Monte Carlo Methods Week #5

Introduction

• *Monte Carlo (MC) Methods*

- do not assume complete knowledge of environment (unlike DP methods which assume a perfect environment model)
- require experience
	- *sample sequences of states, actions, and rewards from interaction (on-line or simulated) with an environment*
- *on-line experience* exposes agent to *learning in an unknown environment* whereas *simulated experience* does require a model, but the *model needs only generate sample transitions and not the complete probability distribution*.
- In *MC* methods, the *unknown value functions* are computed from *averaging sample returns*.

Set up

- We assume the environment is a finite MDP.
- Finite set of states: *S*
- Finite set of actions: *A(s)*
- Dynamics of environment given by:

– a set of transition probabilities, and

-
\n- the expected immediate reward
\n-
\n
$$
P_{s_i s_j}^a = P(s_{t+1} = s_j | s_t = s_i, a_t = a)
$$
 unknown
\n-
\n
$$
R_{s_i s_j}^a = E(r_{t+1} | s_t = s_i, a_t = a, s_{t+1} = s_j)
$$
 unknown

• for all $s_i \in S$, $s_j \in S^+$ and $a \in A(s)$.

MC Policy Evaluation

- *Value of a state: expected cumulative future discounted reward*
- To estimate *state value* from *experience*, *returns observed after visits to that state should be averaged*.
- *Every-visit MC method*: method of estimating $V^{\pi}(s)$ as the average of the returns following all visits to the state *s* in a set of episodes.
- *First-visit MC method*: method of estimating $V^{\pi}(s)$ as the average of the returns following first visits to the state *s* in a set of episodes.

First-visit MC Method

- Initialize:
- *π*: the policy to be evaluated
- V: an arbitrary state-value function
- Returns(s): an empty list, for all s∈*S*
- Repeat forever:
	- Generate an episode using *π*
	- For each state s appearing in the episode:
		- $R \leftarrow$ return following the first occurrence of s
		- Append R to Returns(s)
		- $V(s) \leftarrow average(Returns(s))$

MC Estimation of Action Values

- For environments without a model, state values alone are not sufficient to determine a policy. A *one-step look-ahead* operation is enough to find the action that leads to the best combination of reward and next state.
- We need to estimate the value of the state-action pair, $Q^{\pi}(s, a)$, the expected return when starting in state *s*, taking action *a*.
- *Problem*: many state-action pairs may never be visited.
	- We need to *maintain exploration.*
	- *Two assumptions* to solve the problem*:*
		- *Exploring starts: each state-action pair has a non-zero probability.*
		- *Infinite number of episodes: all state-action pairs are visited infinitely many times*

Generalized Policy Iteration in MC **Methods**

where π^* and Q^* denote optimal policy and action values, respectively.

Policy Iteration: MC Version

$$
\pi_0 \xrightarrow{E} Q^{\pi_0} \xrightarrow{I} \pi_1 \xrightarrow{E} Q^{\pi_1} \xrightarrow{I} \cdots \pi_{opt} \xrightarrow{E} Q^{\pi_{opt}}
$$

In the above diagram denoting the policy iteration the transition *E* and *I* stand for the policy evaluation and policy improvement phases of the policy iteration steps in respective order [1]. For any *Q*, the corresponding *greedy policy* selects an *action with* the *maximal Q-value* as in the following:

$$
\pi(s) = \arg\max_{a} Q(s, a)
$$

The figure is an exact replication of the figure on page 97 of [1].

Removing the Second Assumption...

- To remove the assumption of *infinite number of episodes* we again use the same idea of *value iteration* (i.e., instead of many just a single iteration of policy evaluation between each policy improvement step) as we did during the discussion of dynamic programming.
- An extreme version is the *in-place value iteration* where at each iteration only one state is updated.

Monte Carlo ES Method

- Initialize $π(s)$ and Q(s,a) arbitrarily for all seS, ^a[∈]A(s):
- Returns(s,a) *←* empty list
- Repeat forever:
	- Generate an episode using exploring starts and *π*
	- For each pair (s,a) appearing in the episode:
		- $R \leftarrow$ return following the first occurrence of s,a
		- Append R to Returns(s,a)
		- Q(s,a) *←* average(Returns(s,a))
	- For each s in the episode: $\pi(s) \leftarrow \arg \max Q(s, a)$ *a*

Removing the first Assumption...

• To remove the assumption of *exploring starts* the agent needs to continually select actions.

• Two types of MC control to select actions are: – *on-policy* MC control, and

– *off-policy* MC control.

On-Policy MC Control

• In *on-policy* control, the policy we use to select actions (behavioral policy) is the same as the policy we use to estimate action values (estimation policy);

– i.e., *behavioral policy* **≡** *estimation policy*

- Idea is that of GPI.
- Any policy we discussed in the second week may be used in on-policy MC control.
- Without ES, the policy moves to an ε-greedy one.

On-Policy MC Control Algorithm

- Initialize for all s∈S, a∈A(s):
- Q(s,a) *←* arbitrary
- Returns(s,a) *←* empty list
- Repeat forever:
	- Generate an episode using *π*
	- For each pair (s,a) appearing in the episode:
		- $R \leftarrow$ return following the first occurrence of s, a
		- Append R to Returns(s,a)
		- Q(s,a) *←* average(Returns(s,a))
	- For each s in the episode:

$$
a^* \leftarrow \arg \max_{a} Q(s, a)
$$

$$
\pi(s, a) \leftarrow \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{A(s)} & \text{if } a = a^* \\ \frac{\varepsilon}{A(s)} & \text{if } a \neq a^* \end{cases}
$$

Off-Policy MC Control

- In *off-policy* control, the policy we use to select actions (*behavior policy*), π_b , and the policy we use to estimate action values (*estimation policy*), π_e , are separated.
- The question here is, how the state value estimates will be correctly updated using the estimation policy to reflect the selections of the behavior policy.

Off-Policy MC Control... (2)

- First requirement to work this out is that actions taken in π_e are also taken in π_b .
- Second, the rates of possibility of occurrence of any sequence between π_e and π_b starting from a specific visit to state *s* should be balanced.
- That is, consider *i*th first visit to state *s* and the complete sequence of states and actions following that visit. We define $p_{i,e}(s)$ and $p_{i,b}(s)$ as the probability of occurrence of the sequence mentioned above given policies π_e and π_b , respectively. Further, let $R_i(s)$ denote the corresponding observed return from state *s*, and $T_i(s)$ be the time of termination of the i^{th} episode involving state *s*. Then,

$$
p_i(s_t) = \prod_{k=t}^{T_i(s)-1} \pi(s_k, a_k) P_{s_k s_{k+1}}^{a_k}
$$

Off-Policy MC Control... (3)

• Assigning weights to each return by its relative probability of occurrence under π_e and π_b , $p_{i,e}(s)/p_{i,b}(s)$, the value estimate can be obtained by

$$
V(s) = \frac{\sum_{i=1}^{n_s} \frac{p_{i,e}(s)}{p_{i,b}(s)} R_i(s)}{\sum_{i=1}^{n_s} \frac{p_{i,e}(s)}{p_{i,b}(s)}}
$$

• where n_s is the number of returns observed from state *s*.

Off-Policy MC Control... (4)

• Looking below at the ratio of the probability we see that it depends upon the policies and not at all on the environment's dynamics.

$$
\frac{P_{i,e}(s_t)}{P_{i,b}(s_t)} = \frac{\prod_{k=t}^{T_i(s)-1} \pi_e(s_k, a_k) P_{s_k s_{k+1}}^{a_k}}{\prod_{k=t}^{T_i(s)-1} \pi_b(s_k, a_k) P_{s_k s_{k+1}}^{a_k}} = \frac{\prod_{k=t}^{T_i(s)-1} \pi_e(s_k, a_k)}{\prod_{k=t}^{T_i(s)-1} \pi_b(s_k, a_k)}
$$

Off-Policy MC Control Algorithm

- Initialize for all s∈S, a∈A(s):
- Q(s,a) *←* arbitrary
- $N(s,a) \leftarrow 0$; //Numerator
- $D(s,a) \leftarrow 0$; //Denominator of $Q(s,a)$
- Repeat forever:
	- Select a policy *π^e* and use it to generate an episode

• S_0 , ∂_0 , Γ_1 , S_1 , ∂_1 , Γ_2 , S_2 , ∂_2 , Γ_3 , ..., S_{T-1} , ∂_{T-1} , Γ_T , S_T .

 τ *← latest time at which* $a_{\tau} \neq \pi_b(s_{\tau})$

//...continues on the next page

Off-Policy MC Control Algorithm

- For each pair (s,a) appearing in the episode at time τ or later:
	- $t \leftarrow$ the time of first occurrence of s,a such that t $\geq \tau$ (s, a) (s, a) (s, a) $D(s, a) \leftarrow D(s, a) + w$ $N(s, a) \leftarrow N(s, a) + wR_t$ $({\overline{s}}_{\overline{k}}, a_{\overline{k}})$ $\frac{1}{2}$ 1 $_1\pi_{_h}(s_{_k},a)$ $D(s, a)$ *N ^s ^a* $Q(s,a) \leftarrow$ *w T* $k = t + 1$ ¹ μ β λ β μ γ $\leftarrow \prod^{I-1}$ $\sum_{t=1}^{n} \pi$
- $-$ For each s \in S:

$$
\pi(s) \leftarrow \arg\max_{a} Q(s, a)
$$

References

• [1] Sutton, R. S. and Barto A. G., "*Reinforcement Learning: An introduction*," MIT Press, 1998