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Dynamic Programming
Week #4
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Introduction

• Dynamic Programming (DP)

– refers to a collection of algorithms

– has a high computational complexity

– assumes a perfect model of environment

– hence is of limited utility in RL

– is crucial because of its theoretical foundation.

• Key idea in DP: using the value functions to 
organize and structure the search for good 
policies.
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Set up

• We assume the environment is a finite MDP.

• Finite set of states: S

• Finite set of actions: A(s)

• Dynamics of environment given by:

– a set of transition probabilities, and

– the expected immediate reward

• for all si∈ S, sj∈ S+ and a ∈ A(s) . 
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Policy Evaluation

• Policy evaluation (also called prediction problem)  is 

where the state-value function Vπ is computed for an 

arbitrary policy π.
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• π(s,a) is the probability of taking action a at state s.
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Policy Evaluation

• If environment dynamics (transition probabilities and immediate 

returns for all states) are completely known, then last line of (5.1) 

is a system of |S| simultaneous linear equations with |S| 

unknowns.

• Iterative methods are suitably used for computation of Vπ(s).
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• As k→∞, Vk converges to Vπ. This algorithm is called iterative 

policy evaluation.
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Policy Evaluation

• Two ways to compute Vk values 

– Full backup: At time k+1, values of all states are updated 

using the value of all states at time k.  

– “In place” computation.  At any time k, one state is updated.  

That is, to update the value of a state s, we use the current 

value(s) of relevant state(s) (i.e., states which can be arrived 

at from s or destination states of s).
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Algorithm for Policy Evaluation

• Input π, the policy to be evaluated

• Initialize, V(si)=0, for all si ∈ S+

• Loop
– Δ ← 0

– for each si ∈ S:
• v ← V(si) 

• Δ ← max{Δ,|v-V(si)|}

• Until Δ < θ

• Output V≈Vπ
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Policy Improvement... (1)

• Assumption: we have determined Vπ for an arbitrary 

deterministic policy π.

• Question: for some state s, should we change the policy

to deterministically choose an action a ≠ π(s) so as to 

end up with a better value of V(s)?

 
 .)(

,)(),( 11

j

a

ss
j

a

ss

t

i

ttt

i

sVRP

aasssVrEasQ

jiji






















9

Policy Improvement... (2)

• Here, we check to see whether choosing 

action a = π’(s) ≠ π(s) once at state s and 

continue thereafter with the existing policy 

is better (i.e., results in a higher value Vπ(s)

of  state s).  

• If so, then choosing action a everytime at 

state s may mean a better policy overall.
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Policy Improvement... (3)

• Assertion: Let π and π’ be any two deterministic 

policies such that for all s∈S,

• Then π’ must be as good as, or better than π.  That 

is:

• Further, for any state s, a strict inequality in the red

equation results in a strict inequlity in the blue

equation below. 
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This proof is received from 

reference [1]. 
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Proof of Policy Improvement Theorem
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Policy Improvement... (5)

• The next step here is to find the action a at each state s that 

appears best regarding               .  The new greedy policy π’

is: 

•

• The process of making a new policy that improves on an 

original policy, by making it greedy or nearly greedy with 

respect to the value function of the original policy, is called 

policy improvement.
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Policy Iteration... (1)

• Idea: Improve policy π using Vπ to a better policy π1

and compute (evaluate)      .  Next, improve       to yield 

an even better policy π2 and evaluate      .  This two step 

iteration goes on with strict improvements until an 

optimal policy is encountered.  For a finite MDP has 

only a finite number of policies, the process must 

converge to an optimal policy and optimal value 

function in a finite number of iterations.

1V
1V

2V



The figure is an exact replication 

of the figure on page 97 of [1].
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Policy Iteration: Diagram

In the above diagram denoting the policy iteration

the transition E and I stand for the policy evaluation and 

policy improvements phases of the poliy iteration steps in 

respective order [1].
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This is the algorithm given in 

Figure 4.3 on page 98 of [1].
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Policy Iteration: Algorithm
• Initialization
• V(s) ∈ R, π(s)∈A(s) arbitrarily for all s∈ S
• Policy Evaluation
• Repeat

– Δ←0

– For each s ∈ S:
• v ← V(si) 

• // π(s) arbitrarily selected

• Δ ← max{Δ,|v-V(s)|}

• Until Δ < θ (a small positive number)

• Policy Improvement

• Policy-stable ←true

• For each s ∈ S:
– b ← π(s)

– If b ≠ π(s), then policy-stable←false

• If policy-stable, then stop; else go to policy evaluation
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Value Iteration... (1)

• Idea: Policy evaluation step itself in policy iteration may require 

iterative computations where multiple sweeps through the state 

set are performed.  But we observe in many examples the 

possibility of cutting short the policy evaluation step without 

losing the convergence guarantee of policy iteration.  A special 

case in this effort is stopping policy evaluation after a single 

sweep (one backup of each state).  This algorithm is called value 

iteration.
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This is the algorithm given in 

Figure 4.5 on page 102 of [1].
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Value Iteration: Algorithm
• Initialize V arbitrarily; e.g., V(si)=0 for all si∈ S

• Repeat
– Δ←0

– For each si∈ S:

• v ← V(si) 

• Δ ← max{Δ,|v-V(si)|}

• Until Δ < θ (a small positive number)

Output a deterministic policy,π, such that 
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Asynchronous Dynamic Programming 

(ADP)
• Idea: ADP algorithms are in-place iterative algorithms that 

update (back up) values of states in an unorganized manner.  
This results in a non-uniform session of update of state values.  
At a certain point of time, some states may get their values 
updated several times while some others may have their values 
not updated even once.  Once eliminating this property to 
correctly converge to an optimal policy, ADP algorithms provide 
for great flexibility for the selection of states to which backup 
operations are applied.  This may be eliminated, for instance, by 
backing up the value of only one state sk, on each step k, using 
the value iteration backup.  In short:

Update only state sk at time k !...
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Generalized Policy Iteration   

(GPI)... (1)
• Idea: We studied policy iteration to involve two interacting processes: policy 

evaluation finding the value of states using the current policy and policy 
improvement looking in a greedy manner for a new policy wrt the current 
value function.  

• These processes that we have seen to follow each other in a closed loop are 
not required to operate in succession.  In fact, we have shown in value 
iteration that, between any two policy improvement session, a policy 
evaluation session of a single sweep has been sufficient.  Further, ADP 
algorithms did provide a higher degree of interleaving by updating the value 
of a single state at a policy evaluation session. 

• The general idea in GPI is the interaction of policy evaluation and 
improvement independent of how fine-grained the policy evaluation occurs 
and of any other details of these two processes.
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Generalized Policy Iteration... (2)

)(Vgreedy
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where * and V* denote optimal policy and state values, respectively.
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