
1

Evaluative Feedback

Week #2

2

Purely Evaluative Feedback of RL

• says how favorable the action taken by agent is.

• does not say what the best or worst action is

where As is the set of actions valid at state s.

• action selection, thus, is based on the set of actions selected and
evaluated so far (i.e., actions at1,..., at4)

– action with the highest value is taken or given highest chance of

selection (exploitation)

– a chance is given to those actions with small values not to turn off the
possibility to miss actions with potentially promising future values

(exploration)

NiAaasQasQasQasQasQasQ stbestttttworst i
 ,?;),()......,()....,().......,()......,(.........?),(

4321

 ),(maxarg
*

i

i

t

t

asQ

a

a 

3

Purely Instructive Feedback of SL

• indicates the correct action

• is independent of the action taken as opposed

to the purely evaluative feedback which is

totally based on the action taken.

• basis of supervised learning

4

Nonassociative Setting

• Single state (nonassociative) to keep RL problem
simple and focus on the evaluative feedback aspect of
RL.

• We will observe here
– the differences among evaluative and instructive feedback

as well as

– how they can be combined.

• Simple version of n-armed bandit problem studied to
introduce a number of basic learning methods.

• At the end, we discuss an associative task to get a feel
of the full RL problem.

5

N-Armed Bandit Problem

• Assume n bags filled with colored balls. Each bag,
contains a different distribution of red, blue and
yellow balls.

• We select repetitively among n bags to draw a red ball,
for instance, and for each choice receive a numerical
response from a stationary probability distribution
depending on the action (i.e., what color appears on
the drawn ball). For red we receive a favorable
response and for others an unfavorable one.

• Objective: to maximize the expected total reward over
some time.

6

N-Armed Bandit Problem

• Action Value Estimation: (sample-average method)

– Actual action value: Q*(a); mean reward for action a

– Estimate at time t (i.e., at tth play): Qt(a)

where ka is the number of times the action a is selected
by the tth play.

by law of large numbers.

 
a

k

i

i

t
k

r

aQ

a


 1

   aQaQ
akt

* 


7

N-Armed Bandit Problem

• A Simple Action Selection Rule: (Exploitation vs
Exploration)

– ε-greedy selection: select most of the time (e.g., with
probability 1- ε, with 0< ε <<1) the action a* with the
highest value (current knowledge exploited)

– at other times (e.g., with probability ε) select an ordinary
(i.e., not significant or dominant) action! (action space
explored)

– Question: How to select among ordinary actions?

 aQa t
a

maxarg* 

8

N-Armed Bandit Problem

• How do we select among ordinary actions?

– randomly where, regardless of its value, each non-

greedy action is equally likely to be selected.

– Using Softmax action selection mechanism where each

action (greedy or non-greedy) is given as high a chance

for selection as its estimated value’s proportion to the

entire distribution.

9

An Example to Softmax Selection

– Gibbs or Boltzmann distribution, an example to Softmax

methods: action a is selected on the tth play with the

following formula:

– with τ a positive parameter called the temperature.

 
 

 




n

b

bQ

aQ

t

t

t

e

e
ap

1

/

/





10

Example
Gibbs or Bolzmann Distribution of

Action Selection Probability as a function of τ

P
ro

b
a
b

ili
ty

 f
o

r
a
c
ti
o
n

s
 1

-5

τ

Given are five actions

with the following current

values:

Action Value

1 0

2 0.1

3 0.2

4 0.3

5 0.4

Temperature:

0+< τ ≤ 5

Softmax Selection

by Gibbs

greedy selection

as τ→0

random selection

as τ→∞

11

Evaluation vs Instruction

• Evaluation

– Learning by selection (i.e., from experience)

– Action-dependent

– Performs search in action space

– Constructs a mapping from situations (states) to action probabilities

– Analyzes and controls environment

• Instruction

– Learning by instruction

– Action-independent

– Performs search in weight space

– Constructs a mapping from situations to correct actions to correctly
generalize to new situations

– Follows instructive information

12

Evaluation vs Instruction

• Comparison in terms of a simple, single-state

example

• Assume you select action ai among n possible

actions {a1,...,an}

– Evaluative feedback will provide a measure of

how favorable ai is.

– Instructive feedback will provide the correct action

aj.

13

Evaluation vs Instruction

• Assume a two-action {a1, a2}, two-reward {success,

failure} task at a single-state.

• For deterministic rewards (for noise-free instructive

feedbacks), actions taken for which agent receives

success, will mean the correct action. Hence, a

supervised algorithm (i.e., one with instructive

feedback) will solve the problem.

14

Evaluation vs Instruction

• For stochastic rewards (for noisy instructive
feedbacks), we have four cases:

Cases 1 2 3 4

Prob. of

success

Prob. of

success

Prob. of

success

Prob. of

success

a1 < 0.5 < 0.5 > 0.5 > 0.5

a2 < 0.5 > 0.5 < 0.5 > 0.5

problem hard easy easy hard

15

Evaluation vs Instruction
• Cases 2 and 3 are not hard to solve since the probability of

success for the favorable action is higher than half the time,
whereas the unfavorable action has a probability of success less
than half.

• Cases 1 and 4, on the other hand, are not easy since the
probability of success for both actions are either greater than or
less than 0.5.

• In case 1, since both actions take mostly failures, the supervised
algorithm (i.e., one receiving instructive feedback) will oscillate
between the two actions, and not converge to the better action.

• In case 4, since both actions take mostly successes, the
supervised algorithm will be stuck on any action, regardless of
whether the action is better.

• The action-value (i.e., evaluative feedback) method solves the
problem.

16

Incremental Implementation

• The following formula

requires ka locations to keep rewards by time t.

• We may compute the action value Qt(a) not

requiring this amount of memory by incrementally

updating Qt(a).

 
a

k

i

i

t
k

r

aQ

a


 1

17

Incremental Implementation

• To compute Qk+1(a) so as to include k+1st reward

using Qk(a), we may follow the derivation below:

   

 kkkk

kkkkkkkk

k

i

ik

k

i

ik

Qr
k

QQ

QQkr
k

QQkQr
k

Q

rr
k

r
k

Q










































 

11

111

1

1

1

1

1

1

1

)1(
1

1

1

1

1

1

1

1

18

Incremental Implementation

• where

– Qk+1 is the new estimate

– Qk is the old estimate

– k+1 is the step size

– rk+1 is the target (current immediate reward)

 kkkk Qr
k

QQ 


  11
1

1

19

Tracking a Nonstationary Problem

• In the above formula, the value update rule is based upon the
assumption that the environment is stationary, that is, its
behavior (i.e., its response to the actions taken by the agent)
does not change with time.

• In a stationary environment, where the response of the
environment mimics the same tendency throughout learning,
an individual subsequent response rk+m given to a action ai at
time k+m should affect the accumulated response (i.e., value
of the action Qk+m(ai) less than a preceding action rk since the
action’s value Qk+m(ai) at time k+m represents a longer
sequence of responses than the value Qk(ai) at time k does
and, hence, is closer to convergence.

• To ensure this, the step size parameter is formulated to be
inversely proportional to time on the previous page.

20

Tracking a Nonstationary Problem

• The behavior of a non-stationary environment may
show changes.

• For the following two cases:
1) Continuous changes in environment behavior may occur

sufficiently slowly or

2) the environment may behave stationary for a sufficiently
long period,

• the agent may
– track the environment behavior in 1;

– establish experience characteristic to a specific period in 2
(considering each behavioral period of a non-stationary
environment as a different stationary environment).

21

Tracking a Nonstationary Problem

• For the agent to track the nonstationary environment’s

continuously but sufficiently slowly changing

behavior, the latest response of the environment

should be given as much weight as the preceding ones,

since its latest response reflects the newest viewpoint

of the environment. Hence, the stepsize parameter

should be kept constant as follows:

  10;11    kkkk QrQQ

22

Tracking a Nonstationary Problem

 

   
































k

i

i

ikk

k

kk

kkk

kkkk

kkk

kkk

kk

kkkk

rQQ

Qrrrr

Qrrr

Qrr

Qrr

Qr

QrQQ

1

0

01

1

2

2

1

3

3

2

2

1

2

2

1

21

1

11

11

)1()1()1()1(

)1()1()1(

)1()1(

))1()(1(

)1(

10;

















23

Tracking a Nonstationary Problem

   





k

i

i

ikk

k rQQ
1

0 11 

• Given 0< α ≤1, the above formula implies that the

older the responses ri the higher the “discounting”

effect of the coefficients.

• As a natural consequence of the above, the initial

action value Q0 gets progressively discounted in time.

• This action value is also called the exponential,

recency-weighted average.

24

Conditions of Convergence

• Two important conditions in the stochastic
approximation to assure convergence:

where

– the first is to ensure long enough steps to rise above any
initial conditions and random fluctuations, and

– the second is to guarantee eventually sufficiently small
steps for convergence assurance.

  




a
i

i

1



  




a
i

i

1

2

25

Optimistic Initial Values

• It is natural to initially assign 0 to all action
values if there is no a priori knowledge on the
environment and use ε–greedy RL method.

• Another option would be to start with large
(optimistic) initial action values and
encourage the agent to explore. It will pursue
frequent exploration before actions taken attain
a value higher than the optimistic initial action
values.

26

Reinforcement Comparison

• Here the underlying idea is to provide the agent with

the so-called reference reward so the agent can

understand through comparison with the reference

reward what it really means to receive a reward of 3

or 0.5. Reinforcement comparison methods do not

keep action value estimates.

• Preference: probability pk(a) of action a at play k:

 kkkk rrapap  )()(1

27

Reinforcement Comparison

• Selection done through Softmax relationship:

where the reference reward is updated at each new

play as follows:

 
 

 




n

b

bp

ap

k

k

k

e

e
a

1



 kkkk rrrr  1

28

Pursuit Methods

• Pursuit methods maintain both action value estimates

and action preferences. They use action preferences

(i.e., probability πk(a) of selecting action a at play k)

to select the action and the value estimates Qk(a) to

determine the greedy action a*.

• After a* is determined, πk(a
*) and the preference of

remaining actions are updated as on the next page.

• Qk(a
*) is then updated using one of the methods (e.g.,

action value or Softmax) we discussed above.

29

Pursuit Methods: Algorithm

1. Initialize action preference vector and action value estimates:

2. Loop until a specific number of plays or | πk+1(a*) - πk(a*) | ≤ ε

a. Select action using the action preferences (i.e., generate RNs observing the

preference vector’s probability distribution)

b. Receive environment’s response

c. Update action value estimate, say, by incremental implementation

d. Determine greedy action

e. Update action preferences

 Tnaaaa)()()()(03020100  

 )(1)()(*

1

*

1

*

11   kkkkkk aaa 

 TnaQaQaQaQQ)()()()(03020100 

 )(
1

1
)()(*

11

*

1

*

11  


 kkkkkkk aQr
k

aQaQ

 )(maxarg 1

*

1 aQa k
a

k  

  *

11 ;)(0)()(  kkkk aaaaa 

30

Associative Search

• In the non-associative setting, we studied n actions at
a single state in the n-armed bandit problem.

• Associative search incorporates the relation of actions
to various situations (states) of the environment with
the purpose to find the best action at any situation
inhibiting any influence of the selection of action on
situations.

• Full RL framework, studying the most general
problem, involves possible state changes as a result of
the selection of an action.

Figure reproduced from the figure on

page 52 in reference [1]

31

RL Loop: Non-associative Setting

r t 1

r t

Agent

Environment

response action

ta

Figure reproduced from the figure on

page 52 in reference [1]

32

RL Loop: Associative Search

state

r t 1

st r t

Agent

Environment

response

st 1

action

ta

State information st+1 produced by environment is independent of action at selected.

Figure reproduced from the figure on

page 52 in reference [1]

33

RL Loop: Full RL Framework

state

r t 1

st r t

Agent

Environment

response

st 1

action

ta

State information st+1 is affected by action at selected.

34

References

• [1] Sutton, R. S. and Barto A. G.,

“Reinforcement Learning: An introduction,”

MIT Press, 1998

