
1

Eligibility Traces (ETs)
Week #7
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Introduction

• A basic mechanism of RL.

• λ in TD(λ) refers to an eligibility trace.

• TD methods such as Sarsa and Q-learning  
may be combined with ETs to obtain more 
efficient learning methods.

• Two different ways to view ETs:

– Forward view

– Backward view
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Forward View of ET

• A more theoretical view: ETs are a bridge 

between TD and MC methods.  

• TD methods extended with ETs form a family 

with TD methods at one end and MC methods 

at the other.
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ET: Definition

Definition: An eligibility trace is a record to keep 

track of the extent to which a variable in an

adaptive system deserves to be updated by the

occurrence of a reinforcing event.

Example: The event of how recently an action 

in a state is selected determines the extent of the

eligibility of the value of the action in the relevant 

state to be updated.
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n-Step TD Prediction

• Value updates are based upon 

– the entire sequence of observed rewards, at one 
end (MC methods) and,  

– the next reward at the other end (TD methods).

• Update rules using an intermediate number of 
observed rewards are called the n-step TD 
methods.

• In this context, we call the latter TD methods 
using the next reward one-step TD methods.
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Updates... from one end to the other
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where Rt is the complete return, T is the last time step

of the episode and Rt
(n) is called the corrected n-step 

truncated return.
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On-line and off-line updating
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• The value estimates are updated with the 
above increment either immediately 

– Vt+1(s)=Vt(s)+ΔVt(s), (on-line updating), 

or after the entire episode is over 

– (off-line updating)
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Forward View of TD(λ)

• Increments may also be established by any 

weighted combination of the i-step returns where 

the weights add up to 1.

• Example:
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Forward View... cont’d (2)

• Another example: λ-return

• with 0≤λ≤1.

• The i-step return is given the ith largest weight 

(1-λ) λi-1.
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Forward View... cont’d (3)

• The λ-return algorithm ...

• ... can also be expressed in the following way:
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Forward View... cont’d (4)

• λ-return as expressed here shows better 
that
– the λ-return is a bridge between TD and MC 

methods, at two opposite ends, by the following 
two facts

• with λ =0, λ-return turns to TD methods (00=1)

• with λ =1, λ-return turns to MC methods
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Forward View ...  Final word 

• Rather a theoretical view of the TD(λ). 

• An acausal view (i.e., return estimate Rt
λ at time t is 

defined in terms of one or more future rewards rt+x, 

x∈N+); therefore hard to implement

• The backward view more handy for implementation
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Backward View of TD(λ)

• A more mechanistic rather than 
theoretical view.

• Causal

• Associates each state (or action at a state) 
with a variable, the eligibility trace, that 
specifies how eligible the corresponding 
state (or action at a state) is for updates 
by the current reward.



14

Backward View of TD(λ)

• The eligibility trace, denoted by et(s), of a state s is 

mathematically expressed as follows:

• On each step, the eligibility trace, et(s), decays by γλ, and, if 

visited, its value is refreshed by incrementing by 1 where γ is 

the discount rate and λ as introduced before is called the 

trace-decay parameter. 
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Backward View of TD(λ)

• This kind of ET is called an accumulating trace to 
indicate that, at every visit of a state, the state’s 
eligibility trace accumulates then fades away with 
any time step it is not visited.

• The reinforcing events are the moment-by-moment 
TD errors and may be mathematically expressed as 
follows:

• Then the corresponding update becomes

• Based on these update increments performed at each 
time step, the TD(λ) algorithm is given on next page: 
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Algorithm: TD(λ)
• Initialize V(s) arbitrarily for all s ∈S

• Repeat for each episode
– Initialize e(s)=0 for all sS
– Initialize s;
– Repeat for each step of episode

• a ← π(s)
• Perform a; observe r, and next state s’

• δ ← r+γV(s’)-V(s)

• e(s)=e(s)+1
• For all s:

– V(s) ←V(s)+αδe(s)

– e(s) ←γλe(s)

• s ← s’
– Until s is terminal
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Remarks
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• Backward view of TD(λ) is causal meaning that the 

state/action values are a function of past (i.e., not 

future) state/action values.

• The past values are updated at each time step based 

on the current TD error depending on the state’s ET.

•Special cases:

• λ =0: et(s)=0 except for s=st → TD(0) method
• λ =1:  λ does not decay credit given to earlier states; hence 

each state receives credit based upon when it is visited. → 

MC method or TD(1) method.
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Sarsa(λ)

• ETs can be used to control an environment.

• As usual, we need simply learn action values Qt(s,a)

rather than state values Vt(s).  As the relation of TD(λ)

to TD(0), the version of the Sarsa algorithm with ETs 

is called Sarsa(λ), and the original version, from now 

on, one-step Sarsa.

• The symbol et(s,a) denotes the eligibility trace for 

action a at state s, and δt =rt+1+γQt(st+1,at+1)-Qt(st,at)

represents the update in action values.
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Sarsa(λ)... Formulae

• Further, the following formulae represent the action 

updates and eligibility traces in Sarsa, respectively:
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Sarsa(λ)... Algorithm

• Initialize Q(s,a) arbitrarily for all s,a
• Repeat for each episode

– e(s,a)=0 for all (s,a) pairs
– Initialize s,a;
– Repeat for each step of episode

• Perform a; observe r, and next state s’
• Choose a’ from s’ using policy derived from Q(e.g., ε-greedy)

• δ ← r+γQ(s’,a’)-Q(s,a)

• e(s,a)=e(s,a)+1
• For all s,a:

– Q(s,a) ← Q(s,a)+αδe(s,a)

– e(s,a) ←γλe(s,a)

• s ← s’; a ← a’
– Until s is terminal
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Q(λ)
• Q(λ) is the off-policy RL method with ETs

• Two versions of Q(λ)

– Watkin’s Q(λ)

– Peng’s Q(λ)

• The essence of using ETs is; in order to end up with the 

optimal policy, to increment the values of states or state-action 

pairs at each time step on the basis of the extent to which it has 

received visits.

• Looking at Sarsa(λ) algorithm, we observe that at each time 

step the γλ-decayed ET e(s) or e(s,a) weighting the error δt that 

adjusts the value of the state or state-action pair is or is not 

incremented depending upon whether or not the state or state-

action pair is taken using the policy. 



22

Q(λ) ... (2)
• In the off-policy case, there is no problem as long as 

the state-action pair selections in the estimation and 
behavior policy are the same.  

• The problem starts at the point where the behavior 
policy branches away from the estimation policy.  
The first of the possible exploratory (i.e., non-greedy) 
actions in the behavior policy interrupts the sequence 
of action-response loop in the estimation policy and 
does not provide any correct subsequential experience 
on the estimation policy any more.

• So, it is no longer usable after the first exploratory 
action to follow the behavior policy.
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Watkin’s Q(λ) ...FW view 
• Watkin’s Q(λ) is just the same as TD(λ) with the only 

difference that the learning stops at whichever of the 

first exploratory (i.e., non-greedy) action or the end 

of the episode occurs first.

• To be exact, if at+n is the first exploratory action the 

longest backup is toward

• where off-line updating is assumed.
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Watkin’s Q(λ) ...BW view 
• From a mechanistic viewpoint, Watkin’s Q(λ) exploits 

ETs just the same as Sarsa(λ) with the only difference 

that the ETs are set to 0 whenever an exploratory (i.e., 

non-greedy) action is taken.

• Formally, the trace update is expressed as follows:
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Watkin’s Q(λ)... Algorithm

• Initialize Q(s,a) arbitrarily for all s,a
• Repeat for each episode

– e(s,a)=0 for all (s,a) pairs
– Initialize s,a;
– Repeat for each step of episode

• Perform a; observe r and next state s’
• Choose a’ from s’ using policy derived from Q(e.g., ε-greedy)

• a*←argmaxbQ(s’,b) (if a’ ties for the max, then a*=a’)

• δ ← r+γQ(s’,a*)-Q(s,a)

• e(s,a)=e(s,a)+1
• For all s,a:

– Q(s,a) ← Q(s,a)+αδe(s,a)

– if  a*=a’ then  e(s,a) ←γλe(s,a)

– else e(s,a) ← 0

• s ← s’; a ← a’
– Until s is terminal
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Peng’s Q(λ) ... Motivation
• Watkin’s Q(λ) is not sufficiently effective if exploratory actions 

are taken frequently (i.e., ε high) since a sufficiently long 
sequence of experience or backups will not form, hence, 
learning may be only little faster than learning with one-step Q 
learning.

• Peng’s Q(λ) is meant to handle this problem.

• It is a mixture of Sarsa(λ) and Q(λ).

• The key is that there is no distinction between the behavior 
and estimation policy up until the last action taken at which a 
greedy selection is preferred.

• It should converge to an intermediate policy between Qπ and 
Q*.  The more greedy the policy is made gradually the higher 
the probability is made for the policy to converge to Q*. 
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Replacing Traces
• Sometimes a better performance may be obtained using the so-

called replacing trace with the following trace updates: 

• With replacing traces the trace will never exceed 1 as opposed 

to accumulating traces which outperform accumulating traces 

in cases in which there is a good probability of taking a wrong 

action several consecutive times (see example 7.5 pp 186 & 

Fig. 7.18).
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Example
wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1

• The start state is the left-most state and goal is the 

orange square.

• Rewards are zero except that for the action that 

accesses the goal that provides a +1.

• Imagine what happens when wrong is taken by the 

agent several times before right.  
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Example ...(2)

• With accumulating traces:

– At the end of the first episode, e(s,wrong)>e(s,right), 

although right is more recent,  wrong is selected more 

frequently.

– At the receipt of the reward, this is likely to cause 

Q(s,wrong)>Q(s,right).

– This will not continue endlessly.  Eventually as right is 

selected more frequently, the convergence will occur on 

right; but learning will slow down.

wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1
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Example ...(3)
wrong wrong

right

wrong wrong

rightright

wrong

rightright

+1

• With replacing traces:

– This will not happen since the trace’s value will not 

accumulate but be replaced (i.e., the value of the trace will 

not be incremented by 1, but its highest value will be 1  

whenever its relevant state is visited.)  

– Hence, a recent right will have higher value than a wrong

with several less recent visits.
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Control Methods with Replacing 

Traces
• Control methods may use replacing ETs.

• Here, the ETs should be modified to involve action 
selections and distinguish between the action taken 
and those that are not.

• The following reflects the necessary modification:

• Testing this formula with the same example shows 
that this works even better.
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Implementation Issues

• Methods with ETs may seem to enhance the 
computational cost a lot since they require the 
computation of the ETs of every state (or, even more 
dramatically, every state-action pair).

• Thank to the fastly decaying γλ factor of ETs, 
however, one can see that, for typical values of λ and 
γ, the ETs of only the recently visited states are 
significant.  Those of almost all other states are 
almost always nearly zero.

• Consequence: Sufficient to keep record of those 
states only with significant values of ETs!



33

Variable λ

• An advanced topic; 

• Open to research especially on practical 

applications;

• It involves allowing λ to vary in time (i.e., λ= 

λt).

• An interesting way to vary λ would be to have 

it change as a function of states (i.e., λt= λ(st)).

• How would you like to have λ(st) change then?
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Variable λ

• For those states whose values are believed to 

be known with high certainty should contribute 

to the estimate fully (meaning that the traces 

should be cut off for these states, λ near 0); 

• Others with highly uncertain value estimates

should undergo a significant amount of 

adjustment, meaning a λ value closer to 1.  
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Backward View of Variable λ
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Forward View of Variable λ

• The general definition of λ-return algorithm ...

• ... can also be expressed in the following way:
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Conclusions

• MC methods are mentioned to have advantages in 
non-Markov tasks since they do not bootstrap.

• Because ETs make TD methods like MC methods 
they are also advantageous in non-Markov tasks.

• Methods with ETs require more computation than 
one-step methods, but in return they offer 
significantly faster learning, particularly when 
rewards are delayed by many steps.  Hence, ETs are 
useful when data are scarce and cannot be repeatedly 
processed, as is the case in most on-line applications.  
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