
WHITE BOX
TESTING

 Week 10

Doç.Dr. Borahan Tümer 2

0 + 1 + 2 + … + i, i ∈ [0, 100]:
• read(i);
• if ((i < 0) || (i > 100))

– error();

• else
– { sum=0; x=0;
– while (x < i)

• { x=x+1;
• if (i==10) sum=1; else sum=sum+x; }

– print(sum); }

White Box Testing

Doç.Dr. Borahan Tümer 3

Black box test cases

• i = -1 OK
• i = 0 OK
• i = 1 OK
• i = 50 OK
• i = 99 OK
• i = 100 OK
• i = 101 OK
• However:
• i = 10  FAILURE! (sum=1)

Doç.Dr. Borahan Tümer 4

White-box testing principles

• details of source code analyzed
• design of test cases on the basis of code structure
• execution path: a certain sequence of program

statements, executed when starting the program with a
certain input (test case)

• different test cases => different execution paths
• control-flow testing: based on the execution order of

the statements
• data-flow testing: based on the processing of the data

during execution

Doç.Dr. Borahan Tümer 5

White-box testing principles

• (control) flow graph: abstraction of the program’s control
flow, in graphical form

• data-flow graph: abstraction of the program’s data flow (for
a certain input variable), in graphical form; usually
extension of control-flow graph

• control-flow graph, data-flow graph automatically produced

• test cases designed from the graphs

• coverage: the relative amount of statements (and others)
executed during testing, computed from control-flow/data-
flow graph

Doç.Dr. Borahan Tümer 6

Flow graph structures

s1

s2

sn

Statements sequence
s1; s2; ...; sn ;

or

s1

s2

...
sn

cnd

s2 s1

yes no

Conditional (if) statement:
if cnd s1 else s2.

Doç.Dr. Borahan Tümer 7

Flow graph structures

While-do Loop Statement
While cnd do s;

For Loop statement: (Iteration)
For (s1; cnd;s2) do s;

Do-while Loop Statement
Do s while cnd;

cnd

s

yes

no

cnd
yes

no

s

cnd
yes

no

s

s1

s2

enu

s1

s2

sn

...

enu1

enu2

enun

Switch-case statement: (multiple decision)
Switch (enu) { case enu1: s1; case enu2: s2; ...;}

Doç.Dr. Borahan Tümer 8

Control-flow testing

• Coverage: how extensively the program has been (or will
be) tested with a given set of test cases

• the (relative) number of nodes (statements) in the flow
graph executed during testing

• the (relative) number of edges (control transitions) in the
flow graph traversed during testing

• Statement coverage: each node (statement) has to be
executed at least once

• Branch coverage: each edge (transition) has to be
traversed at least once

• a large number of variations of different coverage power

• special target: loop testing

Doç.Dr. Borahan Tümer 9

Execution Path

• a sequence of nodes and connecting edges
from the unique begin-node of the flow graph
to the unique end-node of the graph.

• A certain instance of the relevant program

execution

• May contain the same node several times:
loops.

Doç.Dr. Borahan Tümer 10

White-box (structural) testing

2 10 B E

2 6 B E
1 3 4 5 7

1

3

4 5

6 7 8 9

11
12

13

8 9 11 10

Doç.Dr. Borahan Tümer 11

Statement coverage criterion

• A set P of execution paths satisfies the statement coverage
criterion if and only if for all nodes n in the flow graph,
there is at least one path p in P such that p contains the
node n ≡ Each statement of the program is executed at
least once during testing, by some test case.
– criterion met => complete (100%) statement coverage

– criterion not met => partial statement coverage (< 100%)

– begin-node, end-node, junctions excluded

– complete coverage surprisingly hard to achieve in practice

– “dead code” / conditional compilation

Doç.Dr. Borahan Tümer 12

Branch coverage criterion

• A set P of execution paths satisfies the branch coverage
criterion if and only if for all edges e in the flow graph,
there is at least one path p in P such that p contains the
edge e ≡ Each control-flow branch / decision (true / yes,
false / no) is taken at least once during testing, by some test
case.
– criterion met => complete (100%) branch coverage
– complete branch coverage => complete statement coverage

(branch coverage subsumes statement coverage)
– usually more tests are needed for complete branch coverage than

needed for complete statement coverage
– branch coverage is more extensive: the criterion is stronger than

the statement coverage criterion
– criterion not met => partial branch coverage (< 100%)

Doç.Dr. Borahan Tümer 13

i<0||
i>100

read(i)

error Sum=0;x=0

yes

no

x<i
yes no

x++

Print(sum) i==10

sum+=x
sum=1

*red-lined statement is not executed!

Test cases:
i=-1; i=0; i=1;
i=50; i=99;
i=100; i=101

Statement

Coverage:

9/10=90%

Branch

coverage:

13/15=87%
no yes

Doç.Dr. Borahan Tümer 14

i<0||
i>100

read(i)

error Sum=0;x=0

yes

no

x<i
yes no

x++

Print(sum) i==10

sum+=x
sum=1

Test cases:
i=-1; i=1; i=10;

Statement

Coverage:

10/10=100%

Branch

coverage:

15/15=100%
yes no

Doç.Dr. Borahan Tümer 15

Statement coverage ≠ Branch

coverage

• read(i);

• if ((i < 0) || (i > 100)) error() else

• { sum=0; x=0;

– while (x < i)

– { x=x+1; if (i <> 10) sum=sum+x; }

– print(sum);

• }

Doç.Dr. Borahan Tümer 16

i<0||
i>100

read(i)

error Sum=0;x=0

yes

no

x<i
yes no

x++

Print(sum) i!=10

sum+=x

Test cases:
i=10;

Sum=0; Failure!!!

no yes

Doç.Dr. Borahan Tümer 17

i<0||
i>100

read(i)

error Sum=0;x=0

yes

no

x<i
yes no

x++

Print(sum) i!=10

sum+=x

Test cases:
i=-1; i=1;

13/14= 94% Branch coverage

no yes

Doç.Dr. Borahan Tümer 18

Condition coverage criterion

• A set P of execution paths satisfies the condition
coverage criterion if and only if for every control
node in the flow graph consisting of atomic
predicates (c1, c2, …, cn), ci yields true (yes) when
evaluated within a path p1 in P and ci yields false
(no) when evaluated within a path p2 in P, i = 1,
2,…, n.
– internal structure of composite control predicates taken

into account: (i < 0) || (i > 100)
– each predicate (“i<0,” “i>100”) tested separately for both

 “true” and “false.”

Doç.Dr. Borahan Tümer 19

Multicondition coverage criterion

• A set P of execution paths satisfies the
multicondition coverage criterion if and only if for
every control node in the flow graph consisting of
atomic predicates (c1, c2, …, cn), each possible
combination of their truth values (true/yes, false/no)
is evaluated within at least one path p in P.
– stronger requirement than for condition coverage all the

combinations
– for 2 atomic predicates: (true,true), (true,false),

(false,true), (false,false)
– for 3 atomic predicates: 8 combinations, etc….

Doç.Dr. Borahan Tümer 20

Path coverage criterion

• Path coverage the strongest criterion

– usually impossible to reach

Doç.Dr. Borahan Tümer 21

Independent path coverage criterion.

• Independent path coverage stronger than
branch coverage

– used also in complexity analysis of programs

Doç.Dr. Borahan Tümer 22

Cyclomatic Complexity

• Cyclomatic complexity (CC) of a piece of
code is the number of linearly independent
(LI) paths through the piece of code.

• E.g. For a piece of code with no decision
structures, CC=1, meaning there is a single
LI path.

Doç.Dr. Borahan Tümer 23

Cyclomatic Complexity

• Given that the source code is represented as
a directed graph (i.e., a control-flow graph),
CC can be formulated as

– where

• E is the number of edges and

• N is the number of nodes

– of the graph.

2 NECC

Doç.Dr. Borahan Tümer 24

Cyclomatic Complexity

3 7 B E
2 4 5 6 8

9 10 12 11

1 13

E=14;
N=13;
CC=E-N+2=3
CC=3

Doç.Dr. Borahan Tümer 25

Cyclomatic Complexity

3 11 B E

1

4

5 6

7 8 9 10

12
13

14

E=16;
N=15;
CC=E-N+2=3
CC=3

2
15

Independent paths

1 2 3 8 9 10 11 7 15
1 2 3 4 5 6 7 15
1 2 3 8 9 10 11 12 13 14 8 9 10 11 7 15

Doç.Dr. Borahan Tümer 26

An example for coverage
comparison

X!=0
&&

Z>=0

yes

no

y=z/x

if ((x != 0) && (z >= 0)) y=z/x ;

Doç.Dr. Borahan Tümer 27

Comparison of coverages

• Complete statement coverage: (x = 1, z = 0) [1 test]

• Complete branch coverage: (x = 1, z = 0) for the yes branch,
(x = 1, z = -1) for the no-branch [2 tests]

• Complete condition coverage: (x = 0, z = 0) for combination
(false, true), (x = 1, z = -1) for combination (true, false)
(yes-branch unexplored !) [2 tests]

• Complete multicondition coverage: (x = 1, z = 0) for
combination (true, true), (x = 1, z = -1) for combination
(true, false), (x = 0, z = 0) for the combination (false, true),
(x = 0, z = -1) for the combination (false, false) [4 tests]

Doç.Dr. Borahan Tümer 28

Selection of test cases

• A certain code coverage criterion and percentage (e.g. 100% branch
coverage) has been chosen  one has to design test cases to reach the
criterion.

1) Construct a flow graph for the program (with a white-box tool).
2) Choose the execution paths that satisfy the criterion.
3) For each execution path, design a test case (program input-output) that

activates a traversal of the path.
4) Execute the tests (with the white-box tool that calculates the

coverage).
5) If the required coverage has not been reached, return to step 3 to

design additional test cases for those execution paths that have not
been traversed yet during testing.

Doç.Dr. Borahan Tümer 29

Path sensitization

• The process of designing a test case for a particular
execution path
– In general, path sensitization is undecidable: there is no algorithm

that can find a suitable test case for each possible path.
– Symbolic execution and equation solving tools succeed in some

cases.
– A heuristic: Begin with the control conditions of a branch at the

end of the path. Select such variable values that will satisfy these
conditions. Repeat this analysis for each prior branch in the path
until you reach the entry node of the flow graph. Use the selected
values of the input variables as the test case for the path.

– There may be infeasible paths that cannot be executed with any
input, caused by short-circuit evaluation, contradictory or mutually
exclusive control conditions, redundant control predicates, or dead
code

Doç.Dr. Borahan Tümer 30

Path Sensitization.. Cont’d

• the crucial points in a flow-graph are those where the
execution diverges, that is, the control predicates of
branches

• one has to find the input values such that when executing
the program with the input, control branches into the
desired direction and the predicate p obtains the
corresponding value (true / false) or value combination
– note 1: p may depend on the input just indirectly

– note 2: it may not be possible to obtain all the required truth values
for p: ((x == 1) && (x==2))

p

Doç.Dr. Borahan Tümer 31

Loop Testing

• Testing of simple loops: 0 iterations (no looping), minimum number of
iterations (possibly 0), minimum+1 iterations, typical number of iterations,
maximum-1 iterations, maximum number of iterations, maximum+1 iterations
(should not be feasible)

– note: loops with fixed iteration control may not be executable (testable) with all the
suggested iteration patterns

 for (j=0; j < 999; ++j) { … }

• Testing of serial loops:
– if there is no data-flow relationship between the loops, test them both as simple

loops
– if there is a data-flow relationship between the loops, test them as if the loops were

nested

• Testing of unstructured (”spaghetti”) loops: test the loop with an equivalent
simple / serial / nested loop as model

– spaghetti code should be rewritten into structured form, for testing as well as for
maintenance purposes

Doç.Dr. Borahan Tümer 32

Loop Testing ...2

• Testing of nested loops:
– There would be too many tests when repeating all the inner loop tests

every time an outer loop is iterated, so:
1) The innermost loop is tested first using the simple-loop strategy. The

other loops are iterated their minimum number of times.
2) Set up the looping conditions of the previously tested loop such that it will

be iterated a suitable number of times (minimum, typical, or maximum).
3) Proceed to testing the outer loop which is nesting the previously tested

one, using the simple-loop strategy. (The outer loops are iterated their
minimum number of times, the inner loops are iterated their suitable
number of times.)

4) Repeat the steps 2 and 3, until the outermost loop has been tested.
5) Set up a test that will iterate all loops their maximum number of times.

Doç.Dr. Borahan Tümer 33

References

[1] Myers, The Art of Software Testing, 1978

