Temporal-Difference Learning
Week #6



Introduction

» Temporal-Difference (TD) Learning

— a combination of DP and MC methods

* updates estimates based on other learned estimates (i.e., bootstraps),
(as DP methods)

» does not require a model; learns from raw experience (as MC
methods
— constitutes a basis for the reinforcement learning.

— Convergence to V" is guaranteed (asymptotically as in MC
methods)
* in the mean for a constant learning rate o if it is sufficiently small

« with probability 1 if o decreases in accordance with the usual
stochastic approximation conditions.



Update Rules for DP, MC and TD

« DP update
V(s,) = Zn(s a) Y P [R¥%s + N (50)]

adjacent
states

 MC update
V(s) =V (s)+eR)-V(s)]
« TD update 7target

UORTSE SRUChATSY

most recent return



Update Rules for DP, MC and TD

General update rule:
— NewEst = OldEst + LearningParameter (Target - OldEst)

DP update

— The new estimate is recalculated at every time step using
the information of the completely defined model.

MC update

— The target in MC methods is the real average return
obtained at the end of an episode.

TD update

— The target is the most recent return of the environment
added to the current estimated value of the next state.



Algorithm for TD(0)

o Initialize V(s) arbitrarily, r to the policy to be evaluated

o Repeat for each episode
— Initialize s
— Repeat for each step of episode

e a « action generated by n for s
e Jake action a, observe reward , and next state s’

V(s) =V (s)+a|r+yV(s) -V ()]

e S— 5’
— Until s is terminal



Advantages of TD Prediction Methods

They bootstrap (i.e., learn a guess from other
guesses)

— Question: Learning a guess from a guess still guarantees a
convergence to optimal state values?

— Answer: Yes,
* in the mean for a constant and sufficiently small o, and

« certainly (i.e., wpl) if a decreases according to the usual stochastic
approximation conditions.

They need no model of environment
— an advantage over DP methods

They do not wait until end of episode to update
state/action values



Advantages of TD Prediction
Methods... (2)

 Constant-o MC and TD methods bootstrap and
guarantee convergence.

 Question: Which methods converge first?

— There Is no mathematical proof answering that
guestion

— In practice, however, TD methods are shown to
converge usually faster than constant-a MC
methods on stochastic tasks.



Example: Random Walk

0 ° 0 ° 0 e 0 Q 0 e 1
 Episodic, no discounted RL task
o States: A, ..., E;
 Avallable actions: left (L), right (R)
 Goal: red square

« Termination: Both squares
 \Values: ?



Example: Random Walk

e True values:
— V(A)=1/6; V(B)=2/6; V(C)=3/6; V(D)=4/6; \/(E)=5/6;



Batch Updating

« Motive: In case the amount of experience is limited,
an alternative solution in incremental learning is to
repeatedly present experience until convergence.

 Batch updating Is the name since the updates are
performed but recording is postponed until after the
entire data are processed.

« Comparing constant-a MC and TD methods
conducting random walk experiment under batch
updating, we observe TD methods converge faster.

10



SARSA: On-Policy TD Control

GPI using TD methods: two approaches
— On-policy

— Off-policy

Transitions are between state-action pairs.
Action value functions

Value updates:

Qs &) =Q(s,, &) +alr,; + XS, as) — Qs &)

11



Algorithm: SARSA

o Initialize Q(s,a) arbitrarily
o Repeat for each episode
— Initialize s;
— Choose a from s using policy derived from Q

— Repeat for each step of episode
o Take action a, observe reward 1, and next state s’

e Choose a’ from s’ using policy derived from Q(e.g., &-
greedy)

Qs &) =Q(s, &) +alr,; + (S, aus) —Q(s,, )]

® S— Sra«ar
— Until s is terminal

12



Q-Learning: Off-Policy TD Control

 |earned action-value function, Q, directly
approximates optimal action-value function, Q~,
Independent of the behavior policy.

 This simplifies the analysis of the algorithm.

 For convergence, all that the behavior policy is
required to do Is that it sees the state-action pairs
are continuously visited and updated .

13



Algorithm for Q-learning

e Initialize Q(s,a) arbitrarily
o Repeat for each episode
— Initialize s;

— Repeat for each step of episode

e Choose a from s using policy derived from Q(e.g., &-

greedy)
o Take action a, observe reward 1, and next state s’

Q(s,a) =Q(s,a) +ar +y max, Q(s',a') — Q(s, )]
® S— S

— Until s is terminal
o Until convergence occurs

14



References

 [1] Sutton, R. S. and Barto A. G.,
“Reinforcement Learning: An introduction,”
MIT Press, 1998

15



