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Introduction

• Temporal abstraction

◦ Decision making involves planning and foresight 

over various time scales

◦ MDPs: a mathematical foundation only for a single 

temporal scale [2,3]

◦ Semi-MDPs (SMDPs) model continuous time 

discrete event systems



Options
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Options
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MDP versus SMDP
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Subgoals at Bottlenecks
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Goal arbitrarily located...
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Comparison flat RL and HRL
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Introduction... 2

• MC methods and TD methods are distinct 

alternatives in RL and they are related by using 

eligibility traces (ETs).

• In a similar way, planning methods and 

learning methods may be shown to be related to 

each other.  
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Models

• A model is anything that helps the agent predict 

its environment’s responses to the actions it 

takes. 

model

state st

action at

state st+1

reward rt+1
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Model Types from Planning 

Perspective

• Two types of models in RL from the planning 

perspective

◦ Distribution Models: Those that generate a 

description of all possibilities and their probabilities

◦ Sample Models: Those that produce only one of the 

possibilities, sampled according to probabilities at 

hand.
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Distribution and Sample Models

• Distribution models are stronger than sample 

models since they may be used to generate samples 

• They are harder to obtain since

Either there is not enough information to build one, 

Or the information is there, but it is too complex to 

analytically obtain the model’s parameters.

• Both types of models generate simulated experience.
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Simulated Experience in Models

• Given an initial state and an action

◦ Distribution model can generate 

− All possible transitions and their occurrence probabilities

− All possible episodes and their probabilities

Sample model can generate 

− A possible transition

− An entire episode 
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Planning

• In RL context, planning is defined as

 any computational process that, once having a 

model presented, produces/improves a policy to 

interact with the environment represented by this 

model.

model
planning

policy
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Planning

• Two distinct approaches to planning

 State space planning: 

− involves a search through the state space for an optimal 

policy or a path to a goal.

 Plan-space planning

− Performs a search through a space of plans.

• We will use state space planning.
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State Space Planning

• All state space planning methods share a 

common structure.

• Two ideas are 

◦ All state space planning methods involve computing

value functions as a key intermediate step toward 

improving the policy, 

◦ They compute their value functions by backup 

operations applied to simulated experience.
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Diagram of State-Space Planning

Model
Simulated 

experience

Backups
Values Policy
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How learning and planning relate…

• The core of both learning and planning is the 

estimation of value functions by backup 

operations.

• The difference

◦ real experience is used in learning that originates 

from the environment; 

◦ simulated experience generated by the model is 

employed in planning.
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Further differences of Planning and 

Learning

• Origins of experience in learning and planning 

are different.

– Simulated experience in planning and

– Real experience in learning.

• This in turn leads to other differences such as 

– the different ways of performance assessment and

– how flexibly experience is generated,
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Advantages of Planning

• A learning algorithm may be replaced for the 

key backup step of a planning method.

• Learning methods can be applied to simulated 

experience as well as to real experience.
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Random-sample One-step tabular 

Q-Planning

• Select a state s ∈ S and an action a ∈ A(s) 
at random

• Send s,a to a sample model, and obtain a 
sample next state s’ and a sample reward r.

• Apply one-step tabular Q-learning to s,a,s’,r

 ),()','(max),(),( ' asQasQrasQasQ a  
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Integrating Planning, Acting and 

Learning

• Learning may be achieved together with 

planning where, 

– while interacting with the environment, 

– the model is continuously improved/updated.
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Learning, Planning and Acting
Value/Policy

ExperienceModel

model learning
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Dyna-Q Architecture

• A planner (agent) uses experience for …

– … improving the model, and

– … improving state-action values/policy.

• Dyna-Q architecture uses both learning and planning 
together. 

• Dyna agent achieves both direct and indirect RL
indicated on page 17 in the algorithm on the next 
page. 
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Algorithm for Dyna-Q-learning

• Initialize Q(s,a) and Model(s,a) for all sS and 
aA(s)

• Do forever
– s  current (non-terminal) state

– a  ε-greedy(s,Q)

– Execute a; observe s’ and r

– Model(s,a)  s’,r //assuming deterministic environments

– Repeat N times

• s  random previously observed state;

• a  random action previously taken in s

• s’,r  Model(s,a)

 ),()','(max),(),( ' asQasQrasQasQ a  
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Algorithm’s parameter N

• With the growing values of N, the 

modification history of the model gets deeper.

• The deeper the update history of the model, the

faster the convergence to the optimal policy.*

*
Check Example 9.1 in [1] pp 233-235 and Fig. 9.5 and 9.6!
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What if the model is wrong…

• …or what if the environment is non-stationary?

• If the environment has changed such that the current 
policy does not end with success anymore, then the 
agent discovers the optimal policy sooner or later 
provided sufficiently many episodes are involved.

• If, on the other hand, the environment changes so a 
new optimal policy arises, but the old (sub-optimal) 
policy is still available for access to goal state, then the 
optimal policy might go undetected even with an ε-
greedy policy.*

*
Check Example 9.2 and 9.3 in [1] pp 236-238
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What if the model is wrong…2
• As in direct RL, there is no perfect and practical solution for the 

exploration/exploitation dilemma.

• Using heuristics may in such cases be effective.

• In the corresponding example* in [1], for each state-action pair, the 
time that has elapsed since the pair was last examined in a real 
interaction with the environment was recorded.

• This heuristic indicates the extent of the chance the model is 
incorrect.

• To give more chance to long-unexamined actions, a special “bonus 
reward” (r+κn; r being the regular reward, n the time steps the 
state-action pair is not examined and  R small) is given in 
simulated experience to these actions.  Agent keeps encouraged to 
test such pairs and has a good possibility of getting to the optimal 
policy.

*
Check Example 9.2 and 9.3 in [1] pp 236-238
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Prioritized Sweeping

• In real world cases, where the state-action space is 

usually tremendously large, unnecessary value updates

(i.e., those that do not contribute to optimal or near 

optimal policy) in the model must be minimized.

• Prioritized sweeping is the improved version of the 

Dyna-Q algorithm, where only values of those state-

action pairs get updated which lead to state-action 

pairs with currently updated values.   

• Effective method as long as model has discrete states.
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Prioritized Sweeping Algorithm
• Initialize Q(s,a) and Model(s,a) for all s,a and PQueue to empty

• Do forever
– s  current (non-terminal) state

– a  policy(s,Q)

– Execute a; observe s’ and r

– Model(s,a)  s’,r //assuming deterministic environments

–

– if (p>) then insert s,a into PQueue with priority p

– Repeat N times, while not isEmpty(PQueue)
• s,a  first(PQueue)

• s’,r  Model(s,a)

•

• Repeat for all s”,a” (from within all previously experienced pairs) predicted to 
lead to s

– r”  predicted reward

–

– if (p>) then insert s”,a” into PQueue with priority p

),()','(max ' asQasQrp a  

 ),()','(max),(),( ' asQasQrasQasQ a  

)","(),(max" asQasQrp a  
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Prioritized Sweeping Algorithm with a 

specific clustering algo (e.g., EM)
• Initialize Q(s,a) and Model(s,a) for all s,a and PQueue to empty

• Do forever
– s  current (non-terminal) state; discretize s into cl(s);

– a  policy(cl(s),Q)

– Execute a; observe s’ and r; discretize s’ into cl(s’)

– Model(cl(s),a)  cl(s’),r //assuming deterministic environments

–

– if (p>) then insert cl(s),a into PQueue with priority p

– Repeat N times, while not isEmpty(PQueue)
• cl(s),a  first(PQueue)

• cl(s’),r  Model(cl(s),a)

•

• Repeat for all cl(s”),a” (from within all previously experienced pairs) predicted 
to lead to cl(s)

– r”  predicted reward

–

– if (p>) then insert cl(s”),a” into PQueue with priority p

)),(()'),'((max ' asclQasclQrp a  

 )),(()'),'((max)),(()),(( ' asclQasclQrasclQasclQ a  
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Prioritized Sweeping Algorithm with a 

linear grad descent algo.
• Initialize Q(s,a) and Model(s,a) for all s,a and PQueue to empty
• Do forever

– s  current (non-terminal) state; find feature vector φs ;
– a  policy(s,Q)
– Execute a; observe s’ and r; find feature vector φs’ ;
– δ ← γ maxb Q(s’,b) – Q(s,a);

– e ← φs; //φs is the gradient of Q(s,a)

– θ ← θ + αδe;

– Model(φs,a)  φs’,r //assuming deterministic environments

– if (p>const) then insert φs,a into PQueue with priority p
– Repeat N times, while not isEmpty(PQueue)

• φs,a  first(PQueue)
• φs’,r  Model(φs,a)
•

• Repeat for all s”,a” (from within all previously experienced pairs) predicted to lead to s
– r”  predicted reward
–
– if (p>const) then insert φs’’,a” into PQueue with priority p

p

s

TasQ 
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''p
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