs to outputs.

• If possible, decisions about concurrency should be

delayed until modules are implemented.

Doç.Dr. Borahan Tümer 36

Control styles

• Ways of the control flow between sub-
systems. Two ways:

– Centralised control

– Event-based control

Doç.Dr. Borahan Tümer 37

Centralised control

• A control sub-system takes responsibility for

managing the execution of other sub-systems.

• Call-return model

– Top-down subroutine model

– Control starts at the root of a subroutine tree and moves

downwards.

– Applicable to sequential systems.

• Manager model

– Applicable to concurrent systems.

– One system component coordinates other system

processes.

Doç.Dr. Borahan Tümer 38

Call-return model

Doç.Dr. Borahan Tümer 39

Real-time system control

Doç.Dr. Borahan Tümer 40

Event-driven systems

• The control of the sub-systems processing the
event is driven by externally generated events

• Two primary event-driven models

– Broadcast models. An event is broadcast to all sub-
systems. Any sub-system which can handle the event
may do so;

– Interrupt-driven models. Used in real-time systems
where interrupts are detected by an interrupt handler
and passed to some other component for processing.

• Other event driven models include spreadsheets
and production systems.

Doç.Dr. Borahan Tümer 41

Broadcast model

• Effective in integrating sub-systems on different

computers in a network.

• Sub-systems register an interest in specific events.

When these occur, control is transferred to the

sub-system which can handle the event.

• Control policy is not embedded in the event and

message handler. Sub-systems decide on events of

interest to them.

• However, sub-systems don’t know if or when an

event will be handled.

Doç.Dr. Borahan Tümer 42

Selective broadcasting

Doç.Dr. Borahan Tümer 43

Interrupt-driven systems

• Used in real-time systems where fast
response to an event is essential.

• There are known interrupt types with a
handler defined for each type.

• Each type is associated with a memory
location and a hardware switch causes
transfer to its handler.

• Allows fast response but complex to
program and difficult to validate.

Doç.Dr. Borahan Tümer 44

Interrupt-driven control

Doç.Dr. Borahan Tümer 45

Distributed System Design

Doç.Dr. Borahan Tümer 46

Distributed systems

• Virtually all large computer-based systems

are now distributed systems.

• Information processing is distributed over

several computers rather than confined to a

single machine.

• Distributed software engineering is

therefore very important for enterprise

computing systems.

Doç.Dr. Borahan Tümer 47

Distributed system characteristics

• Resource sharing

– Sharing of hardware and software resources.

• Openness

– Use of equipment and software from different vendors.

• Concurrency

– Concurrent processing to enhance performance.

• Scalability

– Increased throughput by adding new resources.

• Fault tolerance

– The ability to continue in operation after a fault has
occurred.

Doç.Dr. Borahan Tümer 48

Distributed system disadvantages

• Complexity

– Typically, distributed systems are more complex than

centralised systems.

• Security

– More susceptible to external attack.

• Manageability

– More effort required for system management.

• Unpredictability

– Unpredictable responses depending on the system

organisation and network load.

Doç.Dr. Borahan Tümer 49

Distributed systems architectures

• Client-server architectures

– Distributed services

• provided by servers

• requested and used by clients.

• Distributed object architectures

– No distinction between clients and servers.

Doç.Dr. Borahan Tümer 50

Middleware

• Software that manages and supports the different

components of a distributed system. In essence, it

sits in the middle of the system.

• Middleware is usually off-the-shelf rather than

specially written software.

• Examples

– Transaction processing monitors;

– Data converters;

– Communication controllers.

Doç.Dr. Borahan Tümer 51

Multiprocessor architectures

• Simplest distributed system model.

• System composed of multiple processes which

may (but need not) execute on different

processors.

• Architectural model of many large real-time

systems.

• Process to processor distribution

– either pre-ordered

– or under the control of a dispatcher.

Doç.Dr. Borahan Tümer 52

A multiprocessor traffic control system

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consoles
Traffic flow sensors and

cameras

Sensor
processor

Sensor
control
process

Display
process

Doç.Dr. Borahan Tümer 53

Client-server architectures

• The application is modelled as a set of

services that are provided by servers and a

set of clients that use these services.

• Clients know of servers but servers need not

know of clients.

• Clients and servers are logical processes

• The mapping of processors to processes is

not necessarily 1 : 1.

Doç.Dr. Borahan Tümer 54

A client-server system

s1

s2 s3

s4c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

Doç.Dr. Borahan Tümer 55

Computers in a C/S network

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c1 1, c1 2

Doç.Dr. Borahan Tümer 56

Layered application architecture

• Presentation layer

– presenting the results of a computation to users and

– collecting user inputs.

• Application processing layer

– providing application specific functionality e.g., in a

banking system, banking functions such as open

account, close account, etc.

• Data management layer

– managing the system databases.

Doç.Dr. Borahan Tümer 57

Application layers

Doç.Dr. Borahan Tümer 58

Thin and fat clients

• Thin-client model

– Application processing and data management is on
the server.

– Client simply responsible for running presentation
software.

• Fat-client model

– Server only responsible for data management.

– Client realizes application logic and interactions
with the system user.

Doç.Dr. Borahan Tümer 59

Thin and fat clients

Doç.Dr. Borahan Tümer 60

Thin client model

• Used when legacy systems are migrated to

client/server architectures.

– The legacy system acts as a server in its own right

with a graphical interface implemented on a

client.

• A major disadvantage is that it places a heavy

processing load on both the server and the

network (performance & scalability issue).

Doç.Dr. Borahan Tümer 61

Fat client model

• More processing is delegated to the client as
the application processing is locally
executed.

• Most suitable for new C/S systems where
the capabilities of the client system are
known in advance.

• More complex than a thin client model
especially for management. New versions of
the application have to be installed on all
clients (Maintainability issue).

Doç.Dr. Borahan Tümer 62

A client-server ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM

Doç.Dr. Borahan Tümer 63

Three-tier architectures

• In a three-tier architecture, each of the

application architecture layers may execute on

a separate processor.

• Allows for better performance and scalability

than a thin-client approach and is simpler to

manage than a fat-client approach.

• A more scalable architecture - as demands

increase, extra servers can be added.

Doç.Dr. Borahan Tümer 64

A 3-tier C/S architecture

Doç.Dr. Borahan Tümer 65

An internet banking system

Database server

Customer
account
database

Web serverClient

Client

Account service
provision

SQL

SQL query

HTTP interaction

Client

Client

Doç.Dr. Borahan Tümer 66

Use of C/S architectures

Architecture Applications

Two-tier C/S

architecture with

thin clients

Legacy system applications where separating application processing and

data manage ment is impractical.

Computationally-intensive applications such as compilers with little or

no data management.

Data-intensive applications (browsing and querying) with little or no

application processing.

Two-tier C/S

architecture with

fat clients

Applications where application processing is provided by off-the-shelf

software (e.g. M icrosoft Excel) on the client.

Applications where computationally-intensive processing of data (e.g.

data visualisation) is required.

Applications with relatively stable end-user functionality used in an

environment with well-established system management.

Three-tier or

multi-tier C/S

architecture

Large scale applications with hundreds or thousands of clients

Applications where both the data and the application are volatile.

Applications where data from multiple sources are integrated.

Doç.Dr. Borahan Tümer 67

Distributed object architectures

• There is no distinction in a distributed object

architectures between clients and servers.

• Each distributable entity is an object that provides

services to other objects and receives services

from other objects.

• Object communication is through a middleware

system called an object request broker.

• However, distributed object architectures are

more complex to design than C/S systems.

Doç.Dr. Borahan Tümer 68

Distributed object architecture

Object request broker

o1 o2 o3 o4

o5 o6

S (o1) S (o2) S (o3) S (o4)

S (o5) S (o6)

Doç.Dr. Borahan Tümer 69

Advantages of distributed object architecture

• It allows the system designer to delay decisions
on where and how services should be provided.

• It is a very open system architecture that allows
new resources to be added to it as required.

• The system is flexible and scaleable.

• It is possible to reconfigure the system
dynamically with objects migrating across the
network as required.

Doç.Dr. Borahan Tümer 70

Uses of distributed object architecture

• As a logical model allowing to structure and

organise the system. In this case, you think about

how to provide application functionality solely in

terms of services and combinations of services.

• As a flexible approach to the implementation of

client-server systems. The logical model of the

system is a client-server model but both clients

and servers are realised as distributed objects

communicating through a common

communication framework.

Doç.Dr. Borahan Tümer 71

A data mining system
Database 1

Database 2

Database 3

Integ rator 1

Integ rator 2

Visualiser

Display

Repor t gen.

Doç.Dr. Borahan Tümer 72

Data mining system

• The logical model of the system is not one of

service provision where there are

distinguished data management services.

• It allows the number of databases that are

accessed to be increased without disrupting

the system.

• It allows new types of relationship to be

mined by adding new integrator objects.

Doç.Dr. Borahan Tümer 73

CORBA

• CORBA: a standard for an Object Request Broker

- middleware to manage communications between

distributed objects.

• Middleware for distributed computing is required

at 2 levels:

– At the logical communication level, the middleware

allows objects on different computers to exchange data

and control information;

– At the component level, the middleware provides a

basis for developing compatible components. CORBA

component standards have been defined.

Doç.Dr. Borahan Tümer 74

CORBA application structure

CORBA services

Domain

facilities

Horizontal C ORBA

facilities

Application

objects

Object request broker

Doç.Dr. Borahan Tümer 75

CORBA Services

• Domain-independent interfaces used by many
distributed object programs.

• Example: a service providing for the discovery of
other available services; almost always necessary
regardless of the application domain.

• The Naming Service -- which allows clients to find
objects based on names; white pages

• The Trading Service -- which allows clients to find
objects based on their properties; yellow pages

Doç.Dr. Borahan Tümer 76

CORBA Common Facilities

• Application Objects: Objects developed for the
specific application.

• Domain Facilities: Standard objects defined for a
specific domain. The domain object standards
cover finance/insurance, e-commerce, health care,
... etc.

• Fundamental Corba Services: provide basic
distributed computing services such as directories
and security management.

Doç.Dr. Borahan Tümer 77

CORBA Common Facilities

• Horizontally-oriented (i.e., common to many
application domain), but unlike object services
they are oriented towards end-user applications.

• Example: Distributed Document Component
Facility (DDCF), a compound document Common
Facility based on OpenDoc.

• DDCF allows for presentation and interchange of
objects based on a document model, for example,
facilitating the linking of a spreadsheet object into
a report document.

Doç.Dr. Borahan Tümer 78

Peer-to-peer architectures

• Peer to peer (p2p) systems are decentralised

systems where computations may be carried out

by any node in the network.

• The overall system is designed to take advantage

of the computational power and storage of a large

number of networked computers.

• Most p2p systems have been personal systems but

there is increasing business use of this technology.

Doç.Dr. Borahan Tümer 79

Examples to P2P architectures

• File sharing systems on PCs.

• Instant messaging systems such as ICQ

to establish a direct communication

between users.

Doç.Dr. Borahan Tümer 80

P2p architectural models

• The logical network architecture

– Decentralised architectures;

– Semi-centralised architectures.

• Application architecture

– The generic organisation of components

making up a p2p application.

Doç.Dr. Borahan Tümer 81

Decentralised p2p architecture

n1

n2 n3

n4

n5

n6

n7

n8

n9 n10 n11

n12

n13

n13

Doç.Dr. Borahan Tümer 82

Semi-centralised p2p architecture

Discovery
server

n1

n2

n3

n4

n5

n6

Doç.Dr. Borahan Tümer 83

Real Time (RT) or Embedded

System Design

Doç.Dr. Borahan Tümer 84

Embedded SW - 1

• Computers are used to control a wide

range of systems including

– simple domestic (in-house) machines,

– games controllers, or

– entire manufacturing plants.

Doç.Dr. Borahan Tümer 85

Embedded SW - 2

• Their software must

– react to events generated by the hardware

and, often,

– issue control signals in response to these

events.

Doç.Dr. Borahan Tümer 86

Embedded SW - 3

• SW in these systems is

– embedded in system hardware (mostly in

ROM), and

– usually responds, in real time, to events

from the system’s environment.

Doç.Dr. Borahan Tümer 87

Responsiveness - 1

• the critical difference between RT or

embedded and other software systems,

such as

– information systems,

– web-based systems or

– personal software systems

is this real time reaction to these events.

Doç.Dr. Borahan Tümer 88

Responsiveness - 2

• For non-RT systems, correctness can be

defined by specifying:

– how system inputs map to corresponding outputs

that should be produced by the system.

Doç.Dr. Borahan Tümer 89

Responsiveness - 3

• For a RT system, correctness depends

both on:

– the response to an input (as for non-RT

systems), and

– the time taken to generate that response.

• A response taking too late may be

ineffective and the system incorrect !!!

Doç.Dr. Borahan Tümer 90

Definition - 1

• A real-time system (RTS) is some SW
where the correct functionality depends
on the extent to which it generates

1. expected outputs from the inputs
presented, and

2. the time at which these results are
produced.

Doç.Dr. Borahan Tümer 91

Definition - 2

• A soft real-time system (soft RTS) is a
system

– whose operation is degraded

– if results are not produced according to the
specified timing requirements.

Doç.Dr. Borahan Tümer 92

Definition - 3

• A hard real-time system (hard RTS) is a
system

– whose operation is incorrect

– if results are not produced according to the
timing specification.

Doç.Dr. Borahan Tümer 93

Characteristics of RT Systems

• generally run continuously and do not terminate.

• Unpredictably interact with the system’s

environment.

• physical limitations may exist that affect RTS

design (e.g military specifications).

• Direct hardware interaction may be necessary

(e.g. Hard reset or other calibration switches).

• Issues of safety and reliability may dominate the

system design (i.e., RTSs are critical systems !!!)

Doç.Dr. Borahan Tümer 94

RT Systems Design

• The design process for RTSs must consider, in detail, the design

and performance of the system hardware (a systems engineering

process).

• Part of the design process may involve deciding which system

capabilities to implement in software and which in hardware.

• Low-level decisions on hardware, support software and system

timing must be considered early in the process.

• These may mean that additional software functionality, such as

battery and power management, has to be included in the system.

Doç.Dr. Borahan Tümer 95

Reactive Systems

• RTSs are often considered to be reactive systems. Given a

stimulus, the system must produce a reaction or response

within a specified time.

• Periodic stimuli. Stimuli which occur at predictable time

intervals (e.g., a temperature sensor may be polled 10 times

per second.)

• Aperiodic stimuli. Stimuli which occur at unpredictable

times (e.g., a system power failure may trigger an

interrupt which must be processed by the system.

Doç.Dr. Borahan Tümer 96

Stimuli and Responses for a Burglar

Alarm System
Stimulus Response

Clear alarms
Switch off all active alarms; switch off

all lights that have been switched on.

Console panic button positive
Initiate alarm; turn on lights around

console; call police.

Power supply failure Call service technician.

Sensor failure Call service technician.

Single sensor positive Initiate alarm; turn on lights around site

of positive sensor.

Two or more sensors positive Initiate alarm; turn on lights around

sites of positive sensors; call police with

location of suspected break-in.

Voltage drop of between 10% and 20% Switch to battery backup; run power

supply test.

Voltage drop of more than 20% Switch to battery backup; initiate alarm;

call police; run power supply test.

Doç.Dr. Borahan Tümer 97

A General Model for an Embedded RTS

Doç.Dr. Borahan Tümer 98

Architectural Considerations

• To meet the timing demands made by different

stimuli/responses, the system architecture must allow

for fast switching between stimulus handlers.

• Timing demands of different stimuli are different so a

simple sequential loop is not usually adequate.

• RTSs are therefore usually designed as cooperating

processes with a real-time executive controlling these

processes.

Doç.Dr. Borahan Tümer 99

Sensor and Actuator Processes

Doç.Dr. Borahan Tümer 100

Architectural Considerations

• Sensor control processes

– Collect information from sensors. May buffer

information collected in response to a sensor

stimulus.

• Data processor

– Carries out processing of collected information

and computes the system response.

• Actuator control processes

– Generate control signals for the actuators.

Design process activities

• Platform selection

• Stimuli/response identification

• Timing analysis

• Process design

• Algorithm design

• Data design

• Process scheduling

04/12/2014 Chapter 21. Real-time Software

Engineering

101

Process coordination

• Processes in a RTS have to be coordinated and share

information.

• Process coordination mechanisms ensure mutual exclusion

to shared resources.

• Only one process is allowed to modify a shared resource at

a given time, other processes should wait.

• When designing the information exchange between

processes, you have to take into account the fact that these

processes may be running at different speeds.

04/12/2014 Chapter 21. Real-time Software

Engineering

102

Mutual exclusion

• Producer (sensor control) processes collect data and
add it to the buffer. Consumer (actuator control)
processes take data from the buffer and make
elements available.

• Producer and consumer processes must be
mutually excluded from accessing the same element.

• The buffer must stop producer processes
adding information to a full buffer and consumer
processes trying to take information from an empty
buffer.

04/12/2014 Chapter 21. Real-time Software

Engineering

103

Producer/consumer processes

sharing a circular buffer

04/12/2014 Chapter 21. Real-time Software

Engineering

104

Real-time system modelling

• The effect of a stimulus in a RTS may trigger

a transition from one state to another.

• State models are therefore often used to

describe embedded RTSs.

• UML state diagrams may be used to show

the states and state transitions in a RTS.

04/12/2014 Chapter 21. Real-time Software

Engineering

105

State machine model of a petrol

(gas) pump

04/12/2014 Chapter 21. Real-time Software

Engineering

106

Sequence of actions in real-time

pump control system

• The buyer inserts a credit card into a card reader built into

the pump.

• Removal of the card triggers a transition to a validating

state where the card is validated.

• If the card is valid, the system initializes the pump and,

when the fuel hose is removed from its holster, transitions

to the delivering state.

• After the fuel delivery is complete and the hose replaced in

its holster, the system moves to a paying state.

• After payment, the pump software returns to the waiting

state

04/12/2014 Chapter 21. Real-time Software

Engineering

107

Real-time programming

• Programming languages for RTS development have to include

facilities to access system hardware. This makes the prediction of

the timing of particular operations possible in these languages.

• Systems-level languages, such as C allowing efficient code

generation are widely used in preference to languages like Java.

• There is a performance overhead in object-oriented systems

because extra code is required to mediate access to attributes

and handle calls to operations. The loss of performance may

make it impossible to meet real-time deadlines.

04/12/2014 Chapter 21. Real-time Software

Engineering

108

Supplementary

Slides

04/12/2014 Chapter 21. Real-time Software

Engineering

109

Load/Processing Patterns versus

C/S Settings (Performance v.p.)

04/12/2014 Chapter 21. Real-time Software

Engineering

110

Application Layer (AL)

User Interface Layer (UIL)

Data Management Layer (DML)

L/M/H Load/Traffic

L/M/I

processing

L/M/I

processing

L/M/I

processing

UIL & AL (Fat Client)

DML & AL (Thin Client)

L: Light; M: Medium; H: Heavy; I: Intensive

L/M/H Load/Traffic

Client computer

Server computer

Example Load/Processing

Patterns for Fat Client Arch.

04/12/2014 Chapter 21. Real-time Software

Engineering

111

Application Layer (AL)

User Interface Layer (UIL)

Data Management Layer (AL)

Medium/Heavy Traffic

Light

processing

Intensive

processing

Intensive

DB ops.

UIL & AL

DML

L: Light; M: Medium; H: Heavy; I: Intensive

Medium Traffic

Fat Client

Medium

Traffic

Criticality/Vulnerability Patterns

versus C/S Settings (Security vp).

04/12/2014 Chapter 21. Real-time Software

Engineering

112

Application Layer (AL)

User Interface Layer (UIL)

Data Management Layer (AL)

V/I Data on network

C/U Assets

C/U Assets

C/U Assets

UIL & AL (Fat Client)

DML & AL (Thin Client)

C: Critical; U: Uncritical; V: Vulnerable; I: Invulnerable

V/I Data on network

Example Criticality/Vulnerability

Patterns vs. for Thin Client Arch.

04/12/2014 Chapter 21. Real-time Software

Engineering

113

Application Layer (AL)

User Interface Layer (UIL)

Data Management Layer (AL)

Invulnerable data on net.

Uncritical

Assets

Uncritical

Assets

Critical

Assets

UIL

DML & AL

C: Critical; U: Uncritical; V: Vulnerable; I: Invulnerable

Vulnerable data on net.

Thin Client

Invulnerable

data on net.

