
©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1

Verification and Validation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 2

Objectives

⚫ To introduce software verification and validation and

to discuss the distinction between them

⚫ To describe the program inspection process and its

role in V & V

⚫ To explain static analysis as a verification technique

⚫ To describe the Cleanroom software development

process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 3

Topics covered

⚫ Verification and validation planning

⚫ Software inspections

⚫ Automated static analysis

⚫ Cleanroom software development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 4

⚫ Verification:

"Are we building the product right?”

⚫ The software should conform to its

specification.

⚫ Validation:

"Are we building the right product?”

⚫ The software should do what the user really

requires.

Verification vs validation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 5

⚫ Is a whole life-cycle process - V & V must be

applied at each stage in the software

process.

⚫ Has two principal objectives

• The discovery of defects in a system;

• The assessment of whether or not the system is

useful and useable in an operational situation.

The V & V process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 6

The V-model of development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 7

V& V goals

⚫ Verification and validation should establish

confidence that the software is fit for

purpose.

⚫ This does NOT mean completely free of

defects.

⚫ Rather, it must be good enough for its

intended use and the type of use will

determine the degree of confidence that is

needed.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 8

V & V confidence

⚫ Depends on system’s purpose, user
expectations and marketing environment
• Software function

• The level of confidence depends on how critical the
software is to an organisation.

• User expectations
• Users may have low expectations of certain kinds of

software.

• Marketing environment
• Getting a product to market early may be more

important than finding defects in the program.

• A customer willing to pay a lower price possibly means
tolerant to more software faults

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 9

⚫ Software inspections. Concerned with analysis of

the static system representation to discover

problems (static verification)

• May be supplement by tool-based document and code

analysis

⚫ Software testing. Concerned with exercising and

observing product behaviour (dynamic verification)

• The system is executed with test data and its operational

behaviour is observed

Static and dynamic verification

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 10

Static and dynamic V&V

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 11

⚫ Can reveal the presence of errors NOT their

absence.

⚫ The only validation technique for non-

functional requirements as the software has

to be executed to see how it behaves.

⚫ Should be used in conjunction with static

verification to provide full V&V coverage.

Program testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 12

⚫ Defect testing

• Tests designed to discover system defects.

• A successful defect test is one which reveals the

presence of defects in a system.

• Covered in Chapter 23

⚫ Validation testing

• Intended to show that the software meets its

requirements.

• A successful test is one that shows that a requirement

has been properly implemented.

Types of testing

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 13

⚫ Defect testing and debugging are distinct

processes.

⚫ Verification and validation is concerned with

establishing the existence of defects in a program.

⚫ Debugging is concerned with locating and

repairing these errors.

⚫ Debugging involves formulating a hypothesis

about program behaviour then testing these

hypotheses to find the system error.

Testing and debugging

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 14

The debugging process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 15

⚫ Careful planning is required to get the most
out of testing and inspection processes.

⚫ Planning should start early in the
development process. (V Model
Development !!!)

⚫ The plan should identify the balance
between static verification and testing.

⚫ Test planning is about defining standards for
the testing process rather than describing
product tests.

V & V planning

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 16

The V-model of development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 17

The structure of a software test plan

⚫ The testing process.

⚫ Requirements traceability.

⚫ Tested items.

⚫ Testing schedule.

⚫ Test recording procedures.

⚫ Hardware and software requirements.

⚫ Constraints.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 18

The software test plan

The testing process

A description of the major phases of the testing process. These might be

as described earlier in this chapter.

Requirements traceability

Users are most interested in the system meeting its requirements and

testing should be planned so that all requirements are individually tested.

Tested items

The products of the software process that are to be tested should be

specified.

Testing schedule

An overall testing schedule and resource allocation for this schedule.

This, obv iously, is linked to the more general project development

schedule.

Test recording procedures

It is not enough simply to run tests. The results of the tests must be

systematically recorded. It must be possible to audit the testing process

to check that it been carried out correctly.

Hardware and software requirements

This section should set out software tools required and estimated

hardware utilisation.

Constraints

Constraints affecting the testing process such as staf f shortages should

be anticipated in this section.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 19

Software inspections

⚫ These involve people examining the source

representation with the aim of discovering anomalies

and defects.

⚫ Inspections do not require execution of a system so

may be used before implementation.

⚫ They may be applied to any representation of the

system (requirements, design,configuration data,

test data, etc.).

⚫ They have been shown to be an effective technique

for discovering program errors.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 20

Inspection success

⚫ Many different defects may be discovered in

a single inspection. In testing, one defect

may mask another so several executions are

required.

⚫ The reuse domain and programming

knowledge are essential so reviewers are

likely to have seen the types of error that

commonly arise.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 21

Inspections and testing

⚫ Inspections and testing are complementary and not

opposing verification techniques.

⚫ Both should be used during the V & V process.

⚫ Inspections can check conformance with a

specification but not conformance with the

customer’s real requirements.

⚫ Inspections cannot check non-functional

characteristics such as performance, usability, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 22

Program inspections

⚫ Formalised approach to document reviews

⚫ Intended explicitly for defect detection (not

correction).

⚫ Defects may be logical errors, anomalies in

the code that might indicate an erroneous

condition (e.g. an uninitialised variable) or

non-compliance with standards.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 23

Inspection pre-conditions

⚫ A precise specification must be available.

⚫ Team members must be familiar with the

organisation standards.

⚫ Syntactically correct code or other system

representations must be available.

⚫ An error checklist should be prepared.

⚫ Management must accept that inspection will

increase costs early in the software process.

⚫ Management should not use inspections for staff

appraisal ie finding out who makes mistakes.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 24

The inspection process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 25

Inspection procedure

⚫ System overview presented to inspection
team.

⚫ Code and associated documents are
distributed to inspection team in advance.

⚫ Inspection takes place and discovered errors
are noted.

⚫ Modifications are made to repair discovered
errors.

⚫ Re-inspection may or may not be required.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 26

Inspection roles

Author or owner The programmer or designer responsible fo r

producing the program or document. Responsible

for fixing defects discovered during the inspection

process.

Inspector Finds errors, omissions and inconsistencies in

programs and documents. May also identify

broader issues that are outside the scope of the

inspection team.

Reader Presents the code or document at an inspection

meeting.

Scribe Records the results of the inspection meeting.

Chairman or moderator Manages the process and facilitates the inspection.

Reports process results to the Chief moderator.

Chief moderator Responsible for inspection process improvements,

checklist updating, standards development etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 27

Inspection checklists

⚫ Checklist of common errors should be used to

drive the inspection.

⚫ Error checklists are programming language

dependent and reflect the characteristic errors that

are likely to arise in the language.

⚫ In general, the 'weaker' the type checking, the larger

the checklist.

⚫ Examples: Initialisation, Constant naming, loop

termination, array bounds, etc.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 28

Inspection checks 1

Data faults Are all program variables initialised before their values are

used?

Have all constants been named?

Should the upper bound of arrays be equal to the size of the

array or Size -1?

If character strings are used, is a de limiter explicitly

assigned?

Is there any possibility of buffer overflow?

Control faults For each conditional statement, is the condition correct?

Is each loop certain to terminate?

Are compound statements correctly bracketed?

In case statements, are all possible cases accounted for?

If a break is required after each case in case statements, has

it been included?

Input/output faults Are all input variables used?

Are all output variables assigned a value before they are

output?

Can unexpected inputs cause corruption?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 29

Inspection checks 2

Interface faults Do all function and method calls have the correct number

of parameters?

Do fo rmal and actual parameter types match?

Are the parameters in the right order?

If components access shared memory, do they have the

same model of the shared memory structure?

Storage

management faults

If a linked structure is modified, have all links been

correctly reassigned?

If dynamic storage is used, has space been allocated

correctly?

Is space explicitly de-allocated after it is no longer

required?

Exception

management faults

Have all possible error conditions been taken into account?

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 30

Inspection rate

⚫ 500 statements/hour during overview.

⚫ 125 source statement/hour during individual

preparation.

⚫ 90-125 statements/hour can be inspected.

⚫ Inspection is therefore an expensive

process.

⚫ Inspecting 500 lines costs about 40

man/hours effort - about £2800 at UK rates.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 31

Automated static analysis

⚫ Static analysers are software tools for source

text processing.

⚫ They parse the program text and try to

discover potentially erroneous conditions and

bring these to the attention of the V & V

team.

⚫ They are very effective as an aid to

inspections - they are a supplement to but

not a replacement for inspections.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 32

Static analysis checks

Fault class Static analysis check

Data faults Variables used befo re initialisation

Variables declared but never used

Variables assigned twice but never used between

assignments

Possible array bound violations

Undeclared variables

Control faults Unreachable code

Unconditional branches into loops

Input/output faults Variables output twice with no intervening

assignment

Interface faults Parameter type mismatches

Parameter number mismatches

Non-usage of the results of functions

Uncalled functions and procedures

Storage management

faults

Unassigned pointers

Pointer arithmetic

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 33

Stages of static analysis

⚫ Control flow analysis. Checks for loops with

multiple exit or entry points, finds unreachable

code, etc.

⚫ Data use analysis. Detects uninitialised

variables, variables written twice without an

intervening assignment, variables which are

declared but never used, etc.

⚫ Interface analysis. Checks the consistency of

routine and procedure declarations and their

use

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 34

Stages of static analysis

⚫ Information flow analysis. Identifies the

dependencies of output variables. Does not

detect anomalies itself but highlights

information for code inspection or review

⚫ Path analysis. Identifies paths through the

program and sets out the statements

executed in that path. Again, potentially

useful in the review process

⚫ Both these stages generate vast amounts of

information. They must be used with care.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 35

LINT static analysis

138% more lint_ex.c

#include <stdio.h>

printarray (Anarray)

 int Anarray ;

{ printf(“%d”,Anarray); }

main ()

{

 int Anarray [5]; int i; char c;

 printarray (Anarray, i, c);

 printarray (Anarray) ;

}

139% cc lint_ex.c

140% lint lint_ex.c

lint_ex.c(10): warning: c may be used before set

lint_ex.c(10): warning: i may be used before set

printarray: variable # of args. lint_ex.c(4) :: lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(10)

printarray, arg. 1 used inconsistently lint_ex.c(4) :: lint_ex.c(11)

printf returns value which is always ignored

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 36

Use of static analysis

⚫ Particularly valuable when a language such

as C is used which has weak typing and

hence many errors are undetected by the

compiler,

⚫ Less cost-effective for languages like Java

that have strong type checking and can

therefore detect many errors during

compilation.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 37

Verification and formal methods

⚫ Formal methods can be used when a

mathematical specification of the system is

produced.

⚫ They are the ultimate static verification

technique.

⚫ They involve detailed mathematical analysis

of the specification and may develop formal

arguments that a program conforms to its

mathematical specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 38

Arguments for formal methods

⚫ Producing a mathematical specification

requires a detailed analysis of the

requirements and this is likely to uncover

errors.

⚫ They can detect implementation errors

before testing when the program is analysed

alongside the specification.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 39

Arguments against formal methods

⚫ Require specialised notations that cannot be

understood by domain experts.

⚫ Very expensive to develop a specification

and even more expensive to show that a

program meets that specification.

⚫ It may be possible to reach the same level of

confidence in a program more cheaply using

other V & V techniques.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 40

⚫ The name is derived from the 'Cleanroom'

process in semiconductor fabrication. The

philosophy is defect avoidance rather than

defect removal.

⚫ This software development process is based on:

• Incremental development;

• Formal specification;

• Static verification using correctness arguments;

• Statistical testing to determine program reliability.

Cleanroom software development

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 41

The Cleanroom process

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 42

Cleanroom process characteristics

⚫ Formal specification using a state transition
model.

⚫ Incremental development where the
customer prioritises increments.

⚫ Structured programming - limited control and
abstraction constructs are used in the
program.

⚫ Static verification using rigorous inspections.

⚫ Statistical testing of the system (covered in
Ch. 24).

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 43

Formal specification and inspections

⚫ The state based model is a system

specification and the inspection process

checks the program against this model.

⚫ The programming approach is defined so

that the correspondence between the model

and the system is clear.

⚫ Mathematical arguments (not proofs) are

used to increase confidence in the inspection

process.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 44

⚫ Specification team. Responsible for developing

and maintaining the system specification.

⚫ Development team. Responsible for

developing and verifying the software. The

software is NOT executed or even compiled

during this process.

⚫ Certification team. Responsible for developing

a set of statistical tests to exercise the software

after development. Reliability growth models

used to determine when reliability is acceptable.

Cleanroom process teams

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 45

⚫ The results of using the Cleanroom process have
been very impressive with few discovered faults in
delivered systems.

⚫ Independent assessment shows that the
process is no more expensive than other
approaches.

⚫ There were fewer errors than in a 'traditional'
development process.

⚫ However, the process is not widely used. It is not
clear how this approach can be transferred
to an environment with less skilled or less
motivated software engineers.

Cleanroom process evaluation

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 46

Key points

⚫ Verification and validation are not the same

thing. Verification shows conformance with

specification; validation shows that the

program meets the customer’s needs.

⚫ Test plans should be drawn up to guide the

testing process.

⚫ Static verification techniques involve

examination and analysis of the program for

error detection.

©Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 47

Key points

⚫ Program inspections are very effective in
discovering errors.

⚫ Program code in inspections is systematically
checked by a small team to locate software faults.

⚫ Static analysis tools can discover program
anomalies which may be an indication of faults in the
code.

⚫ The Cleanroom development process depends on
incremental development, static verification and
statistical testing.

