
1

Eligibility Traces (ETs)
Week #7

2

Introduction

• A basic mechanism of RL.

• λ in TD(λ) refers to an eligibility trace.

• TD methods such as Sarsa and Q-learning
may be combined with ETs to obtain more
efficient learning methods.

• Two different ways to view ETs:

– Forward view

– Backward view

3

Forward View of ET

• A more theoretical view: ETs are a bridge

between TD and MC methods.

• TD methods extended with ETs form a family

with TD methods at one end and MC methods

at the other.

4

ET: Definition

Definition: An eligibility trace is a record to keep

track of the extent to which a variable in an

adaptive system deserves to be updated by the

occurrence of a reinforcing event.

Example: The event of how recently an action

in a state is selected determines the extent of the

eligibility of the value of the action in the relevant

state to be updated.

5

n-Step TD Prediction

• Value updates are based upon

– the entire sequence of observed rewards, at one
end (MC methods) and,

– the next reward at the other end (TD methods).

• Update rules using an intermediate number of
observed rewards are called the n-step TD
methods.

• In this context, we call the latter TD methods
using the next reward one-step TD methods.

6

Updates... from one end to the other

 methodsTDstepnsVrrrrR

methodsTDsteptwosVrrR

methodsTDsteponesVrR

methodsMCrrrrR

ntt

n

nt

n

ttt

n

t

ttttt

tttt

T

tT

tttt

;

;

;

;

1

3

2

21

)(

2

2

21

)2(

11

)1(

1

3

2

21

where Rt is the complete return, T is the last time step

of the episode and Rt
(n) is called the corrected n-step

truncated return.

7

On-line and off-line updating

 tt

n

ttt sVRsV)(

• The value estimates are updated with the
above increment either immediately

– Vt+1(s)=Vt(s)+ΔVt(s), (on-line updating),

or after the entire episode is over

– (off-line updating)

1

0

)()()(
T

t

t sVsVsV

8

Forward View of TD(λ)

• Increments may also be established by any

weighted combination of the i-step returns where

the weights add up to 1.

• Example:

)7()5()3(

2

1

4

1

4

1
ttt

ave

t RRRR

9

Forward View... cont’d (2)

• Another example: λ-return

• with 0≤λ≤1.

• The i-step return is given the ith largest weight

(1-λ) λi-1.

1

)(11
n

n

t

n

t RR

10

Forward View... cont’d (3)

• The λ-return algorithm ...

• ... can also be expressed in the following way:

1

)(11
n

n

t

n

t RR

 t

tT
tT

n

n

t

n

t RRR 1
1

1

)(11

11

Forward View... cont’d (4)

• λ-return as expressed here shows better
that
– the λ-return is a bridge between TD and MC

methods, at two opposite ends, by the following
two facts

• with λ =0, λ-return turns to TD methods (00=1)

• with λ =1, λ-return turns to MC methods

 t

tT
tT

n

n

t

n

t RRR 1
1

1

)(11

12

Forward View ... Final word

• Rather a theoretical view of the TD(λ).

• An acausal view (i.e., return estimate Rt
λ at time t is

defined in terms of one or more future rewards rt+x,

x∈N+); therefore hard to implement

• The backward view more handy for implementation

 t

tT
tT

n

n

t

n

t RRR 1
1

1

)(11

13

Backward View of TD(λ)

• A more mechanistic rather than
theoretical view.

• Causal

• Associates each state (or action at a state)
with a variable, the eligibility trace, that
specifies how eligible the corresponding
state (or action at a state) is for updates
by the current reward.

14

Backward View of TD(λ)

• The eligibility trace, denoted by et(s), of a state s is

mathematically expressed as follows:

• On each step, the eligibility trace, et(s), decays by γλ, and, if

visited, its value is refreshed by incrementing by 1 where γ is

the discount rate and λ as introduced before is called the

trace-decay parameter.

ssse

ssse
se

tt

tt

t
1)(

)(
)(

1

1

15

Backward View of TD(λ)

• This kind of ET is called an accumulating trace to
indicate that, at every visit of a state, the state’s
eligibility trace accumulates then fades away with
any time step it is not visited.

• The reinforcing events are the moment-by-moment
TD errors and may be mathematically expressed as
follows:

• Then the corresponding update becomes

• Based on these update increments performed at each
time step, the TD(λ) algorithm is given on next page:

 tttttt sVsVr 11

 ttt sesV

16

Algorithm: TD(λ)
• Initialize V(s) arbitrarily for all s ∈S

• Repeat for each episode
– Initialize e(s)=0 for all sS
– Initialize s;
– Repeat for each step of episode

• a ← π(s)
• Perform a; observe r, and next state s’

• δ ← r+γV(s’)-V(s)

• e(s)=e(s)+1
• For all s:

– V(s) ←V(s)+αδe(s)

– e(s) ←γλe(s)

• s ← s’
– Until s is terminal

17

Remarks

ssse

ssse
se

tt

tt

t
1)(

)(
)(

1

1

 tttttt sVsVr 11

• Backward view of TD(λ) is causal meaning that the

state/action values are a function of past (i.e., not

future) state/action values.

• The past values are updated at each time step based

on the current TD error depending on the state’s ET.

•Special cases:

• λ =0: et(s)=0 except for s=st → TD(0) method
• λ =1: λ does not decay credit given to earlier states; hence

each state receives credit based upon when it is visited. →

MC method or TD(1) method.

18

Sarsa(λ)

• ETs can be used to control an environment.

• As usual, we need simply learn action values Qt(s,a)

rather than state values Vt(s). As the relation of TD(λ)

to TD(0), the version of the Sarsa algorithm with ETs

is called Sarsa(λ), and the original version, from now

on, one-step Sarsa.

• The symbol et(s,a) denotes the eligibility trace for

action a at state s, and δt =rt+1+γQt(st+1,at+1)-Qt(st,at)

represents the update in action values.

19

Sarsa(λ)... Formulae

• Further, the following formulae represent the action

updates and eligibility traces in Sarsa, respectively:

otherwisease

aaandssifase
ase

asQasQr

t

ttt

t

ttttttt

),(

1),(
),(

),(),(

1

1

111t

20

Sarsa(λ)... Algorithm

• Initialize Q(s,a) arbitrarily for all s,a
• Repeat for each episode

– e(s,a)=0 for all (s,a) pairs
– Initialize s,a;
– Repeat for each step of episode

• Perform a; observe r, and next state s’
• Choose a’ from s’ using policy derived from Q(e.g., ε-greedy)

• δ ← r+γQ(s’,a’)-Q(s,a)

• e(s,a)=e(s,a)+1
• For all s,a:

– Q(s,a) ← Q(s,a)+αδe(s,a)

– e(s,a) ←γλe(s,a)

• s ← s’; a ← a’
– Until s is terminal

21

Q(λ)
• Q(λ) is the off-policy RL method with ETs

• Two versions of Q(λ)

– Watkin’s Q(λ)

– Peng’s Q(λ)

• The essence of using ETs is; in order to end up with the

optimal policy, to increment the values of states or state-action

pairs at each time step on the basis of the extent to which it has

received visits.

• Looking at Sarsa(λ) algorithm, we observe that at each time

step the γλ-decayed ET e(s) or e(s,a) weighting the error δt that

adjusts the value of the state or state-action pair is or is not

incremented depending upon whether or not the state or state-

action pair is taken using the policy.

22

Q(λ) ... (2)
• In the off-policy case, there is no problem as long as

the state-action pair selections in the estimation and
behavior policy are the same.

• The problem starts at the point where the behavior
policy branches away from the estimation policy.
The first of the possible exploratory (i.e., non-greedy)
actions in the behavior policy interrupts the sequence
of action-response loop in the estimation policy and
does not provide any correct subsequential experience
on the estimation policy any more.

• So, it is no longer usable after the first exploratory
action to follow the behavior policy.

23

Watkin’s Q(λ) ...FW view
• Watkin’s Q(λ) is just the same as TD(λ) with the only

difference that the learning stops at whichever of the

first exploratory (i.e., non-greedy) action or the end

of the episode occurs first.

• To be exact, if at+n is the first exploratory action the

longest backup is toward

• where off-line updating is assumed.

 asQrrr ntt
a

n

nt

n

tt ,max1

21

24

Watkin’s Q(λ) ...BW view
• From a mechanistic viewpoint, Watkin’s Q(λ) exploits

ETs just the same as Sarsa(λ) with the only difference

that the ETs are set to 0 whenever an exploratory (i.e.,

non-greedy) action is taken.

• Formally, the trace update is expressed as follows:

),(),(max

),(),(),(

0

1

0

),(max),(),(
*),(

'

11t

1

111

' ttttt
a

t

tttt

ij

tt
a

tttt

aasst

asQasQrwhere

aseasQasQand

ji

ji
Iwhere

otherwise

asQasQifase
IIase

tt

25

Watkin’s Q(λ)... Algorithm

• Initialize Q(s,a) arbitrarily for all s,a
• Repeat for each episode

– e(s,a)=0 for all (s,a) pairs
– Initialize s,a;
– Repeat for each step of episode

• Perform a; observe r and next state s’
• Choose a’ from s’ using policy derived from Q(e.g., ε-greedy)

• a*←argmaxbQ(s’,b) (if a’ ties for the max, then a*=a’)

• δ ← r+γQ(s’,a*)-Q(s,a)

• e(s,a)=e(s,a)+1
• For all s,a:

– Q(s,a) ← Q(s,a)+αδe(s,a)

– if a*=a’ then e(s,a) ←γλe(s,a)

– else e(s,a) ← 0

• s ← s’; a ← a’
– Until s is terminal

26

Peng’s Q(λ) ... Motivation
• Watkin’s Q(λ) is not sufficiently effective if exploratory actions

are taken frequently (i.e., ε high) since a sufficiently long
sequence of experience or backups will not form, hence,
learning may be only little faster than learning with one-step Q
learning.

• Peng’s Q(λ) is meant to handle this problem.

• It is a mixture of Sarsa(λ) and Q(λ).

• The key is that there is no distinction between the behavior
and estimation policy up until the last action taken at which a
greedy selection is preferred.

• It should converge to an intermediate policy between Qπ and
Q*. The more greedy the policy is made gradually the higher
the probability is made for the policy to converge to Q*.

27

Replacing Traces
• Sometimes a better performance may be obtained using the so-

called replacing trace with the following trace updates:

• With replacing traces the trace will never exceed 1 as opposed

to accumulating traces which outperform accumulating traces

in cases in which there is a good probability of taking a wrong

action several consecutive times (see example 7.5 pp 186 &

Fig. 7.18).

ss

ssse
se

t

tt

t
1

)(
)(

1

28

Example
wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1

• The start state is the left-most state and goal is the

orange square.

• Rewards are zero except that for the action that

accesses the goal that provides a +1.

• Imagine what happens when wrong is taken by the

agent several times before right.

29

Example ...(2)

• With accumulating traces:

– At the end of the first episode, e(s,wrong)>e(s,right),

although right is more recent, wrong is selected more

frequently.

– At the receipt of the reward, this is likely to cause

Q(s,wrong)>Q(s,right).

– This will not continue endlessly. Eventually as right is

selected more frequently, the convergence will occur on

right; but learning will slow down.

wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1

30

Example ...(3)
wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1

• With replacing traces:

– This will not happen since the trace’s value will not

accumulate but be replaced (i.e., the value of the trace will

not be incremented by 1, but its highest value will be 1

whenever its relevant state is visited.)

– Hence, a recent right will have higher value than a wrong

with several less recent visits.

31

Control Methods with Replacing

Traces
• Control methods may use replacing ETs.

• Here, the ETs should be modified to involve action
selections and distinguish between the action taken
and those that are not.

• The following reflects the necessary modification:

• Testing this formula with the same example shows
that this works even better.

 ssase

aaandss

aaandss

ase

tt

tt

tt

t

),(

0

1

),(

1

32

Implementation Issues

• Methods with ETs may seem to enhance the
computational cost a lot since they require the
computation of the ETs of every state (or, even more
dramatically, every state-action pair).

• Thank to the fastly decaying γλ factor of ETs,
however, one can see that, for typical values of λ and
γ, the ETs of only the recently visited states are
significant. Those of almost all other states are
almost always nearly zero.

• Consequence: Sufficient to keep record of those
states only with significant values of ETs!

33

Variable λ

• An advanced topic;

• Open to research especially on practical

applications;

• It involves allowing λ to vary in time (i.e., λ=

λt).

• An interesting way to vary λ would be to have

it change as a function of states (i.e., λt= λ(st)).

• How would you like to have λ(st) change then?

34

Variable λ

• For those states whose values are believed to

be known with high certainty should contribute

to the estimate fully (meaning that the traces

should be cut off for these states, λ near 0);

• Others with highly uncertain value estimates

should undergo a significant amount of

adjustment, meaning a λ value closer to 1.

35

Backward View of Variable λ

ssse

ssse
se

ttt

ttt

t
1)(

)(
)(

1

1

36

Forward View of Variable λ

• The general definition of λ-return algorithm ...

• ... can also be expressed in the following way:

1

1

1

)(1
n

nt

ti

int

n

tt RR

1

1

1

1

1

1

)(1
T

ti

it

T

tk

k

ti

ik

tk

tt RRR

37

Conclusions

• MC methods are mentioned to have advantages in
non-Markov tasks since they do not bootstrap.

• Because ETs make TD methods like MC methods
they are also advantageous in non-Markov tasks.

• Methods with ETs require more computation than
one-step methods, but in return they offer
significantly faster learning, particularly when
rewards are delayed by many steps. Hence, ETs are
useful when data are scarce and cannot be repeatedly
processed, as is the case in most on-line applications.

38

References

• [1] Sutton, R. S. and Barto A. G.,

“Reinforcement Learning: An introduction,”

MIT Press, 1998

