
1

Dynamic Programming
Week #4

2

Introduction

• Dynamic Programming (DP)

– refers to a collection of algorithms

– has a high computational complexity

– assumes a perfect model of environment

– hence is of limited utility in RL

– is crucial because of its theoretical foundation.

• Key idea in DP: using the value functions to
organize and structure the search for good
policies.

3

Set up

• We assume the environment is a finite MDP.

• Finite set of states: S

• Finite set of actions: A(s)

• Dynamics of environment given by:

– a set of transition probabilities, and

– the expected immediate reward

• for all si∈ S, sj∈ S+ and a ∈ A(s) .

),(1 aassssPP titjt

a

ss ji
 

),,(11 jttitt

a

ss ssaassrER
ji

 

4

Policy Evaluation

• Policy evaluation (also called prediction problem) is

where the state-value function Vπ is computed for an

arbitrary policy π.

 
 .)(),(

)(

)1.5(

)(

11

0

21

0

1

j

a

ss
j

a

ss
a

i

i

ttt

i

t

k

kt

k

t

i

t

k

kt

ki

sVRPas

sssVrE

ssrrE

ssrEsV

jiji

































































• π(s,a) is the probability of taking action a at state s.

5

Policy Evaluation

• If environment dynamics (transition probabilities and immediate

returns for all states) are completely known, then last line of (5.1)

is a system of |S| simultaneous linear equations with |S|

unknowns.

• Iterative methods are suitably used for computation of Vπ(s).

 
 .)(),(

)()(111

jk

a

ss
j

a

ss
a

i

i

ttkt

i

k

sVRPas

sssVrEsV

jiji 











• As k→∞, Vk converges to Vπ. This algorithm is called iterative

policy evaluation.

6

Policy Evaluation

• Two ways to compute Vk values

– Full backup: At time k+1, values of all states are updated

using the value of all states at time k.

– “In place” computation. At any time k, one state is updated.

That is, to update the value of a state s, we use the current

value(s) of relevant state(s) (i.e., states which can be arrived

at from s or destination states of s).

7

Algorithm for Policy Evaluation

• Input π, the policy to be evaluated

• Initialize, V(si)=0, for all si ∈ S+

• Loop
– Δ ← 0

– for each si ∈ S:
• v ← V(si)

• Δ ← max{Δ,|v-V(si)|}

• Until Δ < θ

• Output V≈Vπ

 .)(),()(jk

a

ss
j

a

ss
a

ii sVRPassV jiji   

8

Policy Improvement... (1)

• Assumption: we have determined Vπ for an arbitrary

deterministic policy π.

• Question: for some state s, should we change the policy

to deterministically choose an action a ≠ π(s) so as to

end up with a better value of V(s)?

 
 .)(

,)(),(11

j

a

ss
j

a

ss

t

i

ttt

i

sVRP

aasssVrEasQ

jiji




















9

Policy Improvement... (2)

• Here, we check to see whether choosing

action a = π’(s) ≠ π(s) once at state s and

continue thereafter with the existing policy

is better (i.e., results in a higher value Vπ(s)

of state s).

• If so, then choosing action a everytime at

state s may mean a better policy overall.

10

Policy Improvement... (3)

• Assertion: Let π and π’ be any two deterministic

policies such that for all s∈S,

• Then π’ must be as good as, or better than π. That

is:

• Further, for any state s, a strict inequality in the red

equation results in a strict inequlity in the blue

equation below.

 )()(', sVssQ   

 )(' sVsV  

This proof is received from

reference [1].

11

Proof of Policy Improvement Theorem

 

 
 

  
 
 

 
)(

)

)(

)(

)(

))(',(

)(

)(',)(

'

4

3

3

2

21'

3

3

3

2

21'

2

2

21'

22'1'

111'

11'

sV

ssrrrrE

sssVrrrE

sssVrrE

sssVrErE

ssssQrE

sssVrE

ssQsV

ttttt

ttttt

tttt

tttt

tttt

ttt






































































12

Policy Improvement... (5)

• The next step here is to find the action a at each state s that

appears best regarding . The new greedy policy π’

is:

•

• The process of making a new policy that improves on an

original policy, by making it greedy or nearly greedy with

respect to the value function of the original policy, is called

policy improvement.

 asQ ,

 
 )(maxarg

,)(maxarg

),(maxarg)('

11

ja

ss
j

a

ssa

t

i

ttt
a

i

a

i

sVRP

aasssVrE

asQs

jiji























13

Policy Iteration... (1)

• Idea: Improve policy π using Vπ to a better policy π1

and compute (evaluate) . Next, improve to yield

an even better policy π2 and evaluate . This two step

iteration goes on with strict improvements until an

optimal policy is encountered. For a finite MDP has

only a finite number of policies, the process must

converge to an optimal policy and optimal value

function in a finite number of iterations.

1V
1V

2V

The figure is an exact replication

of the figure on page 97 of [1].

14

Policy Iteration: Diagram

In the above diagram denoting the policy iteration

the transition E and I stand for the policy evaluation and

policy improvements phases of the poliy iteration steps in

respective order [1].

optVVV E

opt

IEIE    10

10

This is the algorithm given in

Figure 4.3 on page 98 of [1].

15

Policy Iteration: Algorithm
• Initialization
• V(s) ∈ R, π(s)∈A(s) arbitrarily for all s∈ S
• Policy Evaluation
• Repeat

– Δ←0

– For each s ∈ S:
• v ← V(si)

• // π(s) arbitrarily selected

• Δ ← max{Δ,|v-V(s)|}

• Until Δ < θ (a small positive number)

• Policy Improvement

• Policy-stable ←true

• For each s ∈ S:
– b ← π(s)

– If b ≠ π(s), then policy-stable←false

• If policy-stable, then stop; else go to policy evaluation

 .)()()()(js

ss
j

s

ss
sVRPsV jj  

 )(maxarg)(ja

ss
j

a

ssa
sVRPs jiji

  

16

Value Iteration... (1)

• Idea: Policy evaluation step itself in policy iteration may require

iterative computations where multiple sweeps through the state

set are performed. But we observe in many examples the

possibility of cutting short the policy evaluation step without

losing the convergence guarantee of policy iteration. A special

case in this effort is stopping policy evaluation after a single

sweep (one backup of each state). This algorithm is called value

iteration.
 

 .)(

,)()(

max

max 111

j

k

a

ss
j

a

ss
a

t

i

ttkt

a

i

k

sVRP

aasssVrEsV

jiji 











This is the algorithm given in

Figure 4.5 on page 102 of [1].

17

Value Iteration: Algorithm
• Initialize V arbitrarily; e.g., V(si)=0 for all si∈ S

• Repeat
– Δ←0

– For each si∈ S:

• v ← V(si)

• Δ ← max{Δ,|v-V(si)|}

• Until Δ < θ (a small positive number)

Output a deterministic policy,π, such that

 .)()(max
ja

ss
j

a

ss
a

i sVRPsV jiji  

 )(maxarg)(ja

ss
j

a

ssa
sVRPs jiji   

18

Asynchronous Dynamic Programming

(ADP)
• Idea: ADP algorithms are in-place iterative algorithms that

update (back up) values of states in an unorganized manner.
This results in a non-uniform session of update of state values.
At a certain point of time, some states may get their values
updated several times while some others may have their values
not updated even once. Once eliminating this property to
correctly converge to an optimal policy, ADP algorithms provide
for great flexibility for the selection of states to which backup
operations are applied. This may be eliminated, for instance, by
backing up the value of only one state sk, on each step k, using
the value iteration backup. In short:

Update only state sk at time k !...

19

Generalized Policy Iteration

(GPI)... (1)
• Idea: We studied policy iteration to involve two interacting processes: policy

evaluation finding the value of states using the current policy and policy
improvement looking in a greedy manner for a new policy wrt the current
value function.

• These processes that we have seen to follow each other in a closed loop are
not required to operate in succession. In fact, we have shown in value
iteration that, between any two policy improvement session, a policy
evaluation session of a single sweep has been sufficient. Further, ADP
algorithms did provide a higher degree of interleaving by updating the value
of a single state at a policy evaluation session.

• The general idea in GPI is the interaction of policy evaluation and
improvement independent of how fine-grained the policy evaluation occurs
and of any other details of these two processes.

20

Generalized Policy Iteration... (2)

)(Vgreedy

VV 



 V

evaluation

improvement

** V
where * and V* denote optimal policy and state values, respectively.

21

References

• [1] Sutton, R. S. and Barto A. G.,

“Reinforcement Learning: An introduction,”

MIT Press, 1998

