
BLACKBOX
TESTING

 Week 9

Doç.Dr. Borahan Tümer 2

Black Box Testing

f(x)=y

SW
Specification

f(x) x

y

failure

no

OK

yes

Doç.Dr. Borahan Tümer 3

• Based on specifications and documents
– requirements

– technical plans, architectures

– user manuals

• Code not necessarily needed (while it certainly helps)
• General strategy; applies especially to

– integration testing, system testing, acceptance testing

• Can be assisted by a post-white-box testing phase, to
obtain code coverage measures as indicators of testing
quality

Principles

Doç.Dr. Borahan Tümer 4

Domain partitioning:Equivalence classes

• System domain: set of all input values

• Equivalence class: certain set of input

values (subset of domain, subdomain)

Doç.Dr. Borahan Tümer 5

Equivalence Classes (ECs)

Equivalence Classes Input Domain
(Valid input)

Invalid &
illegal input

Doç.Dr. Borahan Tümer 6

Equivalence Classes

• Each EC represents a central property of system
• each value in an EC makes system behave “in the same

manner”
– in testing, each value reveals a failure or makes system

behave ok

• each value activates (almost) the same execution path
through the system

• based on
– system’s specification and
– experience / intuition of tester

Doç.Dr. Borahan Tümer 7

Black-box testing hypothesis

• each value in an EC results in
– correct execution, or
– failure

when used as input to system
• for testing purposes, one representative input

value from each EC is enough!
• in practice, the hypothesis does not hold

universally, so system shall be tested with several
input values from each EC.

Doç.Dr. Borahan Tümer 8

Equivalence Classes

Equivalence Classes Input Domain
(Valid input)

Invalid &
illegal input

• Each “black dot” represents the equivalence class it is in.
• Testing the code using a black dot will result either

 in a failure or
 OK

and represent the entire equivalence class.

Doç.Dr. Borahan Tümer 9

Forming equivalence classes (ECs)

• To specify: a range of values
• Corresponding ECs: one valid and two invalid classes

• Example 1: “a ≤ x ≤ b, x an integer”
– Valid EC: {integer x | a ≤ x ≤ b},
– Invalid EC: {integer x | x < a},
– Invalid EC: {integer x | x > b}

• To specify: a specific value within a range
• Corresponding ECs: one valid and two invalid classes
• Example 2: “value of integer x shall be t”
• Valid EC: {integer x | x = t},
• Invalid EC: {integer x | x < t},
• Invalid EC: {integer x | x > t}

Doç.Dr. Borahan Tümer 10

Forming equivalence classes (ECs)

• To specify: a set of values

• Corresponding ECs: one valid and one invalid classes

• Example 3: “2D geometric shape x shall have 4 corners”
– Valid EC: x ∈ {square, rectangle, trapezoid, parallelogram, ...},

– Invalid EC: x ∈ {ellipsoid, circle, triangle, pentagon, hexagon,
heptagon, ...},

• To specify: a boolean value

• Corresponding ECs: one valid and one invalid classes

• Example 4: “ x shall be true”
– Valid EC: x = true

– Invalid EC: x = false

Doç.Dr. Borahan Tümer 11

Forming equivalence classes (ECs)

• one or more ECs for illegal values (i.e., values
incompatible with the type of the input parameter and
therefore out of the parameter’s domain

• Example: “integer values x”
– Illegal EC: real-number x

– Illegal EC: character-string x

• How many ECs?

– As many as the potential groups of values that are believed to be
handled by the system in different ways.

– Any EC shall be further divided into subclasses if there is reason to
believe values in different subclasses are not processed by the
system identically.

Doç.Dr. Borahan Tümer 12

Boundary analysis

Equivalence Classes Input Domain
(Valid input)

Invalid &
illegal input

• EC boundaries are where bugs critically show up. That’s why boundary
 conditions are subject to test.
• Each “black dot” represents a boundary condition of its relevant EC it is in.

Doç.Dr. Borahan Tümer 13

Boundary Conditions

• open boundaries: generated by inequality operators
(<, >)

• closed boundaries: generated by equality operators
(=, ≤, ≥)

• on point: value that lies on a boundary
– for open boundaries: the boundary value; for instance x > 0

• off point: value not on a boundary

• “one-by-one” domain testing strategy: one on point
and one off point for each domain boundary

Doç.Dr. Borahan Tümer 14

Selection rules for on and off
points:

• open boundary: one on point and one off point
– on point: a value outside the domain  the condition is false

– off point: a value inside the domain  the condition is true

• closed boundary: one on point and two off points (on both sides
of the boundary, as close as possible)
– on point: a value inside the domain  the condition is true

– off point: a value outside the domain  the condition is false

• nonscalar type: one on point and one off point
– enumerations, Booleans, strings, complex numbers, …
– on point: the condition is true

– off point: the condition is false

– the difference between on and off values should be minimized (for
instance, for strings a single character difference)

Doç.Dr. Borahan Tümer 15

Examples

• range of values: two boundary conditions

• “integer x shall be between a and b” 
{integer x | (x ≥ a)∪(x ≤ b)}: (x ≥ a), (x ≤ b) are closed
boundaries

– on points: a, b

– off points: a-1, a+1, b-1, b+1

• strict inequality operator  open subdomain

 “integer x shall be greater than a”  {integer x | x > a}
– on point: a

– off point: a+1

Doç.Dr. Borahan Tümer 16

Examples
• specific value: one closed boundary condition

– “value of integer x shall be a”  {integer x | x = 100}

– on point: a

– off points: a-1, a+1

• set of values  nonscalar type

– “weekday x shall be a working day” 

– x ∈ {Monday, Tuesday, Wednesday, Thursday, Friday}

– on point: Friday, off point: Saturday

• Boolean  nonscalar type

– on point: true, off point: false

Doç.Dr. Borahan Tümer 17

The category-partition method

• systematic black-box test design method

• based on equivalence partitioning of input.

• Steps

i. Specification of input categories or “problem parameters”

ii. Division of categories into choices = equivalence classes

iii. Test specification:

iv. Generation of test cases for the test frames into executable
form (using a tool), combination into test suites.

v. Storing the testware into a test database.

vi. Testing of the unit by the test cases, refinement of conflicting
choices, maintenance of test database (using a tool).

Doç.Dr. Borahan Tümer 18

Array Sorting Example: Steps

i. Specification of input categories or
“problem parameters”

– Array sorting categories:

• size of array

• type of elements

• maximum element value

• minimum element value

• position of maximum element in the array

• position of minimum element in the array

Doç.Dr. Borahan Tümer 19

Step 2: Division of Categories

ii. Division of categories into choices =

equivalence classes

– Array sorting / choices for size of array:

• size = 0

• size = 1

• 2 ≤ size ≤ 100

• size > 100

• (“size is illegal”)

Doç.Dr. Borahan Tümer 20

Step 3:Test Specification

iii. Test specification:
– A set of test frames: sets of choices, with each category

contributing either zero or one choice.
– A set of test cases: a single value from each of the

choices in a test frame.
– Array sorting example / test case:

• size of array = 50 (choice: 2 ≤ size ≤ 100)
• type of elements = integer
• maximum element value = 91
• minimum element value = -3
• position of maximum element in the array = 15
• position of minimum element in the array = 43

Doç.Dr. Borahan Tümer 21

The category-partition method

(4) Generation of test cases for the test frames into
executable form (using a tool), combination into test
suites.

(5) Storing the testware into a test database.

(6) Testing of the unit by the test cases, refinement of
conflicting choices, maintenance of test database (using
a tool).

Doç.Dr. Borahan Tümer 22

Example

0 1

101 2
50

100

&

Size of array

type of array

Max. element

Min. element

Pos. of Max. element

Pos. of Min. element

int.

91

-3

15

43

ca
te

g
o

ri
es

Test frame Test case

choices

Doç.Dr. Borahan Tümer 23

System testing / GUI testing:

• target: operations available at the (graphical) user
interface

• parameters of operations divided into
equivalence classes

• testing by all different combinations of
equivalence classes (with one input value from
each class)

• testing of operation sequences (not independent)
• based on user’s manual
• supported by tools (capture / replay)

Doç.Dr. Borahan Tümer 24

Example: Find String in Document

• Find (document, text, direction, match case)

• document: the current text file, subject to search

• text: the character string to search for

• direction (down, up): direction of the search with
respect to current position of the cursor

• match case (yes, no): whether or not the operation
is case sensitive to letters

Doç.Dr. Borahan Tümer 25

Equivalence classes

• Input categories for various input

• text:
• {strings with lower-case letters but without upper-case letters}
• {strings with upper-case letters but without lower-case letters}
• {strings with both upper-case and lower-case letters}
• {strings with no letters}
• {empty (illegal) strings}
• direction: {down}, {up}
• match case: {yes}, {no}
• document: {text found}, {text not found}

Doç.Dr. Borahan Tümer 26

Example
text drctn c. mtch dcmnt

lc uc luc nlu ε d u n y f n-f

☺ ☺ ☺ ☺

☺ ☺ ☺ ☺

☺ ☺ ☺ ☺

☺ ☺ ☺ ☺

...

☺

☺

...

☺ ☺ ☺ ☺

Doç.Dr. Borahan Tümer 27

How many tests?

• # of (independent) combinations = Total number of tests

• E1 * E2 * E3 *… * Ek

– with Ei = # equivalence classes for parameter i

• For find example: 5 * 2 * 2 * 2 = 40 tests

• Some invalid, illegal combinations that
might be unexecutable must be tested too!

Doç.Dr. Borahan Tümer 28

Test Case Patterns

• text: lower-case, direction: down, match case: yes,
document: found (1)

• text: lower-case, direction: down, match case: yes,
document: not found (2)

• text: lower-case, direction: up, match case: yes,
document: found (3)

• text: lower-case, direction: up, match case: yes,
document: not found (4)

• …

• text: empty, direction: up, match case: no, document: not
found (40)

Doç.Dr. Borahan Tümer 29

Selection of test cases (40):

• each pattern generates a test case

• each equivalence class in a pattern is realized as
an input value in the corresponding test case

• in different test cases, different values are
selected for the same equivalence class (better
coverage)

• boundary values are selected, when applicable
– for text, both short and long character strings

– for text, the whole character set

Doç.Dr. Borahan Tümer 30

Test cases - 1

document text direction Match case

This beautiful text 1 bea down yes

This beautiful text 2 beatles down yes

This 1beautiful text 3 1bea up yes

This 1Beautiful text 4 1bea up yes

This &%1bEAutiful text 5 %1beau down no

This &%2beautiful text 6 %1beau down no

This BE utiful text 7 b up no

This BE utiful text 8 beauti up no

This BEAUTIFUL text 9 BEA down yes

Doç.Dr. Borahan Tümer 31

Test cases - 2

document text direction Match case

This BEAUTIFUL text 10 BEAT down yes

THIS beautiFUL text 11 THIS up yes

THIS beatiful text 12 T2S up yes

This Beautiful Text 13 HIS down no

this %#& beautiful text 14 S down no

this %#& beautiful text 15 HIS%#& up no

This %#&beautiful text 16 #& BE up no

This Beautiful Text 17 Text down yes

This Beautiful Text 18 Text down yes

Doç.Dr. Borahan Tümer 32

Test cases - 3

document text direction Match case

THIS is beautiful text 19 IS is up yes

This is beautiful text 20 IS is up yes

This text 1-99 21 ExT 1 down no

This text 1 and text 2 22 eXt 1 down no

This was beautiful text 23 His Was Beauti down no

(This) (Was) (123text) 24 aS() up no

123 one-two-three 25 123 down yes

One-two-three 1-2-3 26 12-3 down yes

This &007# mess 27 & up yes

Doç.Dr. Borahan Tümer 33

Test cases - 4
document text direction Match case

This Bloody Mess 28 #% up yes

(This) (was1) (was[2]) 29 2] down no

0987654321!”#%&/*/// 30 7654321# down no

1!2”3#4$5%6&7/8(9)0=oops #4$5%6&7/8(9) up no

This %#&beautiful text 32 22 up no

This is beautiful texT 33 down no

1 or two 34 down yes

1 or two 35 up yes

0K1+(8Those 36 up yes

1 & 2 37 down no

Doç.Dr. Borahan Tümer 34

Test cases - 5

document text direction Match case

38 down no

This %#&beautiful text 39 up no

40 up no

Doç.Dr. Borahan Tümer 35

Example
• print (file, copies, font, pagination)

• Input parameters:
– name of the file (must be provided)

– -cn, where n is the number of copies (1 ≤ n ≤ 100);
• default: n = 1

– -fkm, where k indicates a font (1 ≤ k ≤ 9) and m
indicates a mode (N for normal or B for bold);

• defaults: k = 1, m = N

– -np: no pagination (default: pagination shall be done)

Doç.Dr. Borahan Tümer 36

Example... Equivalence classes

• Originating from file name:

1. Name of existing file given (Valid).

2. No file name given (NotValid).

3. Name of non-existing file given (NV).

4. “Name” does not follow the syntactic rules (NV).

• Originating from copies (-cn):

5. 1 ≤ n ≤ 100 (V).

6. Default: no n given (V).

7. n = 0 or n > 100 (NV).

Doç.Dr. Borahan Tümer 37

Example... Equivalence classes

• Originating from fonts (-fkm):
8. 1 ≤ k ≤ 9 (V).

9. Default: no k given (V).

10. m = N or m = B (V).

11. Default: no m given (V).

12. k = 0 or k > 9 (NV).

13. m other than N or B (NV).

• Originating from pagination (-np):
14. -np given (V).

15. -np not given (V).

16. Something else than -np given (NV). (This class covers also the
other syntactically invalid -options.)

Doç.Dr. Borahan Tümer 38

Example... Number of exhaustive combinatory

test cases

This might be too many, so a method reducing

the number of test cases is needed.

print file [-cn] [-f k m] [-np]

4 * 3 * 3 * 3 * 3 = 324 test cases

Doç.Dr. Borahan Tümer 39

Optimizing Principle

• print file [-cn] [-fkm] [-np]

• Optimizing principle:
– one test case for each NV equivalence class
– each equivalence class covered by at least one test

case
i. -c5 –np
ii. xxyy -c3 (no file xxyy in directory)
iii. #%$file5.3
iv. myfile -c0 (file myfile is in directory)
v. myfile -f100N
vi. myfile -f2H
vii. myfile -c5 -f1 -hjk

Doç.Dr. Borahan Tümer 40

Test Case x Equivalence Class
TC/EC i ii iii iv v vi vii

1 + + + +

2 -

3 -

4 -

5 + + +

6 + + +

7 -

8 + +

9 + + + +

10 +

11 + + + + +

12 -

13 -

14 +

15 + + + + +

16 -

Doç.Dr. Borahan Tümer 41

Extending Principle

• combinations over the number of parameters

– name of existing file always given

– a test case where all the parameters are missing (0
present)

– a test case for each individual parameter (1 present)

– each parameter included in the set of pairs (2 present)

– each parameter included in the set of triplets (3 present)

– all the parameters given (4 present)

Doç.Dr. Borahan Tümer 42

Example

• print file [-cn] [-fkm] [-np]
viii.myfile (none present)
ix. myfile –c1 (n present)
x. myfile –f9 (k present)
xi. myfile –fB (m present)
xii. myfile –np (-np present)
xiii.myfile –f1N (k, m present)
xiv.myfile –c100 –np (n, -np present)
xv. myfile –c50 –f5 –np (n, k, -np present)
xvi.myfile –c1 –fB –np (n, m, -np present)
xvii.myfile –c99 –f2N –np (all present)

Doç.Dr. Borahan Tümer 43

Test Case x Equivalence Class
TC/EC viii ix x xi xii xiii xiv xv xvi xvii

1 + + + + + + + + + +

2

3

4

5 + + + + +

6 + + + + +

7

8 + + + +

9 + + + + + +

10 + + + +

11 + + + + + +

12

13

14 + + + + +

15 + + + + +

16

Doç.Dr. Borahan Tümer 44

References

[1] Myers, The Art of Software Testing, 1978

