Temporal-Difference Learning Week #6

Introduction

- Temporal-Difference (TD) Learning
 - a combination of DP and MC methods
 - updates estimates based on other learned estimates (i.e., *bootstraps*), (as DP methods)
 - does not require a model; learns from raw experience (as MC methods
 - constitutes a basis for the reinforcement learning.
 - Convergence to V^{π} is guaranteed (asymptotically as in MC methods)
 - in the mean for a constant learning rate α if it is sufficiently small
 - with probability 1 if α decreases in accordance with the usual stochastic approximation conditions.

Update Rules for DP, MC and TD

• DP update $V(s_t) = \sum \pi(s_t, a) \sum P^a_{s_t s_{t+1}} \left[R^a_{s_t s_{t+1}} + \gamma V_t(s_{t+1}) \right]$ adjacent states current value estimate of next state • MC update $V(s_t) = V(s_t) + \alpha [R_t - V(s_t)]$ target • TD update $V(s_t) = V(s_t) + \alpha (r_{t+1}) + \gamma V_t(s_{t+1})$ $-V(s_{t})$ most recent return

Update Rules for DP, MC and TD

- General update rule:
 - NewEst = OldEst + LearningParameter (Target OldEst)
- DP update
 - The new estimate is recalculated at every time step using the information of the completely defined model.
- MC update
 - The target in MC methods is the *real average return* obtained at the end of an episode.
- TD update
 - The target is the *most recent return* of the environment added to the current estimated value of the next state.

Algorithm for *TD*(0)

- Initialize V(s) arbitrarily, π to the policy to be evaluated
- Repeat for each episode
 - Initialize s
 - Repeat for each step of episode
 - $a \leftarrow action generated by \pi$ for s
 - Take action a, observe reward r, and next state s'

$$V(s) = V(s) + \alpha [r + \gamma V(s') - V(s)]$$

- $S \leftarrow S'$
- Until s is terminal

Advantages of TD Prediction Methods

- They *bootstrap* (i.e., learn a guess from other guesses)
 - Question: Learning a guess from a guess still guarantees a convergence to optimal state values?
 - Answer: Yes,
 - in the mean for a constant and sufficiently small α , and
 - certainly (i.e., wp1) if α decreases according to the usual stochastic approximation conditions.
- They need no model of environment
 - an advantage over DP methods
- They do *not wait until end of episode* to update state/action values

Advantages of TD Prediction Methods... (2)

- Constant- α MC and TD methods *bootstrap* and guarantee convergence.
- *Question*: Which methods converge first?
 - There is no mathematical proof answering that question
 - In practice, however, TD methods are shown to converge usually faster than constant-α MC methods on stochastic tasks.

- Episodic, no discounted RL task
- States: *A*, ..., *E*;
- Available actions: *left* (*L*), *right* (*R*)
- Goal: red square
- Termination: Both squares
- Values: ?

- True values:
 - V(A)=1/6; V(B)=2/6; V(C)=3/6; V(D)=4/6; V(E)=5/6;

Batch Updating

- *Motive*: In case the amount of experience is limited, an alternative solution in incremental learning is to repeatedly present experience until convergence.
- *Batch updating* is the name since the updates are performed but recording is postponed until after the entire data are processed.
- Comparing constant-α MC and TD methods conducting random walk experiment under batch updating, we observe TD methods converge faster.

SARSA: On-Policy TD Control

- GPI using TD methods: two approaches
 - On-policy
 - Off-policy
- Transitions are between state-action pairs.
- Action value functions
- Value updates:

 $Q(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$

Algorithm: SARSA

- Initialize Q(s,a) arbitrarily
- Repeat for each episode
 - Initialize s;
 - Choose a from s using policy derived from Q
 - Repeat for each step of episode
 - Take action a, observe reward r, and next state s'
 - Choose a' from s' using policy derived from Q(e.g., εgreedy)

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

• $s \leftarrow s'; a \leftarrow a';$

- Until s is terminal

Q-Learning: Off-Policy TD Control

- Learned action-value function, Q, directly approximates optimal action-value function, Q^{*}, independent of the *behavior policy*.
- This simplifies the analysis of the algorithm.
- For convergence, all that the behavior policy is required to do is that it sees the state-action pairs are continuously visited and updated .

Algorithm for Q-learning

- Initialize Q(s,a) arbitrarily
- Repeat for each episode
 - Initialize s;
 - Repeat for each step of episode
 - Choose a from s using policy derived from Q(e.g., εgreedy)
 - Take action a, observe reward r, and next state s'

 $Q(s,a) = Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$

• $S \leftarrow S''_{\prime}$

- Until s is terminal
- Until convergence occurs

References

• [1] Sutton, R. S. and Barto A. G., *"Reinforcement Learning: An introduction,"* MIT Press, 1998