
SOFTWARE

TESTING

Week 6

Doç.Dr. Borahan Tümer 2

Software Quality

• Standard Glossary of SW Engineering

Terminology [IEEE610.12]:

Quality: (1) The degree to which a system,

component, or process meets specified

requirements. (2) The degree to which a

system, component, or process meets

customer or user needs or expectations.

Doç.Dr. Borahan Tümer 3

• Software Quality: Conformance to

– explicitly stated functional and non-functional

(performance, etc) requirements,

– explicitly documented development standards, and

– implicit characteristics that are expected of all

professionally developed software.

Software Quality

Doç.Dr. Borahan Tümer 4

Dimensions of SW Quality

Dimension: Adaptability to new environments

Sys. Prop.: Portability, Reusability, Interoperability

Dimension: Ability to undergo change

Sys. Prop.: Maintainability, Testability,

Flexibility

Dimension: Operational Characteristics

Sys. Prop.: Correctness, Efficiency,

Reliability, Integrity, Usability

Doç.Dr. Borahan Tümer 5

System Properties

• Portability: The effort required to transfer the system from
one hardware and/or software environment to another.

• Reusability: The extent to which the system (or part of it)
can be reused in other applications.

• Interoperability: The effort required to couple the system
to another.

• Maintainability: The effort required to introduce a
modification (usually a correction) into the system.

• Flexibility: The effort required to modify or customize the
system in operation.

• Testability: The effort required to test the system to ensure
that it performs its intended function.

Doç.Dr. Borahan Tümer 6

System Properties

• Correctness: The extent to which the system satisfies its
specification and fulfills the users’ needs.

• Reliability: The extent to which the system can be
expected to perform its intended function with required
precision and without failure.

• Efficiency: The amount of computing resources (space,
time) required by the system to perform its function.

• Integrity: The extent to which access to the system or its
data by unauthorized persons can be controlled.

• Usability: The effort required to learn, operate, prepare
input and interpret output of the system.

Doç.Dr. Borahan Tümer 7

Software Quality

• Standard Glossary of SW Engineering

Terminology [IEEE610.12]:
Quality assurance: (1) A planned and systematic

pattern of all actions necessary to provide adequate

confidence that an item or product conforms to

established technical requirements. (2) A set of

activities designed to evaluate the process by which

products are developed or manufactured.

Doç.Dr. Borahan Tümer 8

Quality Assurance

• application of sound technical methods and tools

• formal technical reviews and inspections

• software testing

• enforcement of standards

• documentation

• control of change

• extensive measurement

• record keeping and reporting of the process

Doç.Dr. Borahan Tümer 9

Verification & Validation

User needs

Specification

SW

Validation: Are we

building the right product?

Verification: Are we

building the product right?

Doç.Dr. Borahan Tümer 10

Principles of SW Testing

1. Testing is a process of executing a program with the intent
of finding a defect. So, there must be some program code to
be executed.

2. A good test case is one that has a high probability of finding
an as yet undiscovered defect. So, the test cases (the
program input) should be selected systematically and with
care, both for correct and incorrect behavior.

3. A successful test is one that uncovers an as yet undiscovered
defect. So, testing is psychologically destructive since it tries
to demolish the software that has been constructed.

Doç.Dr. Borahan Tümer 11

Principles of SW Testing

4. Testing cannot show the absence of defects, it can
only show that they are present (Dijkstra).
[Testing is not formal verification.]

5. Testing is quite an ineffective method of quality
assurance. [Though, usually the most applicable
one.]

6. Successful testing shall be followed by a separate
debugging phase.

7. Testing is also by itself a process that must be
systematically managed (and assisted with special
testing tools).

Doç.Dr. Borahan Tümer 12

Jargon of Testing

• Error (yanlışlık): A mistake (human action) made by a
software developer. It might be a total misinterpretation of
user requirements, or a simple typograhpical misprint. An
error introduces a defect into the software code.

• Defect, fault, bug (arıza, sorun): A difference between
the incorrect program and its correct version; a coding
error. A defect in the software, if encountered during
execution, may cause a failure.

• Failure (başarısızlık): An externally observable deviation
of the functional software from its specification; an
incorrect result of computation.

Doç.Dr. Borahan Tümer 13

Facts of Testing

• V&V engineer must define “correct” and “incorrect.”

• There must be a specification against which to check the
results of testing.

• Full automation of testing is impossible:

– in theory, the total behavior of a program is undecidable
(halting, failures);

– in practice, exhaustive testing is intractable;

– tracking of (technical) failures to (human) errors is
impossible;

– we can never be sure that the testing tool (a program) works
correctly.

Doç.Dr. Borahan Tümer 14

Why testing? Why systematic testing?

• According to several empirical studies, a

(professionally produced commercial) SW

system...

– ...contains 3 – 30 defects per 1000 lines of code

– ..., the average debugging effort is 12 hours of

working time per defect

– ..., maintenance is about half of software

development costs, mostly in error removal

Doç.Dr. Borahan Tümer 15

An Example

• The program reads three integer values. The three values are interpreted as

representing the lengths of the sides of a triangle. The program prints a

message that states whether the triangle is scalene, isosceles, or equilateral.

Write test cases (specific input values) that you feel would adequately test this

program.

• In a valid triangle, no side may have a length of zero or less, and each side

must be shorter than the sum of all sides divided by 2.

• Equilateral (eşkenar) triangle: all sides are of equal length.

• Isosceles (ikizkenar) triangle: two sides are of equal length.

• Scalene (çeşitkenar) triangle: all sides are of unequal length.

Doç.Dr. Borahan Tümer 16

Example... cont’d

• In mathematics, the number of integer values is infinite.
However, computers have finite space which limits the
number of values that can be processed. Let us assume that
our triangle program is running in a tiny computer with
10.000 as the largest integer value. Then there are 104 *
104 * 104 = 1012 possible length combinations of triangle
sides (including the invalid ones).

• Suppose you are a very fast tester, running and checking
1000 tests per second, 24 hours per day, 365 days per year.

• Then the exhaustive testing effort (testing each possible
length combination) would take over 31.7 years.

Doç.Dr. Borahan Tümer 17

Some of Possible Test Cases [1]

1. (5, 3, 4): scalene

2. (3, 3, 4): isoscele

3. (3, 3, 3): equilateral

4. (50, 50, 25): isoscele

5. (25, 50, 50): isoscele (permutation)

6. (50, 25, 50): isoscele (permutation)

7. (10, 10, 0): invalid (zero)

8. (3, 3, -4): invalid (negative)

9. (5, 5, 10): invalid (too long)

10. (10, 5, 5): invalid (too long, perm.)

11. (5, 10, 5): invalid (too long, perm.)

12. (8, 2, 5): invalid (Too long)

13. (2, 5, 8): invalid (Too long, perm.)

14. (2, 8, 5): invalid (Too long, perm.)

15. (8, 5, 2): invalid (Too long, perm.)

16. (5, 8, 2): invalid (Too long, perm.)

17. (5, 2, 8): invalid (Too long, perm.)

18. (0, 0, 0): invalid (all zeros)

19. (@, 4, 5): invalid (non-integer)

20. (3, $, 5): invalid (non-integer)

21. (3, 4, %): invalid (non-integer)

22. (, 4, 5): invalid (missing input)

23. (3,,5): invalid (missing input)

24. (3, 4,): invalid (missing input)

Doç.Dr. Borahan Tümer 18

Some Remarks

• most test cases represent invalid inputs

• each valid triangle type is tested at least once

• permutations are used to check that the order of
the input values does not affect the result

• boundary input values are used (length of exactly
zero, length of exactly the sum of all sides divided
by 2)

• input values of wrong type (non-integers) are used

• the number of test cases is rather small with
respect to the number of all possible inputs

Doç.Dr. Borahan Tümer 19

The V-Model of SW Development

System

specifica tion

S ystem

design

Detailed

design

Module and

unit code

and test

Sub-system

integ ration

test plan

System

integ ration

test plan

Acceptance

test plan

Service
Acceptance

test

S ystem

integ ration test

Sub-system

integ ration test

Requir ements

specifica tion

Specification

Testing Phase

T
es

t
P

la
n
n

in
g

Doç.Dr. Borahan Tümer 20

Module (unit) testing:

• each independent unit tested separately

• level: source code

• need for simulated execution environment

Doç.Dr. Borahan Tümer 21

Integration testing:

• modules grouped into subsystems for testing

• “big bang:” all the modules tested as a whole

• incremental approaches: modules into

subsystems

• level-wise (“stubs” and “drivers”)

• level: interfaces between modules

Doç.Dr. Borahan Tümer 22

System Testing

• the whole system (including hardware, databases,

sensors, …) tested

• target: performance, capacity, fault-tolerance,

security, configuration, … (non-functional req.s)

• level: external interface

Doç.Dr. Borahan Tümer 23

Special Types of Testing

• Volume testing

• Load / stress testing

• Security testing

• Performance testing

• Configuration testing

• Installability testing

• Recovery testing

• Reliability / availability testing

• Maintainability testing

• Protocol conformance testing, etc.

Doç.Dr. Borahan Tümer 24

Volume Testing
• a non-functional test.

• refers to testing a software application with a certain
amount of data
– the database size or

– the size of an interface file that is the subject of volume testing.

• Examples (for performance testing)
– volume testing an application with a specific database size,

• expand your database to that size and then test the
application's performance on it.

– suppose a requirement for your application is to interact with an
interface file (could be any file such as .dat, .xml);

– this interaction could be reading and/or writing on to/from the file.
You will create a sample file of the size you want and then test the
application's functionality with that file in order to test the
performance.

Doç.Dr. Borahan Tümer 25

Security Testing (ST)
• determines that a SW product protects data and maintains

functionality as intended.

• six basic concepts to be covered by ST
– Confidentiality: protection against disclosure of info to

unauthorized parties

– Integrity: system permission that receiver can determine
information she receives is correct.

– Authentication: confirmation identity of a person, tracing origins of
an artifact or ensuring that a product is what its packaging claims it
is, or making sure a computer program is a trusted one.

– Authorization: determining that a requester is allowed to receive a
service or perform an operationç

– Availability: Assuring that relevant service will be ready for use
when expected

– Non-repudiation: assuring that some message transferred is sent
and received by the parties claiming to have sent and received it.

Doç.Dr. Borahan Tümer 26

Performance Testing

• Determines how a system performs in terms

of responsiveness and stability under a

particular workload.

• Also investigates, measures, validates or

verifies other system properties such

as scalability, reliability and resource usage.

Doç.Dr. Borahan Tümer 27

Acceptance Testing

• user involvement (alpha, beta)

• “actual needs” tested

• usability testing at the user interface

• development team in development environment:
– “standard”, general usability errors

• real user representatives in laboratory
environment:
– task-specific usability problems (real tasks, talk-aloud,

taping, post-analysis by experts)

Doç.Dr. Borahan Tümer 28

Black-box (functional) testing

• internal details of modules or subsystems are
hidden and cannot be studied from outside

• concentrates on the interfaces of modules and
(sub)systems (e.g. user interface)

• externally observable functionality and input-
output behavior

• based on input classification

• especially suitable for integration, system, and
acceptance testing

Doç.Dr. Borahan Tümer 29

Black-box (functional) testing

.

.

.

i1

i2

i3

in

o1

o2

o3

on

Doç.Dr. Borahan Tümer 30

White-box (structural) testing

• structure of the software is examined in
detail at the level of program code

• objective to traverse as many paths over the
code as considered necessary

• based on control flow and data flow

• several forms of coverage (path, statement,
branch, …)

• especially suitable for module (unit) testing

Doç.Dr. Borahan Tümer 31

White-box (structural) testing

B E

Doç.Dr. Borahan Tümer 32

Management of Testing

• Plan

• Execute

• Evaluate

• Document

• Report

process

Doç.Dr. Borahan Tümer 33

Testing Process

Req. Eng.

Test Plan

Test planning

Requirements

Design

Test Cases

Test Case Spec.

Design Spec.

Plan

Test Design

Coding Tests Bug Reports

Test Exec.Tests

Execution

Test Summary Report

EvaluationTest Results

Evaluation

Doç.Dr. Borahan Tümer 34

Standard for Software Test Documentation

[IEEE 829]

1) Test plan: the scope, approach, resources, and
schedule of the testing activities.

2) Test-design specification: the refinements of the
test approach, and the features to be tested by the
design and its associated tests.

3) Test-case specification: a test case identified by a
test-design specification.

4) Test-procedure specification: the steps for
executing a set of test cases or, more generally,
the steps used to analyze a software item in order
to evaluate a set of features.

Doç.Dr. Borahan Tümer 35

Standard for Software Test Documentation

[IEEE 829]

5) Test-item transmittal report: the test items being
transmitted for testing, including the person responsible
for each item, its physical location, and its status.

6) Test log: a chronological record of relevant details about
the execution of tests.

7) Test-incident report (bug report): any event that occurs
during the testing process which requires investigation.

8) Test-summary report: the results of the designated
activities, and evaluations based on these results.

Doç.Dr. Borahan Tümer 36

Test plan

1) Test-plan identifier: specifies the unique identifier
assigned to the test plan.

2) Introduction: summarizes the software items and software
features to be tested, provides references to the documents
relevant for testing (overall project plan, quality assurance
plan, configuration management plan, applicable
standards…).

3) Test items: identifies the items to be tested, including their
version/revision level; provides references to the relevant
item documentation (requirements specification, design
specification, user’s guide, operations guide, installation
guide, …); also identifies items which are specifically
excluded from testing.

Doç.Dr. Borahan Tümer 37

Test Plan
4) Features to be tested: identifies all software features and

their combinations to be tested, identifies the testdesign
specification associated with each feature and each
combination of features.

5) Features not to be tested: identifies all features and
significant combinations of features which will not be
tested, and the reasons for this.

6) Approach: describes the overall approach to testing (the
testing activities and techniques applied, the testing of non-
functional requirements such as performance and security,
the tools used in testing); specifies completion criteria (for
example, error frequency or code coverage); identifies
significant constraints such as testing-resource availability
and strict deadlines; serves for estimating the testing
efforts.

Doç.Dr. Borahan Tümer 38

Test Plan
7) Item pass/fail criteria: specifies the criteria to be used to

determine whether each test item has passed or failed
testing.

8) Suspension criteria and resumption: specifies the criteria
used to suspend all or portion of the testing activity on the
test items (at the end of working day, due to hardware
failure or other external exception, …), specifies the
testing activities which must be repeated when testing is
resumed.

9) Test deliverables: identifies the deliverable documents,
typically test-design specifications, test-case specifications,
test-procedure specifications, test-item transmittal reports,
test logs, test-incident reports, description of test-input data
and test-output data, description of test tools.

Doç.Dr. Borahan Tümer 39

Test Plan

10) Testing tasks: identifies the set of tasks necessary to
prepare and perform testing (description of the main
phases in the testing process, design of verification
mechanisms, plan for maintenance of the testing
environment, …).

11) Environmental needs: specifies both the necessary and
desired properties of the test environment (hardware,
communications and systems software, software libraries,
test support tools, level of security for the test facilities,
drivers and stubs to be implemented, office or laboratory
space, …).

Doç.Dr. Borahan Tümer 40

Test Plan

12)Responsibilities: identifies the groups of persons responsible for
managing, designing, preparing, executing, witnessing, checking, and
resolving the testing process; identifies the groups responsible for
providing the test items (section 3) and the environmental needs
(section 11).

13)Staffing and training needs: specifies the number of testers by skill
level, and identifies training options forproviding necessary skills.

14)Schedule: includes test milestones(those defined in the overall project
plan as well as those identified as internal ones in the testing process),
estimates the time required to do each testing task, identifies the
temporal dependencies between testing tasks, specifies the schedule
over calendar time for each task and milestone.

Doç.Dr. Borahan Tümer 41

Test Plan

15) Risks and contingencies: identifies the high-risk

assumptions of the test plan (lack of skilled personnel,

possible technical problems, …), specifies contingency

plans for each risk (employment of additional testers,

increase of night shift, exclusion of some tests of minor

importance, …).

16) Approvals: specifies the persons who must

approve this plan.

Doç.Dr. Borahan Tümer 42

Test-case specification
1) Test-case-specification identifier: specifies the unique

identifier assigned to this test-case specification.

2) Test items: identifies and briefly describes the items and
features to be exercised by this test case, supplies
references to the relevant item documentation
(requirements specification, design specification, user’s
guide, operations guide, installation guide, …).

3) Input specifications: specifies each input required to
execute the test case (by value with tolerances or by
name); identifies all appropriate databases, files, terminal
messages, memory resident areas, and external values
passed by the operating system; specifies all required
relationships between inputs (for example, timing).

Doç.Dr. Borahan Tümer 43

Test-case specification
4) Output specifications: specifies all of the outputs and

features (for example, response time) required of the test
items, provides the exact value (with tolerances where
appropriate) for each required output or feature.

5) Environmental needs: specifies the hardware and
software configuration needed to execute this test case,
as well as other requirements (such as specially trained
operators or testers).

6) Special procedural requirements: describes any special
constraints on the test procedures which execute this test
case (special set-up, operator intervention, …).

7) Intercase dependencies: lists the identifiers of test cases
which must be executed prior to this test case, describes
the nature of the dependencies.

Doç.Dr. Borahan Tümer 44

Test-incident report (bug

report)

1) Bug-report identifier: specifies the unique

identifier assigned to this report.

2) Summary: summarizes the (bug) incident

by identifying the test items involved

(with version/revision level) and by

referencing the relevant documents (test

procedure specification, test-case

specification, test log).

Doç.Dr. Borahan Tümer 45

Test-incident report (bug

report)
3) Bug description: provides a description of the incident, so as to correct the

bug, repeat the incident or analyze it off-line:
a. Inputs.

b. Expected results.

c. Actual results.

d. Date and time.

e. Test-procedure step.

f. Environment.

g. Repeatability (whether repeated; whether occurring always, occasionally or just
once).

h. Testers.

i. Other observers.

j. Additional information that may help to isolate and correct the cause of the
incident; for example, the sequence of operational steps or history of user-
interface commands that lead to the (bug) incident.

4) Impact: Priority of solving the incident / correcting the bug (urgent, high,
medium, low).

Doç.Dr. Borahan Tümer 46

Test-summary report
1) Test-summary-report identifier: specifies the

unique identifier assigned to this report.

2) Summary: summarizes the evaluation of the test
items, identifies the items tested (including their
version/revision level), indicates the
environment in which the testing activities took
place, supplies references to the documentation
over the testing process (test plan, test-design
specifications, test-procedure specifications,
test-item transmittal reports, test logs, test-
incident reports, …).

Doç.Dr. Borahan Tümer 47

Test-summary report

3) Variances: reports any variances/deviations of the test
items from their design specifications, indicates any
variances of the actual testing process from the test plan
or test procedures, specifies the reason for each variance.

4) Comprehensiveness assessment: evaluates the
comprehensiveness of the actual testing process against
the criteria specified in the test plan, identifies features
or feature combinations which were not sufficiently
tested and explains the reasons for omission.

5) Summary of results: summarizes the success of testing
(such as coverage), identifies all resolved and unresolved
incidents.

Doç.Dr. Borahan Tümer 48

Test-summary report

6) Evaluation: provides an overall evaluation of
each test item including its limitations (based
upon the test results and the item-level pass/fail
criteria).

7) Summary of activities: summarizes the major
testing activities and events, summarizes
resource consumption (total staffing level, total
person-hours, total machine time, total elapsed
time used for each of the major testing activities,
…).

8) Approvals: specifies the persons who must
approve this report (and the whole testing
phase).

Doç.Dr. Borahan Tümer 49

Inspection checklist for test plans:

1) Have all materials required for a test plan inspection been received?

2) Are all materials in the proper physical format?

3) Have all test plan standards been followed?

4) Has the testing environment been completely specified?

5) Have all resources been considered, both human and
hardware/software?

6) Have all testing dependencies been addressed (driver function,
hardware, etc.)?

7) Is the test plan complete, i.e., does it verify all of the requirements?
For unit testing: does the plan test all functional and structural
variations from the high-level and detailed design?)

8) Is each script detailed and specific enough to provide the basis for
test case generation?

9) Are all test entrance and exit criteria sufficient and realistic?

10) Are invalid as well as valid input conditions tested?

11) Have all pass/fail criteria been defined?

Doç.Dr. Borahan Tümer 50

Inspection checklist for test plans:

12) Does the test plan outline the levels of acceptability for pass/fail and
exit criteria (e.g., defect tolerance)?

13) Have all suspension criteria and resumption requirements been
identified?

14) Are all items excluded from testing documented as such?

15) Have all test deliverables been defined?

16) Will software development changes invalidate the plan? (Relevant
for unit test plans only.)

17) Is the intent of the test plan to show the presence of failures and not
merely the absence of failures?

18) Is the test plan complete, correct, and unambiguous?

19) Are there holes in the plan; is there overlap in the plan?

20) Does the test plan offer a measure of test completeness and test
reliability to be sought?

21) Are the test strategy and philosophy feasible?

Doç.Dr. Borahan Tümer 51

Inspection checklist for test cases:

1) Have all materials required for a test case inspection been received?

2) Are all materials in the proper physical format?

3) Have all test case standards been followed?

4) Are the functional variations exercised by each test case required by
the test plan? (Relevant for unit test case documents only.)

5) Are the functional variations exercised by each test case clearly
documented in the test case description? (Relevant for unit test case
documents only.)

6) Does each test case include a complete description of the expected
input, and output or result?

7) Have all testing execution procedures been defined and
documented?

8) Have all testing dependencies been addressed (driver function,
hardware, etc.)?

9) Do the test cases accurately implement the test plan?

Doç.Dr. Borahan Tümer 52

References

[1] Myers, The Art of Software Testing, 1978

Doç.Dr. Borahan Tümer 53

Appendix A: Drivers and Stubs

• Idea: develop and test software in “pieces” (modular
approach)

• Problem: how to test a "piece" if the other "pieces" that it
uses have not yet been developed (and vice versa).

• Solution: stubs and drivers.

• Relevance: White-box testing

– must run the code with predetermined input and check to make
sure that the code produces predetermined outputs.

– Often testers write stubs and drivers for white-box testing.

Doç.Dr. Borahan Tümer 54

Appendix A: Drivers

Driver for Testing:

Driver is a the piece of code that passes test cases to another piece of code. Test Harness
or a test driver is supporting code and data used to provide an environment for testing
part of a system in isolation. It can be called as as a software module which is used to
invoke a module under test and provide test inputs, control and, monitor execution, and
report test results or most simplistically a line of code that calls a method and passes that
method a value.

For example, if you wanted to move a fighter on the game, the driver code would be
moveFighter(Fighter, LocationX, LocationY);

This driver code would likely be called from the main method. A white-box test case
would execute this driver line of code and check "fighter.getPosition()" to make sure the
player is now on the expected cell on the board.

Doç.Dr. Borahan Tümer 55

Appendix A: Stubs

A Stub is a dummy procedure, module or unit that stands in for an unfinished portion of a system.

Four basic types of Stubs for Top-Down Testing are:

1 Display a trace message
2 Display parameter value(s)
3 Return a value from a table
4 Return table value selected by parameter

A stub is a computer program which is used as a substitute for the body of a software module that is
or will be defined elsewhere or a dummy component or object used to simulate the behavior of a real
component until that component has been developed.

Ultimately, the dummy method would be completed with the proper program logic. However,
developing the stub allows the programmer to call a method in the code being developed, even if the
method does not yet have the desired behavior.

Stubs and drivers are often viewed as throwaway code. However, they do not have to be thrown
away: Stubs can be "filled in" to form the actual method. Drivers can become automated test cases.

Doç.Dr. Borahan Tümer 56

• Integrity ...

– ... are addressed in processes to source and

create SW components and deliver them to

customers

– ... contain controls to enhance confidence that

SW was not modified without consent of

supplier.

