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Preface

The writing of this book has been a personal exploration for me in the
widest sense of the word. Its origins can be traced to my friendship
with Mary Blade, an engineer, artist, and descriptive geometer who
developed a project-oriented course on the relationship between math-
ematics and design and taught it for many years at the Cooper Union.
I am a mathematician and 10 years ago I presented some of Professor
Blade’s ideas to a number of colleagues from the Mathematics and
Computer Science Departments and the School of Architecture at the
New Jersey Institute of Technology. These discussions led to the of-
fering of a course for students from the School of Architecture in the
Mathematics of Design. Over the past 10 years, l have had the pleasure
of observing beautiful works of art and designs created by my students,
based on the mathematical ideas that I have presented to them. It was
only years after I started that I learned that I was rediscovering a
well-established field of inquiry known to some as design science. This
book is meant to be an introduction to this field. I have attempted to
make it as comprehensive a survey of the field as space and my own
involvement in it permits.

What is design science? It is a subject that has advanced from the
twin perspectives of the designer and the scientist sometimes in concert
with each other and sometimes on their own, and may be considered
to be a geometric bridge between art and science. Design science owes
its beginnings to the architect, designer, and inventor Buckminster
Fuller. In a meeting with Nehru in India in 1958, Fuller said

The problem of a comprehensive design science is to isolate specific in-
stances of the pattern of a general, cosmic energy system and turn these
to human use.

The chemical physicist Arthur Loeb is one of the individuals most
responsible for recognizing design science as an independent discipline.
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He considers it to be the grammar of space and describes it as follows:

Just as the grammar of music consists of harmony, counterpoint, and form
which describes the structure of a composition, so spatial structures,
whether crystalline, architectural, or choreographic, have their grammar
which consists of such parameters as symmetry, proportion, connectivity,
stability, etc. Space is not a passive vacuum; it has properties which
constrain as well as enhance the structures which inhabit it.

This book is an exploration of this grammar of space, with the objective
to show, by way of demonstration, that this grammar can be the basis
of a common language that spans the subjects of art, architecture,
chemistry, biology, engineering, computer graphics, and mathematics.
Perhaps design science’s greatest value lies in its potential to reverse
the trend toward fragmentation resulting from the overspecialization
of our scientific and artistic worlds and to alleviate some of the isolation
of discipline from discipline that has been the result of that overspe-
cialization.

Design science is an interdisciplinary endeavor based on the work
of mathematicians, scientists, artists, architects, and designers. The
early pioneers, some of whom have been influential in its development
in varying degrees, include the inventor Alexander Graham Bell, the
biologist ’Arcy Thompson, R. Buckminster Fuller, the structural in-
ventor Robert Le Ricolais, Arthur Loeb, the recreational mathemati-
cian Martin Gardner, the artist and designer Gyorgy Kepes, the artist
M. C. Escher, and several architectural designers who have contributed
continually to the field. These include David Emmerich, Stuart Dun-
can, Janos Baracs, Anne Tyng, Steve Baer, Michael Burt, Peter Pearce,
Keith Critchlow, and Haresh Lalvani. Reference to these people and
others is found throughout the chapters and in the bibliography to this
book.

Mathematics serves as the foundation of design science, and the
mathematicians who have had the most profound influence on my own
thinking on this subject are H. S. M. Coxeter, Branko Grinbaum, and
Benoit Mandelbrot. Special mention must also be made of the work
gathering and disseminating ideas on the part of the structural topol-
ogy group at the University of Montreal under the leadership of Janos
Baracs and the mathematician Henry Crapo. In addition, the chemist
Istvan Hargittai has done enormously valuable work editing two large
volumes on symmetry as a unifying force behind science and art and
starting a new journal entitled Symmetry. In addition, I would like to
acknowledge another journal, Space Structures, which is devoted pri-
marily to structures from an architectural and engineering standpoint.

The unsung heroes of design science also deserve a large share of
the credit for its development. These are people who, for a variety of
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reasons have labored, often on a single idea, in their studios, labora-
tories, or studies to discover parts of the thread which binds this dis-
cipline together. Today, mathematicians have, for the most part, given
up the study of the roots of their subject in two- and three-dimensional
geometry in order to delve into greater and greater realms eof abstrac-
tion. As Branko Griinbaum (1981) has lamented:

It is a rather unfortunate fact (for mathematics) that much of the creative
introduction of new geometric ideas is done by nonmathematicians, who
encounter geometric problems in the course of their professional activities.
Not finding the solution in the mathematical literature, and often not
finding even a sympathetic ear among mathematicians, they proceed to
develop their solutions as best they can and publish their results in the
journals of their own disciplines.

At the same time computer scientists have added their own form of
abstraction to the study of geometry by replacing the constructive
aspects of this subject with two-dimensional pictures on a computer
screen. It is into this dearth of geometrical thinking that artists, ar-
chitects, designers, crystallographers, chemists, structural biologists,
and individuals from other disciplines have come with their extraor-
dinary constructions and discoveries. A large part of this book is de-
voted to bringing their ideas to light.

A book such as this must have boundaries and so certain topics were
regrettably omitted. For example, Chaps. 7 through 10, devoted to
polyhedra, leave off where B. M. Stewart’s fascinating toroidal poly-
hedra begin (Stewart, 1980). Also, most of the topics of this book relate
to euclidean geometry, yet projective geometry is a far richer system
of geometry as shown in the work of Janos Baracs and Henry Crapo
and the many books and monographs on the synthetic approach to
projective geometry published by the Rudolf Steiner Institute (Crapo,
1978) (Edwards).

It was only at the conclusion of my work on this book that I discovered
what it was about. On one level, this book is a collection of special
topics in ancient and modern geometry. On another it introduces the
reader to many of the ways that geometry underlies the creation of
beautiful designs and structures. At a deeper level, this book shows
how geometry serves as an intermediary between the unity and har-
mony of the natural world and the capability of humans to perceive
this order. Le Corbusier has expressed this role of mathematics elo-
quently (Le Corbusier, 19685):

The flower, the plant, the tree, the mountain . . . if the true greatness of
their aspect draws attention to itself, it is because they seem contained
in themselves, yet producing resonances all around. We stop short, con-
scious of so much natural harmony; and we look, moved by so much unity
commanding so much space; and then we measure what we see.
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In this book we shall measure and study the consequences of these
measurements but try not to lose sight of the spiritual elements which
give meaning and life to the study of design science.

The book is written so that the theory is illustrated at each step by
either a design or an application. However, no attempt has been made
to be exhaustive in either theory or practice. Each chapter of the book
is written so that it can be read separately. However, as is characteristic
of design science, each chapter is also tightly interwoven with each of
the others. As a result, the reader can choose a variety of paths through
the book. Design science is a dynamic discipline. It is forever changing
as each practitioner brings his or her new perspective to bear on the
subject. In this spirit, the reader is invited to actively participate in
the discovery of design science by carrying out some of the construc-
tions, experiments, and problems suggested throughout the book and
to think about how the ideas arise in the reader’s own discipline.

Although this book was not written as a textbook, if supplemented
by a manual of additional exercises, problems, projects, and a guide to
instructors, it can be used to teach a course like the one I teach at New
Jersey Institute of Technology. McGraw-Hill is considering publishing
such a supplementary manual.

Jay Kappraff



Acknowledgments

I would like to acknowledge support that The Graham Foundation
offered to make the writing of this book possible. In addition to the
people already mentioned, I would like to acknowledge the invaluable
help of Alan Stewart, who taught the mathematics of design with me
for several years and made many contributions to its development, and
to Denis Blackmore, Bill Strauss, and Steve Zdepski, who also worked
with me on the early development of the ideas found in this book. A
special thanks goes to the generations of students who have taken my
course and who, through their creations, have inspired me to develop
the ideas found in this book. I wish to acknowledge the help of Branko
Grinbaum and Denis Blackmore who read and commented on the
manuscript in its early stages and for the help and encouragement of
Istvan Hargittai. I am indebted to Haresh Lalvani who made the re-
sults of his advanced research in design science generously available
to me. He helped me to see how the many parts of this subject fit
together, and you will see much of his work displayed throughout this
book. N. Rivier and Janos Baracs were also generous in sharing the
results of their work with me. I am also grateful for the help of Eytan
Carmel, Hyung Lee, and David Henig-Elona, who created many of the
drawings, and Richard McNally, Rebeca Daniels, and Vedder Wright,
who contributed their comments, ideas, and encouragement. A special
thanks goes to Bruce Brattstrom who played a major role in creating
drawings and models and in offering a calming influence as final dead-
lines approached. My patient family also deserves thanks since without
their encouragement the completion of this task would have been more
difficult and less enjoyable. Finally, McGraw-Hill has been an ideal
partner in the creation of this manuscript. I have enormous appreci-
ation for their venturesome spirit in the production of this unusual
book. I could not have had two finer editors to work with than Joel
Stein and Nancy Young. I, of course, take full responsibility for any
errors of content found within these covers.



This page isintentionally left blank



Credits

COVER Image by Haresh Lalvani; software by Patrick Hanrahan and Computer
Graphics Lab of NYIT. © NYIT.

Figure 1.1 By courtesy of Elemond, Milano, Italy.

Figure 1.2 From Michell, 1983.

Figure 1.3 From Michell, 1983.

Figures 1.6 and 1.7 From Smith, R., Harmonics, De Capo Press.

Figure 1.8 From Scholfield, 1958.

Figure 1.10 From March and Steadman, 1974. © Methuen, Ltd.

Figure 1.11  From Le Corbusier, 1968. © Harvard Press.

Figure 1.12 By Allison Baxter.

Figure 1.13 From The Granger Collection.

Figure 1.14 From Le Corbusier, 1968. © Harvard Press.

Figure 2.1 From Jacobs, 1987. Copyright © 1974 by W. H. Freeman and Co. Reprinted
by permission.

Figure 2.5(d) From Museo Capitolino; Rome, Italy.

Figure 28 From Gardner, 1978. Copyright © 1978 by Scientific American, Inc. Reprinted
by permission of W. H. Freeman and Company.

Figures 2.10(a) Drawing by Bruce Brattstrom.

Figure 2.12(b) Computer generated by David Henig-Elona.

Figure 2.15 Drawing by Bruce Brattstrom.

Figure 2.21(a) From Michell, 1988.

Figure 2.21(b) Drawing by Bruce Brattstrom from photo by Jean Roubier.

Figures 2.25, 2.26, 2.27, and 2.28 From Mandelbrot, 1982. © Mandelbrot. Reproduced by
permission of W. H. Freeman and Company.

Figures 2.B.5 and 2.B.8 From Coxeter, 1955.

Figure 3.2 and 3.3 From Tyng, 1975.

Figure 3.4 By Brian Getts.

Figure 3.10 From Lawlor, 1982. © Thames Hudson.
Figure 3.11 From Coxeter, 1953.

Figure 3.15 From Davis and Chinn, 1969.

Figure 3.16 From Michell, 1988.

Figure 3.19(b) From Ghyka, 1978.

Figure 3.20 Computer generated by R. Langridge. Computer Graphics Laboratory, Univ.
of Calif., San Francisco. © Regents, Univ. of Calif.

Figure 3.21(a) and (b) Photos by Nina Prantis.



xviii Credits

Figure 3.21(c) Photo by Michael Ziegler.

Figure 3.22 From Stevens, 1974. © 1974 by Peter H. Stevens. By permission of Liitle,
Brown and Company.

Figures 3.25, 26, 28, and 29 From Lenduvai, 1966.
Figure 4.2 From Williams, 1972.

Figures 4.9 and 4.10 From Trudeau, 1976.
Figure 4.12 From Beck, et al., 1969.

Figures 4.15, 4.19, 4.21, and 4.22 From Baglivo and Graver, 1983. © Cambridge Univ.
Press.

Figure 4.25 From Trudeau, 1976.

Figure 4.28 From Baglivo and Graver, 1983. © Cambridge Univ. Press.

Figure 4.29 From Tietze, 1965.

Figures 4.33, 4.34, and 4.39. From Firby and Gardiner, 1982. © Wiley.

Figure 4.41 From Struble, 1971.

Figure 4.43 From Beck et al., 1969.

Figures 4.45 through 4.48 From Szilassi, 1986.

Figure 4.50 From Baglivo and Graver, 1983. © Cambridge Univ. Press.

Figure 4.51 From March and Steadman, 1974. © Methuen, Ltd.

Figure 4.52 From Rowe, 1976.

Figures 4.53 through 4.60 From Baglivo and Graver, 1983. © Cambridge Univ. Press.
Figure 4.61 From Euler, 1979.

Figures 4.63 and 4.64 From Baglivo and Graver, 1983. © Cambridge Univ. Press.
Figure 4.66(a) From Beck, et al., 1969.

Figure 4.66(b) and 4.68 From Coxeter, 1955.

Figure 5.1 From Geometry and Visualization. © Creative Publications.

Figures 5.4 and 5.5 From Davis and Chinn, 1969.

Figure 5.7 From Zimmer, H., Kunstf und Yoga im Indischen Kultbild, Berlin, 1920.
Figure 5.8 From Michell, 1988.

Figure 5.9 From Loeb, 1976.

Figure 5.10 From Griinbaum, 1977.

Figure 5.12 From Edmondson, 1987.

Figure 5.14 From Griinbaum, 1977.

Figure 5.15 Drawing by Hyung Lee.

Figure 516 From Loeb, 1976.

Figure 5.18 By Kathleen Slevin-Buchanan.

Figures 5.19 and 5.20 From Griinbaum, 1977.

Figures 5.21 and 5.22 Courtesy, William Varney.

Figures 5.23, 5.24, and 5.25. Courtesy, Janusz Kapusta.

Figures 5.27, 5.28, and 5.29 From Williams, 1972.

Figure 5.31 Consternation from the Basic Design Studio of William S. Huff; by Scott
Grady. (1977)

Figure 5.32(b) By Dan Wall.
Figure 5.38 By Edward Godek.

Figure 5.35 From The Mathematical Tourist by Ivars Peterson. Copyright © 1988 by
1. Peterson. Reprinted by permission by W. H. Freeman and Co.

Figures 5.36 and 5.37 Courtesy, Peter Engel.

Figure 5.38 By Peter Engel. Photo by Quesada/Burke.

Figure 5.39 From Burckhardt, 1976. By permission of World of Islam Publishers.
Figure 5.40 From Bourgoin, 1973.



Credits xix

Figures 5.41 and 5.43(a) From Critchlow, 1984.
Figure 5.44 From Chorbachi, 1988.

Figure 6.1,6.2,6.3,6.5,and 6.7 From Stevens, 1974. © 1974. Peter S. Stevens. By permission
of Little, Brown and Company.

Figure 6.8 From Dormer (1980).

Figure 6.11 Construction by Bici Pettit in the Teaching Collection of the Carpenter Center
for the Visual Arts at Harvard University. Reproduced with the permission of the Curator.

Figure 6.15 From Loeb, 1976.

Figures 6.16 through 6.23 From Ash, 1988. Reproduced with the permission of Walter
Whiteley.

Figures 6.29 through 6.32 From Gilbert, 1983.

Figure 6.33(a) By Brian Mullin. Photo by Diana Bryant.

Figure 6.33(b) By Eugene MacDonald. Photo by Diana Bryant.

Figure 6.34 From Coxeter, 1961. © Wiley.

Figures 6.35, 6.36, 6.37 From Rivier, 1984. Reproduced with the permission of N. Rivier.

Figure 6.3 By N. G. De Bruijn. Software by G. W. Bisschop, Eindhoven Univ. of Tech.,
1980.

Figures 6.41 through 6.43 Courtesy H. Lalvani.

Figure 6.A.2 From De Vries, V., Perspective, Dover, 1968.

Figure 6.A.3 and 6.A.4 Communicated by Janos Baraos.

Figure 7.1 Courtesy of G. Segal.

Figure 7.3(a) From Kepler, J., Harmonices Mundi, Book II, 1619.
Figure 7.3(b) From Weyl, 1952.

Figure 7.6 From Beck, et al., 1969.

Figure 7.7 From Kepler, J., Mysterium Cosmographicum.

Figure 7.8 From Ernst, 1976.

Figures 7.18 and 7.20 From Edmondson, 1987.

Figure 7.22 From Pugh, 1976.

Figure 7.23 and 7.24 From Chu, 1986. Reproduced with the permission of the editor.

Figure 7.28 By Patrick DuVal. DuVal, P., Homographies, Quaternions and Rotations.
London: Oxford Univ. Press, 1964.

Figures 7.30, Figures 7.31(a), and Figure 7.32(a). Photo by Nina Prantis.
Figure 7.A.1 Redrawn from Edwards, 1985.

Figures 8.1, 8.2, and 8.3 From Laycock, M., Bucky for Beginners: Synergetic Geometry.
Activities Resources, Box 4875, Hawyard, CA 94540.

Figures 8.4 and 8.6 From Loeb, 1986.

Figure 8.7 Courtesy of William Varney.

Figure 8.8 From Edmondson, 1987.

Figure 8.9 From Pugh, 1976.

Figures 8.11 through 8.13 From Edmondson, 1987.
Figure 8.14 From Senechal and Fleck, 1988.

Figures 8.15 through 8.19 Redrawn from figures in Holden, A., Shapes, Space, and Sym-
metry. Copyright © 1971, 1973, Columbia University. Reproduced with the permission
of Columbia University Press.

Figure 8.20 From Pugh, 1976.

Figure 8.21 By Dan Winter. Photo by Nina Prantis.

Figure 8.22 Easy Landing by Kenneth Snelson (located in Baltimore Harbor).

Figure 8.23 Needle Tower by Kenneth Snelson (Washington, D.C.: Hirschorn Museum).
Figure 8.24(a) and (b) From Pugh, 1976.

Figure 8.25 Construction by Bruce Brattstrom. Photo by Nina Prantis.



XX Credits

Figure 8.26 By Jeffrey Fleisher. Photo by Diana Bryant.

Figure 8.27 Drawing by Bruce Brattstrom based on photo in Pauling and Hayward. Photo
by Nina Prantis.

Figure 8.28(a) and (b) Drawing by Bruce Brattstrom based on photos in Stevens, 1974.
Figures 8.29 and 8.30 From Edmondson, 1987.

Figures 8.31 and 8.32 Redrawn from Critchlow, 1987. © Thames and Hudson.
Figures 8.33 through 8.37. From Edmondson, 1987.

Figure 8.39 From Williams, 1972.

Figure 9.1 Redrawn by Bruce Brattstrom from Cundy and Rollett, 1961.
Figure 9.3 By Thomas Andrasz.

Figure 9.5 From Williams, 1972.

Figure 9.6 Redrawn from Loeb, 1976.

Figure 9.7 From Edmondson, 1987.

Figure 9.8 From Loeb, 1986.

Figure 9.9 By Michael Oren. Based on an original design of Arthur Loeb.
Figure 9.10 Redrawn from Steinhaus, 1969.

Figures 9.11 and 9.12 From Rotge, 1984.

Figure 9.13 Courtesy of Ron Resch.

Figure 9.14 From Pugh, 1976.

Figure 9.15 From Coxeter, 1988.

Figures 9.17 and 9.18 Redrawn from Williams, 1972.

Figure 9.19 From Ackland, 1972,

Figures 9.20 and 9.21 From Salvadori, M., Why Buildings Stand Up.
Figure 9.23 By William Strauss.

Figure 9.25 By Francisco Rodriguez.

Figures 10.1 and 10.2 Redrawn from Loeb, 1966. Reprinted by permission of George Bra-
ziller, Inc.

Figure 10.3 From Edmondson, 1987.

Figure 10.6 Photo by Diana Bryant.

Figure 10.7 From Edmondson, 1987.

Figure 10.8(a) Drawing by Bruce Brattstrom.
Figure 10.8(b) From Thompson, 1966. © Cambridge Univ. Press.
Figure 10.9 From Williams, 1972.

Figures 10.11 and 10.12 From Loeb, 1970.

Figure 10.13 Redrawn from Pearce, 1978.

Figure 10.14 From Williams, 1972.

Figures 10.15, 10.18(b), 10.19(b), 10.20(b), 10.21(a), and 10.22(a) From Burt et al., 1974.
Figure 10.16 Photo by Diana Bryant.

Figure 10.17 Photo by Nina Prantis.

Figure 10.18(a) Photo by Diana Bryant.

Figure 10.19(a) Drawing by Bruce Brattstrom.
Figure 10.20(a) Photo by Diana Bryant.

Figure 10.21(a) and 10.22(a) Loeb, 1986.

Figure 10.23 From Williams, 1972.

Figures 10.24 and 10.25 From Edmondson, 1987.
Figure 10.26 From Baracs et al., 1979.

Figure 10.27 Redrawn from Williams, 1972.
Figure 10.28 Redrawn from Baracs et al., 1979.



Credits xXi

Figure 10.29 Image by H. Lalvani. Software by P. Hanrahan and NYIT Computer Graph-
ics Lab. © NYIT.

Figure 10.30 Drawn by H. Lalvani.

Figure 10.31 Image by H. Lalvani. Software by D. Sturman and NYIT Computer Graphics
Lab. © NYIT.

Figures 10.32, 10.33, 10.35, and 10.36 Redrawn from Miyazaki, 1980.

Figure 10.38 Image by H. Lalvani. Software by P. Hanrahan and NYIT Computer Graph-
ics Lab. © NYIT.

Figure 11.3 From M. Gardner, 1964.

Figure 11.4 From Kim, 1981.

Figures 11.9, 11.11, and 11.14 From Crowe, 1986.

Figure 11.15 From Dover pictorial archive.

Figures 11.17 and 11.25 From Martin, 1982.

Figure 11.22 Redrawn from Washburn and Crowe, 1989. © Univ. of Washington Press.
Figure 12.1  From Dover pictorial archive.

Figure 12.2 From Stevens, 1974.

Figure 12.3 From Baglivo and Graver, 1983. © Cambridge Univ. Press.
Figure 12.4 From Bentley and Humphreys, 1962.

Figure 12.11 From Stevens, 1974.

Figures 12.12 and 12.14 From Schattschneider, 1986.

Figures 12.16 and 1217 From Dunham, 1986.

Figure 12.18 From Martin, 1982.

Figure 1219 From Crowe, 1986.

Figure 12.20 From Findeli, 1986.

Figure 12.21 From Stevens, 1981.

Figure 12.23 From Stevens, 1981.

Figure 12.28 From Washburn and Crowe, 1989. © Univ. of Washington Press.
Figures 12.25 and 12.26 From Christie, 1989.

Figures 12.27 and 12.28 From Gombrich, 1979. © 1979 by Phaidon Press Ltd., Oxford.
Used by permission of Cornell University Press.

Figures 12.40 and 12.41 From Lalvani, 1982.
Figures 12.43 through 12.49 From Shubnikov, 1988.

Figure 12.50 Redrawn by Bruce Brattstrom from Critchlow, 1984. Copyright © Thames
and Hudson, Ltd.



This page isintentionally left blank



Preface to the
Second Edition

Connections was originally written in the belief that mathematics,
in its applications to Design Science, provides a common language
spanning the disciplines of art, architecture and the natural sciences.
Since Connections was published in 1990, I have been gratified
to observe the rising interest in the discipline of Design Science.
Numerous conferences on the interface between mathematics, science,
art, architecture and design have fostered a sense of community
among the participants. This has led to new research and collabo-
rations, the creation of works of art, the publishing of new journals,
and the establishment of new courses in mathematics and design. In
this preface to the new edition, I will describe some of these activities
and the individuals who have engaged in them. So much has
happened over the past ten years that this discussion is not meant
to be complete, but rather a sample of some of the significant
developments.

Perhaps the most fundamental changes in the field since 1990
are the ease of computer visualization; the communication made
possible through the Internet; and the access to building kits and
other constructive materials. Much software is now available with
which anyone who is interested can create and explore fractals,
tessellations, polyhedra, minimal surfaces, etc. The Zome system
invented by Steve Baer around 1970 has revolutionized the study of
polyhedra, particularly the study of higher dimensional polytopes. The
Zometool kit created by Mark Pelletier has now made this system
easy to implement and accessible to a wide range of people for
research and educational purposes. George Hart and Henri Picciotto
have just published a Zometool Geometry book [2001S] to facilitate its
use. These resources make courses in design science more accessible
and easier to teach. There is also a greater sense of community
because internet researchers are more aware of what others are doing
and can easily disseminate there results to each other and to the
world. Two excellent websites, ISAMA (The International Society for
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the Arts, Mathematics, and Architecture, www.isama.org) and George
Hart’s website (www.georgehart.com), provide links to the web pages
of many people making connections between art, mathematics and
science.

Arthur Loeb has been a pioneer in the field of Design Science and
many of his contributions were documented in the first edition of
Connections. Since the publishing of Connections, Professor Loeb has
published another excellent book Concepts and Images [1993S]. Eric
Weisstein has also accumulated a wealth of knowledge in his Concise
Encyclopedia of Mathematics {19988]. I reported on the exquisite art
of origami in the first edition of Connections but neglected to mention
the application of origami to polyhedron construction. Although there
is a substantial literature of such books, I offer two references Unit
Origami: Multidimensional Transformations by T. Fuse [1990S] and
Modular Origami Polyhedra by L. Aimon, B. Arnstein and R.
Gurkewitz [1999S]. I have also included three additional references of
interest to polyhedra specialists: Polyhedra by P. Cromwell [1997S],
Build Your Own Polyhedra by P. Hilton and J. Pedersen [1988S], and
Spherical Models by M. Wenninger [1999S]. Design science is
beginning to have applications in areas of mathematics not previously
associated with this discipline such as dynamical systems and chaos
theory. Some of these connections can be found in the book Symmetry
and Chaos by Michael Field and Martin Golubitsky [1992S].

In order to properly understand three-dimensional structure one
must go beyond to higher dimensional spaces. This is made clear
in Thomas Banchoff’s book Beyond the Third Dimension: Geometry
Computer Graphics and Higher Dimensions [1990S]. Banchoff along
with Haresh Lalvani and Koji Miyazaki are the leaders in conveying
an understanding of structure in multi-dimensional space. Lalvani
has pioneered the study and application of multi-dimensional space to
architectural form through his continued discoveries and inventions
of new hyperstructures. He, and his colleague William Katavolos, are
co-directors of the recently founded Center for Experimental
Structures, School of Architecture, Pratt Institute. Miyazaki (http://
space.jinkan.kyoto-u.ac.jp / kojigen/index.html) is a pioneer in research
about polygons, polyhedra, and polytopes as seen in the architectural
design and cultural history of Japan. He publishes a quarterly
journal, Hyperspace, and he is the author of the recently published,
Encyclopedia of Geometric Architectures [2000S] and An Adventure in
Multi-dimensional Space [1986S]. Clifford Pickover, among his many
popular books on mathematics and computer science, has also written
Surfing Through Hyperspace: Understanding Higher Dimensional
Universes in Six Easy Lessons [1999S]. Finally, Tony Robbin is an
artist who has created four-dimensional art. In fact, some of his
paintings must be viewed through special glasses. In 1992 he built a
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60-foot sculpture, based on quasicrystal geometry for the three story
atrium at Denmark’s Technical University in Copenhagen. He has
also written a book Fourfield: Computers, Art, and the Fourth
Dimension [1992S].

Hardly a summer goes by without four or five conferences
convening. At the time of this writing, ISIS-Symmetry (International
Society for the Interdisciplinary Study of Symmetry), under the
leadership of Denes Nagy, is holding its 5th Congress subtitled
Intersections of Art and Science, in Sydney, Australia organized by
Liz Ashburn; the 3rd International Conference on Mathematics
and Design will be held in Melbourne, Australia organized by Vera
De Spinadel, Javier Barrallo, Mark Burry and others; the 4th Bridges
Conference subtitled Mathematical Connections between Art, Music,
and Science will be held at Southwestern College under the direc-
tions of Reza Sarhangi with published proceedings [1998-2001S];
Symmetry 2000 was held last September in Stockholm organized
by Istvan Hargittai; ISAMA 2000 was held last August in Albany
under the direction of Nat Friedman, his tenth consecutive con-
ference in art and mathematics; the MOSAIC 2000 Conference was
held in Seattle; and the 3rd biannual Nexus Conference was held
in Ferrara under the direction of Kim Williams with published
proceedings [1996, 1998, 20008S].

There are two new electronic journals devoted to the intersection
of art, architecture, mathematics, science and design. The Nexus
Network Journal (www.nexusjournal.com), edited by Kim Williams
was created in 1997, and the on-line journal Visual Mathematics
(members.tripod.com/vismath/), edited by Slavik Jablan and Denes
Nagy, was created in 1998 as a continuation of the ISIS-Symmetry
printed journal Symmetry: Art and Science (Symmetry: Culture and
Science).

For many years courses in Design Science have been taught by
Arthur Loeb at Harvard, Haresh Lalvani at Pratt Institute, Thomas
Banchoff at Brown University, Koji Miyazaki at Kyoto University
Graduate School of Human and Environmental Studies, and myself
at NJIT. Through Connections, many other faculty have discovered
the satisfaction that can be derived from engaging students in the
constructive activity of creating their own designs based on
mathematical principles. Several textbooks are now available to help
teach these courses (see Geometry by Discovery by D. Gay [19985]).
However, there is still a need for additional texts to help guide
prospective teachers at both the college and pre-college levels. With
the help of a grant from the National Endowment for the Arts, I
wrote a Workbook on Mathematics of Design [1997S] and also, with
the help the Media Center of The New Jersey Institute of Technology
and a grant from the Graham Foundation, created an eleven part
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series of videotapes entitled Mathematics of Design [1994S] to aid
faculty who wish to use Connections as a primary text.

As I mention in the introduction to Connections, the discipline of
Design Science has advanced through the energy and creativity of
many individuals, each focusing on a single idea. Several researchers
not mentioned in the original edition of Connections have made impor-
tant contributions to the field over the past ten years. Carlo Sequin
has created an amazing computer program: Sculpture Generator 1 and
2 in which he is able to generate three-dimensional models for sculp-
ture using his program and 3-D fabrication techniques. Bathesheba
Grossman has used that technology in order to make jewelry and
small bronze sculptures. Brent Collins has created extraordinary
sculptures by hand from wood reminiscent of mathematical surfaces
and knotted structures. Some of his work can be found on the Bridges
website (www.sckans.edu/~bridges/beollins/beollins.html). He has also
collaborated with Sequin to fabricate his sculptures with the aid of
the computer. Vladimir Bulatov, a member of the Russian Academy of
Sciences, has created many polyhedral studies which can be found on
his website (www.superliminal.com/links.htm). Charles Perry’s geo-
metric sculptures are now found throughout the world. His most re-
cent work is based on knots and minimal surfaces leading to new
shell sculptures in limestone. Nat Friedman, a mathematician and
sculptor, has played a major role through his conferences and his
assistance to others in the field to further the objectives of design
science. George Hart, another polyhedral sculptor and computer scien-
tist, has enriched the field with his creative work that can be seen on
his website. He has also developed new fabrication techniques and he
is also working on a history of polyhedra in art, in his book Euclid’s
Kiss [Hart, 20018S].

My only regret upon publishing the original edition of Connections
was that when referring to the various crystalline states of carbon in
Section 10.10, I mentioned only diamond and graphite and not the
crystalline states known as the Buckminsterfullerenes. I was aware of
the existence of this remarkable family of molecules as far back as
1986. However, they burst onto the mainstream of science only in
1990 just as Connections was in its final editing. This oversight is
remedied in the current edition where I have placed several additions
to the first edition in a “Supplement” section at the end of the book.
Haresh Lalvani, whose many contributions were included in the first
edition, has continued his work in higher-dimensional and non-
periodic spaces and structures. A supplementary section is devoted to
his recent work which includes the discovery of a new class of hyper-
geodesic surfaces, new hyperspace labyrinths including a class of
labyrinths in hyperbolic space, a class of saddle zonogons and saddle
zonohedral packings, his generalizations of cubic and icosahedral
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systems of nodes to irregular versions of these, and finally a new class
of hyper-Escher patterns. I have also included in this Supplement
additional material on the snub figures, a section on uniform
polyhedra, and additional discussion of the Dorman Luke method of
constructing the faces of dual polyhedra. I have also added some new
material within the text on dihedral angles and ortho-schemes.
References not included in the first edition are found at the end of the
reference section and are referred to in the text by an “S” after the
date. Other changes are minor. I wish to acknowledge, once again, the
generous help that I received from Branko Grunbaum and Haresh
Lalvani in writing the first edition of Connections, and to thank Peter
W. Messer and Haresh Lalvani for their invaluable help editing this
new edition.

Since writing Connections my own professional life has been
enriched by the many contacts that I have made as a result of the
visibility that the book has offered to me and the wide approval with
which its publication has been met. I was pleased that in 1991 the
National Association of Publishers selected Connections as the best
book in Mathematics and Science in the division of Professional
and Reference. As a result of Connections, I made the acquaintance of
and began collaborations with researchers such as the Kim Williams,
Ben Nicholson, Anne Macaulay, Lawrence Edwards, Ernest McClain,
Tons Brunes, Louis Kauffman, Stan Tenen, Janos Kapusta and Gary
Adamson. Some of their work will be featured in my new book,
Beyond Measure: A Guided Tour through Nature, Myth and Number
to be published by World Scientific. It is my hope that the second
edition of Connections will continue to play a role in breaking down
the barriers between the arts and the sciences, and encourage others
to explore the interfaces between these two human endeavors.

March 2001



Chapter

Proportion in Architecture

Number is the bond of the eternal
continuance of things. Puitorars

1.1 Introduction

The history of proportion in art and architecture has been a search for
the key to beauty. Is the beauty of a painting, a vase, or a building due
to some qualities intrinsic to its geometry or is it due entirely to the
craft of the artist and the eye of the beholder?

The architectural and artistic record indicates that a variety of sys-
tems of proportion have been used through the ages in an attempt to
create beautiful works. Subjective elements have also played a role;
here proportions of an object are modified to please the eye through a
slow process of evolution. In architecture this process may extend over
many generations in the gradual refinement of traditional forms. In
painting or sculpture the process may involve selecting the most ad-
mired proportions from nature. To a great extent each epoch of history
has expressed itself through the art and architecture of that age
{Panofsky, 1955]. As a result there has been vigorous debate as to
what constitutes “the best” approach to producing great works, with
each era discovering or rediscovering one part of the proverbial “ele-
phant.” This chapter will examine some of the approaches to propor-
tion that have been used in the past and will show that they all can be
analyzed in a similar manner.

First we wish to state three canons that most practitioners would
agree underlie a good design. All good design should have

1. Repetition—some patterns should repeat continuously.
2. Harmony—parts should fit together.

3. Variety—it should be nonmonotonous (not completely predictable).
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Many architects and artists would add to this a fourth requirement
that the proportions of a design should relate to human scale.

Psychological studies of perception seem to indicate that the mind
finds overly complex patterns burdensome and unpleasant although it
enjoys patterns that embody order and symmetry—in other words pat-
terns that repeat in an organized fashion [Alexander, 1959]. In prac-
tice, it also makes sense to use a small number of molds or modules
over and over rather than fashioning numerous units of disparate size
and shape. Once the modules from which to construct a design have
been chosen, the various units must be capable of fitting together to
make the finished form. The harmony of proportions should be
achieved, according to the Renaissance architect Leon Battista
Alberti, in such a manner that “nothing could be added, diminished or
altered except for the worse [Gadol, 1969].” Finally, any system of pro-
portions must be flexible enough to express the individual creativity
of the artist or architect so that the unexpected may be incorporated
into the design. There must always be an element of surprise to en-
liven the spirit of the beholder.

As for the preference for proportions of human scale, this reflects
the desire of humans to feel personally connected to their art and their
dwellings. People from primitive cultures are apparently more in
touch with this wish, as can be seen in such direct anthropomorphic
elements of architectural design as shown in Figure 1.1, which depicts
the living compound of the Fali tribe of Africa and is shaped like the
human torso [Guidoni, 1978]. We will show how people of various eras
endeavored to satisfy these canons of design and will concentrate on
how two systems succeeded to some measure in satisfying the canons
of proportion. The first system was developed in antiquity and used by
Roman architects, and the other was developed in the twentieth cen-
tury by the French architect Le Corbusier.

1.2 Myth and Number

The nineteenth century mathematician Leopold Kronecker wrote:
“The natural numbers came from God and all else was man made.” In
a sense Kronecker was echoing Plato's Timaeus [1977]: “And it was
then that all these kinds of things thus established received the
shapes of the ordering one, through the action of Ideas and numbers.”
As pointed out by Matila Ghyka [1978], Greek philosophers, and in
particular Pythagoras, endowed natural numbers with an almost
magical character. Pythagoras, a native of Samos on the western
shores and islands of what is now Asiatic Turkey, took the advice of
his teacher Thales, a rich merchant from Miletus who is known as the
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Figure 1.1

father of Greek mathematics, astronomy, and philosophy and who vis-
ited Egypt to learn its secrets [Turnbull, 1961], [Gorman, 1979].

Pythagoras singled out the triangular array of 10 points which he
called the tetraktys. This pattern is the fourth in a series of triangular
numbers.

The difference between each successive pair of triangular units is
called a gnomon. In other words,

U=U+@G
The basic units, U are (the empty set precedes the first dot):
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The gnomons, G, are

In mystical lore, according to John Michell [1988], the natural num-
ber 1 was called the monad (origin of all numbers). The dyad 2 was the
first feminine number and represented the first stage of creation, the
split into the mutually dependent opposites of positive-negative, hot- -
cold, moist-dry, etc. The number 3, the first masculine number, repre-
sented the second stage of creation, the productive union of negative
and positive which follows the separation and refinement of these op-
posite elements. The sum of the first feminine and the first masculine
number, 5, represented man, microcosmos, harmony, love, and health,
while inanimate life was represented by the number 6. The tetraktys,
10, represented the cosmos and macrocosmos, while two interlocking
tetraktyses, below, form a Star of David in which 12 evenly spaced
dots, representing the signs of the zodiac, surround a thirteenth, rep-
resenting the “source of all being.”

Looking back from the present we can only speculate about the
meaning of this cryptic symbolism. However, it is probably true that
the prescientific mind found in the mystical mode of expression a con-
cise way to convey the kernel of meaning in a mass of observations
about the natural world. For example, the number 6 does seem to
arise most frequently in inanimate forms such as snowflakes and
other crystals. On the other hand the number 5 characterizes living
forms such as the starfish and certain forms of radiolaria.

Number and geometry also lies at the basis of many sacred struc-
tures. Michell feels that certain sacred structures have the same un-
derlying plan. In Dimensions of Paradise, Michell suggests that the
layout of St. Joseph’s settlement at Glastonbury (a sacred site in En-
gland rich in legend), Stonehenge, and the plan of the allegorical city
in Plato’'s Laws all conform to the ground plan of the New Jerusalem
described in Revelation 21. His construction is either an intriguing co-
incidence or, as Michell feels, evidence that ancient cultures may have
possessed esoteric knowledge that has become lost to us. The reader
must judge.

The New Jerusalem diagram, as Michell refers to it, is generated
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from a 3,4,5 right triangle. This, so-called, “Egyptian triangle” also
had sacred significance to the Egyptians who used it in some of the
key proportions of the Pyramid of Cheops (see Section 3.2). But what
is so special about a 3,4,5 triangle? Well, the celestial sphere can be
represented as a circle divided into 12 equal segments representing
the regions of the Zodiac. Cut this circle open to a line with 12 equal
segments. The line can then be folded up to a 3,4,5 right triangle with
a perimeter of 12 units.

Next Michell uses the 3,4,5 triangle to create a large square with
sides of 11 units surrounded by four small squares each with sides of 3
units as shown in Figure 1.2. Circles of diameter D; =11and Dg = 3
are placed in the large and small circles, respectively. Michell has no-
ticed that this ratio, when multiplied by a scale factor of 720, coincides
with the ratio of the diameters of the earth and the moon, i.e.,

D, 117920

and to compound the “coincidence,” 720 = (3 + 4 + 5)(3 x 4 x 5).

The circumference of a circle through the centers of the small
squares (see Figure 1.2) equals the perimeter of the large square [as
close as 2% approximates pi (check this!)] and effectively squares the
circle. This conforms with the ancient Greek unfulfilled wish to con-
struct, using only compass and straightedge, a circle with the same
perimeter as a given circle.

Finally, Michell creates his New Jerusalem diagram, shown in Fig-
ure 1.3, by arranging twelve “moon” circles around the periphery of

Figure 1.2 The underlying ge-
ometry of the New Jerusulem
\ diagram.
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Figure 1.3 The New Jerusalem diagram of ancient cos-
mology.

the “earth” circle. He placed three to the north, three to the south,
three to the east, and three to the west in line with the description of
the twelve gates to the Holy City in Revelation (see Section 5.2.2).
These twelve circles are positioned by the apexes of three double
tetraktyses.

When Michell chooses a scale so that the dimensions of the large
and small circles are 79.2 and 21.6 feet, respectively, key parts of this
diagram closely coincide with the dimensions of Stonehenge and St.
Joseph’s Chapel. The circle through the center of the “moon” circles is
316.8 feet in circumference. But, according to Michell, this number re-
peats at a variety of scales as the 31,680-foot perimeter around the en-
tire settlement of Glastonbury as originally constituted and as the
31,680-mile perimeter of New Jerusalem. Also, Pliny in his Natural
History, gave 3,168,000 miles as the measure round the whole world.

In ancient tradition, the square, by its axial geometry symbolizing
the directions of the compass, represented the earth and the dimen-
sions of space while the circle, symbolizing the celestial sphere, repre-
sented the realm of the heavens and the dimension of time. Thus, an-
cient mathematics, architecture, astronomy, and, as we shall see in
Section 1.4, music may have been all entwined to form a holistic view
of the cosmos. If Michell’s analysis has validity, it can be said that an
attempt was made to bring heaven down to earth and replicate it at
all scales and to synchronize space and time
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To a great extent the history of the study of proportion is an attempt
to recover the practical methods of producing the beautiful art and ar-
chitecture of ancient cultures from the sketchy utterances that have
survived the ages and the artifacts and structures that comprise the
archaeological record.

1.3 Proportion and Number

Once the Greeks established a concept of natural number, i.e., the pos-
itive integers, they were faced with the task of generating the other
numbers of the number system, i.e., the rational and irrational num-
bers. Rational numbers are numbers that can be expressed as the ratio
of integers m/n where m and n are reduced to lowest terms and n # 0.
Such numbers can always be represented as decimals whose digits re-
peat or terminate after some point. Numbers which cannot be ex-
pressed as the ratio of integers are called irrational numbers. These
numbers have nonrepeating decimal equivalents. We who have grown
up with a very convenient system for naming numbers such as 8.5,
2.735, .333..., etc., have a difficult time dissociating the concept of
number from the symbol for number. However, in ancient Greece no
symbols for numbers, as we know them, existed. The symbols that had
been used previously by the Babylonians and Egyptians for the pur-
pose of surveying or keeping records had long since been forgotten. In-
stead of representing numbers by symbols, Greek philosophers con-
ceived of number as being the ratio of lengths. For example, if U is
taken to be the basic unit or monad, the numbers % and %3 can be
represented as shown in Figure 1.4, In other words, a group of three
units stands in relation to a group of two units as 3:2 or 2:3 since three
groups of two units equals two groups of three units. Any time a finite
number of a group of units is exactly equal in length to the finite num-
ber of another group of units, we say that the two groups are commen-
surable. It was a common belief in the time of the Greeks that all pairs
of lengths were commensurable. Great surprise and uneasiness re-
sulted from the discovery that there existed pairs of lengths that were

Figure 1.4 The proportional re-
lation 3:2. Three pairs of two
monads ecquals two triples of
____________ three monads.
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not commensurable. In particular, the ratio of the diagonal of a square
and the pentagon to their respective sides were the incommensurable
ratios:

V2:1 and b:1

where & = (1 + /5)/2 = 1.618...is the golden mean. This discovery
represented a major intellectual stride forward since it had to have
been made by pure reason rather than through measurement. The un-
easiness was understandable since the problem of incommensurables
threw into question the whole Greek system of representing numbers.
How then could these incommensurable lengths be characterized? The
brotherhood of Pythagoras dealt with this problem by banishing any-
one who revealed their distressing secret, although Greek mathema-
ticians developed great facility in constructing certain irrational num-
bers with compass and straightedge.

The following problem illustrates the profound difference between
commensurable and incommensurable lengths. Try to solve it before
reading on.

Problem 1.1 Subdivide rectangles with the following proportions into the few-
est number of congruent squares: 3:2, 27:15, and 1¥5:%. How many squares are
needed to tile the rectangle in each case? Show that a rectangle with the pro-
portions 1/2:1 cannot be tiled by a finite number of congruent squares. What
can you say in general about the possibility of tiling a rectangle with propor-
tions a:b?

It is obvious that for the first two rectangles 6 and 45 squares are
needed with sides of 1 and 3 units, respectively. The third rectangle
requires a minimum of 330 squares of Y%-unit sides, which can be seen
by magnifying it by a factor of 6 to a rectangle of proportion 22:15
where 6 is the least common denominator of 1% and %. In Appendix
1.A, we will show that rectangles with commensurable sides can be
tiled with a finite number of congruent rectangles while rectangles
with incommensurable sides cannot.

Another problem of design that uses the concept of commensurable
lengths is the problem of subdividing a given integer length L into
numbers m and n of two modular lengths a and b units, respectively,
where a and b are integers. This requires m and n to satisfy the equa-
tion

am + bn =L for m and n integers

This is known as a Diophantine equation [Courant and Robbins, 1941},
Such equations have been studied since ancient times. The most ex-
haustive study of the application of Diophantine equations to design is
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P. H. Dunstone’s book, Combinations of Numbers in Building [1965].
More is said about this problem in Appendix 1.A.

It took until the latter part of the nineteenth century before math-
ematicians understood the nature of irrational numbers and could
use them with confidence as part of the real number system. Never-
theless, the archaeological studies of Jay Hambridge [1979], which ex-
amined the proportions inherent in the structure of Greek vases and
buildings such as the Parthenon, indicate that & and V2 were very
much used. The recent work of two historians of architecture, Profes-
sors Donald and Carol Watts [1986], has uncovered evidence that Ro-
man architects may have based some of their art and architecture on
a system (to be described later) derived from compass and straight-
edge constructions of a series of irrationals based on V2 and 8 where
8=1+V2=2414....

Greek mathematics also had a profound influence on artists and ar-
chitects of the Middle Ages for whom the compass and straightedge
were tools for organizing a canvas, often based on V2 and ¢ [Bouleau,
1963]. Although this carried over to the Renaissance to some degree
(see Section 3.6), for the most part buildings and canvases of the Re-
naissance were organized by new principles of proportion based on
commensurable ratios derived from the musical scale.

1.4 The Structure of Ancient Musical Scales

The aspect of Greek writings that had the greatest influence on Re-
naissance architecture was the emphasis of Plato in Timaeus on the
importance of the ratio of small integers. These numbers are the basis
for the seven notes of the acoustic scale and Plato’s assumption that
the musical scale also embodied the intervals between the seven
known planets as viewed from an Earth-centered perspective (Mer-
cury, Venus, Mars, Jupiter, Saturn, the Sun, and the Moon), which he
later referred to (in the Republic) as the “harmony of the spheres.”
These connections deeply influenced the neoplatonists of the Renais-
sance who felt that, as a result of this connection, the soul must have
some kind of ingrained mathematical structure.

Before we examine how the Renaissance architects were able to cre-
ate a system of architectural proportions based on the musical scale,
let us first look at the structure of ancient scales. The ancient scale of
Pythagoras was based on the simple ratios of string lengths involving
the integers 1, 2, 3, and 4 which made up the tetraktys; all ratios were
expressible in terms of the first two primes, 2 and 3 (the first mascu-
line and feminine numbers). Pythagoras understood that if a string is
shortened to half its length by depressing it at its midpoint, the re-
sulting bowed or plucked tone sounds identical to the tone of the whole
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string (or fundamental tone, as it is called) except that it is in the next
higher register. This relationship, known to Pythagoras as a diapa-
son, is what we now call an octave.

If a tone and its octave are simultaneously plucked, they give off a
luminous sound caused by the anatomy of the ear [Benade, 1976]. (Of
course, Pythagoras did not know the reason.) This is why the octave is
called consonant. Pythagoras also knew that when a string is short-
ened to % and % of its original length, other consonant tones are
formed which also give off bright effects when they are simulta-
neously sounded with the fundamental. These special tones were
known to Pythagoras as a diapente and a diatessaron, respectively.,
However, since they are the fifth and fourth notes of the scale, they
are commonly known as a fifth and a fourth. Looking at this in a dif-
ferent way, if a length of string is subdivided into two parts by a
bridge, the resulting tones will be an octave, fifth, and fourth when
the corresponding ratio of the bowed length to the whole length is 1:2,
2:3, and 3:4 as shown in Figure 1.5.

The Greeks defined the string length corresponding to a whole tone
as the ratio between the fourth and the fifth, or %. The structure of
the Pythagorean scale is described in Timaeus. It is formed by mark-
ing off a succession of whole tones while preserving the ratios corre-
sponding to the fifth and the fourth, as shown in Figure 1.6. This
leaves two intervals of ratio 24%2s6 left in the octave, which correspond
to halftones. Ratios of string length corresponding to powers of 2 in-
troduce no new tones into the scale; they merely transform the funda-
mental tone to other octaves. The number 3 is needed to create new
tones. For example, in Figure 1.7, G corresponds to the string length
of 23 when the fundamental tone is C. When the string is shortened to

! * *
A
Sliding bar ——
-
IL [ [
Unison Fourth Fifth Octave

Figure 1.5 A length of string representing the fundamental tone or unison
is divided by a bridge to form the musical octave, a fifth, and a fourth.
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Figure 1.7 The Ptolemaic, or just, scale based on the primes 2, 3, and 5.

(24)%, the tone D one-fifth above the G (the tone obtained by counting
G, A, B, C, D) occurs, which when lowered one octave, %6 x 2 = 84 (the
string is doubled in length), yields the tone D, a whole tone above C.
All the tones of the Pythagorean scale are gotten in this way by re-
ducing successive fifths by the appropriate number of octaves.

It is in this context that origins are found for associating the arche-
types of the “passive” ferhinine nature with the number 2 and the
“creative” masculine nature with 3. The fact that it has taken thou-
sands of years for these characterizations of male and female natures
to begin to break down gives evidence to the power of archetypes as
cultural forces.

Various intervals of the scale can be related to each other by split-
ting the octave by its arithmetical, geometrical, and harmonic means.
In general, the arithmetic mean of an interval [a,b] is the midpoint, c,
of the segment and the points a, ¢, b form an arithmetic progression.
The geometric mean is the point ¢ such that a/c = ¢/b, ie., ¢ =
Vab and q, ¢, b form a geometric progression. The harmonic mean,
which is less familiar, is the point ¢, such that the fraction by which
¢ exceeds a equals the fraction by which b exceeds c, i.e., (¢ - a)la =
(b ~ ¢)/b. As a result,

or

c= (1.1
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and the series a, c, b is referred to as a harmonic series. For example,
the interval [6,12] represents the octave 2:1. The arithmetic and har-
monic means of 6 and 12 are 9 and 8, respectively. That 9 divides the
interval into two ratios, 3:2 and 4:3, the musical fifth and fourth,
while 8 divides the interval reciprocally into the ratios 4:3 and 3:2 is
shown as follows:

3:2 4:3 4:3 3:2
/T N\ / N/ \
- | | | | |
L U "

— I

Thus we see that the combination of arithmetic and harmonic means
duplicates proportions within an interval, which can be a way of sat-
isfying the first canon of architectural proportion, namely, repetition.

1.5 The Musical Scale in Architecture

Now we turn to the manner in which Renaissance architects applied
the Pythagorean scale. The Renaissance architect most influential in
applying the musical scale to design was Alberti [Wittkower, 1971],
[Scholfield, 1958]. He restricted the lengths, widths, and heights of his
rooms to the ratios related to the ancient Greek scale that are shown
in Table 1.1.

TABLE 1.1

Ratio Musical interval
1:1 Unison
4:3 Fourth (diatesseron)
3:2 Fifth (diapente)

16:9
2:1 Octave (diapason)
9:4
8:3 Eleventh (fourth above octave)
3:1 Twelfth (fifth above octave)
4:1 Fifteenth (next octave)

All were consonant (or pleasant sounding) except for 9:4 and 16:9,
which were compound ratios composed of successive fifths and fourths.
To understand how these ratios are all related by a common system,
we must first consider the series upon which all systems of proportion
are built, the geometric series.
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In Timaeus, Plato conceived of the geometric series as being the
binding force of the universe:

When God put together the body of the universe, he made it of fire and
earth. But it is not possible to combine two things properly without a
third to act as a bond to hold them together. And the best bond is one that
effects the closest unity between itself and the terms it is combining, and
this is done by a continued geometrical proportion,..,so God placed water
and air between fire and earth; and made them so far as possible propor-
tional to each other, so that air is to water as water is to earth—so by
these means and from these four constituents the body of the universe
was created to be at unity owing to proportion.

The geometric series referred to in the above passage is

fire air water earth

where

fire air water

air water earth

Mathematically, a & ¢ d forms a double geometric series if

a_b_c

b ¢ d
where the dots indicate that the series may be continued in both di-
rections. Thus, a = 1 and b = 2 generates the forward series

= (1.2)

1248--:

while a = 1 and b = 3 generates

13927

These two geometric series arise from the prime numbers 2 and 3 (the
first feminine and masculine numbers), which lie at the basis of the
Pythagorean scale, and they were arranged into a lambda configura-
tion (.\) by ancient commentators to Plato’s work:

8 27

We shall now see how this double geometric series relates to
Alberti’s musical proportions. The first of these series is based on
the octave (2:1). Another geometric series is formed by the arith-
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metic means of each successive pair restricted to integer values
only:

3 6 12 24

Notice that while each number of the second series is the arithmetic
mean of the two numbers that brace it in the upper series, each num-
ber of the upper series is the harmonic mean of the pair of numbers
that brace it from below. Also, each series cuts the other in the ratio
3:2 and 4:3 (the musical fifth and fourth). This may be continued
again and again to form endless geometric series in the ratio 2:1 from
left to right, 3:2 along the left-leaning diagonal, and 4:3 along the
right-leaning diagonal involving integers only:

1 2 4 8 16 32 ...

(1.3)

27 ...

Thus Plato's lambda is formed by the boundary of these geometric se-
ries.

P. H. Scholfield [1958] points out that this double series acts like a
chessboard on which horizontal moves represent octaves and moves
" along the diagonal represent fifths and fourths. Alberti’s ratios (see
Table 1.1} are all represented by any group of numbers from the series
forming the pattern:

. . 8 16

. . . such as 6 12 24

. L]
9 18

with the addition of the major whole tone 9:8. Alberti selected any
three numbers from this subscale to represent the breadth, height,
and length of a room. He generally took the height of a room to be
either the geometric, arithmetic, or harmonic means of the length and
breadth. It is easy to see that the subscale gives a convenient guide to
selecting appropriate combinations of this kind. Thus Alberti's system
followed the Pythagorean musical scale.

Followers of Alberti such as Andreas Palladio based their architec-
ture on a revision of the Pythagorean scale that was the work of the
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Alexandrian astronomer Ptolemy. This scale, shown in Figure 1.7,
achieved a higher order of consonance by considering ratios of the first
five integers, which included the prime 5 in addition to 2 and 3. Thus
Palladio’s architecture included the ratio 3:5 corresponding to the mu-
sical sixth (instead of the Pythagorean ratio 16:27), 4:5 (instead of the
Pythagorean ratio 64:81), and 5:6 corresponding to the major and mi-
nor thirds (a minor tone is one-half interval below the major tone) as
Figure 1.7 shows.

The double Series (1.3) can also be related to human dimensions in
which a scale of modules is derived from submultiples of the height of
a 6-foot person, or 72 inches. Each of these submultiples can then be
added together in an arithmetical progression to form the whole. Thus
the factors of 72 are arranged in Table 1.2.

TABLE 1.2

0@ o
3 6 24
o

For example, if the module m is taken to be V2 of the whole, six of
these make up the whole:

f— 6 ]

» 7
B |

Scholfield has pointed out the surprising fact that six of the twelve
subintervals in Table 1.2 (in boxes) result in English measures,
namely, the inch, the hand (4 inches), the foot (12 inches), the span (9
inches), the yard (36 inches), and the fathom (6 feet, or 72 inches).

It was actually the Roman architect Vitruvius who spoke of the de-
sirability of basing systems of proportion on the human body. For ex-
ample, he specified that the entire body, when erect with arms out-
spread, fits into a square and when spread-eagled, into a circle
described around the navel. His 10 books on architecture [1960] com-
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prise the only surviving record of the architecture of antiquity, and
these books greatly influenced the architecture of the Renaissance. In
fact, Alberti’s, Ten Books on Architecture were modeled after
Vitruvius' books. In these books Alberti related the design of the clas-
sical Greek columns, ionic, doric, and corinthian, to dimensions of the
human body [Gadol, 1969]. Vitruvius’ system was based on subdivid-
ing the human form into 120 modules and considering its factors,
listed in Table 1.3, which include series derived from the prime 5. The

TABLE 1.3
1 2 4 8
3 6 12 24
5 10 20 40
15 30 60 120

measurements of various parts of the body were then expressed as an
appropriate fraction of the whole body. Thus not only could repetitions
of proportions be incorporated in a design with the aid of this system
but so also could modules of the same size be repeated to form the
whole, often in symmetric patterns.

Palladio took this system one step further by applying it to archi-
tectural interiors. Not only did he apply the Renaissance system of
proportion to the dimensions of a room but he designed the sequence of
rooms in geometric progressions. Although Palladio claimed that
“beauty will result from the form and correspondence of the whole
with respect to the several parts...that the structure may appear an
entire and complete body” [Wittkower, 1971], the limitation of these
geometric progressions prevented him from achieving this worthy ob-
jective. The problem was that, in general, geometric progressions do
not possess additive properties, i.e., the sum of two elements in each
geometric progression of Series (1.3) is never equal to another element
of the progression. Thus the second canon of proportion fails and the
system is limited in its application to proportioning only parts of the
whole plan. Along with criticisms concerning the validity of the claim
that what pleases the ear must also please the eye, the lack of additive
properties led to the demise of the system.

1.6 Systems of Proportion Based on V2, 6, and ¢

The collapse of the Renaissance theory of proportion left architectural
theory in a state of confusion. Without an adequate system, architects
resorted solely to subjective judgments in their designs, often with
dreadful results. However, in the nineteenth century architects, stim-
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ulated by an examination of proportions cbserved in nature during the
process of self-similar growth of organisms (see Section 2.10), began to
reexamine systems of proportionality in architecture.

In this section we shall show why three proportions, V2:1, 6:1, and
:1, can be singled out as having special properties for use as the basis
of architectural systems of proportion. Also, for reasons that we now
state, it is unlikely that other proportions can satisfy our three canons
of proportion as well.

1.6.1 Additive properties
First of all, it is easy to verify that the golden mean has the property

1+ ¢ =4 (1.4)

Multiplying Equation (1.4) by powers of ¢ yields the series of expres-
sions
Ll s 1re=0n0+e2 =00 (15
. d)2 d) ) d) ’ H ’ .
where the powers of ¢ form a double geometric series which we shall
refer to as the ¢ series:
1 1 .
S UG L LA (1.6
o b b, d% b )
Because of Equation (1.5), the ¢ series also has the property that
each term is the sum of the two preceding terms. Generally, such a
series is called a Fibonacci series. That is,

Q@ ay ", 2Q,.,Q, " (1.7a)

is a Fibonacci series if
a,=a,,+a,, (1.75)

That is, the F series is

1123581321345589:-: (1.8)

generated by 1, 1, and Equation (1.75).

All Fibonacci series have the property that ratios of successive
terms approach ¢ in the limit, alternating above and below this num-
ber (see Section 3.2), i.e.,

. Qpa
lim — = ¢
no— x
n
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For example, from Series (1.8),

% =2.0,%=15,% = 1.667,% = 1.6, '3 = 1.625 etc. (1.9)

Using the Fibonacci properties of the ¢ series, this series can be con-
structed with compass and straightedge as we shall show in Section
3.4.

The golden mean and Fibonacci series are the basis of a useful sys-
tem of architectural proportions developed by the French architect Le
Corbusier, known as the Modulor. This system will be discussed in the
next section. The golden mean and Fibonacci series also have other
interesting mathematical properties, some of which will be discussed
in the next two chapters. They are connected with certain natural pro-
cesses such as plant growth, which will be discussed in Section 3.7.

As we did for the golden mean, we can show that 6 satisfies the
equation

1+ 20 = ¢? (1.10)

and that the powers of 8 form a double geometric series

-~-$%1ee2--- (1.11)

with the property that each term is the sum of twice the previous term
and the term before that. Such a series is called a Pell’s series. In gen-
eral, Pell's series have the property

a, =aq,_; + 2an—l
That is,
125122970--- (1.12)

It can be shown that the ratio of successive terms in any Pell’s series
approaches 6 as a limit:

For example, from Series (1.12)

2 = 2.0,% = 2.5,126 = 2.4, 2% = 2.416,... (1.13)

In Section 1.8, the ratio #:1 will be shown to lie at the basis of a sys-
tem of proportions used by the Romans during the first and second
centuries.
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1.6.2 Subdividing rectangles

In Section 2.11, we shall describe the gnomic breakdown of rectangles
into proportional units by a method known historically as the princi-
ple of repetition of ratios, which accomplishes in the realm of geometry
what the musical scale did in the realm of sound, namely, to provide a
means to reproduce proportions within a design. In this section we
consider the more general question of how to subdivide a rectangle
into subrectangles exhibiting the fewest number of different propor-
tions.

The rectangle in Figure 1.8 is subdivided most generally by a ver-
tical and horizontal line into nine different subrectangles: the four ev-
ident in the figure, four additional ones gotten by combining adjacent
rectangles, and the outer rectangle enclosing all of the others. How-
ever, Figure 1.8(b) and (c) shows that this can be reduced to only two
or three, respectively, if the rectangle has proportions V2:1 or é:1.
This will be reconsidered in Section 2.11 in connection with the prin-
ciple of repetition of ratios.

A similar analysis can be carried out for rectangles subdivided by
two horizontal and two vertical lines. The 36 different rectangles for
the general case can be reduced to 4 and 5 different rectangles if 6,
V2, and ¢ are used for the proportions. If four vertical and four hori-
zontal lines are used, the 225 different rectangles can be reduced to
only 11.

Thus we see that proportions based on \/é, 8, and ¢ facilitate the
repetition of ratios that fit together to form a whole in aesthetically
pleasing ways which satisfy our three canons of proportion.

N\ > ~ ”1
1 -KJ/\" \/2 /7\\(/’
. . A
. N 7 ¢2 22
AN P
VAN NN l V2 Y N
” puy
g2 —— —2—
(a) (b) (c)

Figure 1.8 A rectangle subdivided by one vertical and one horizontal
line into nine subrectangles. The rectangles have (a) all different
proportions; (b) three different proportions based on ¢; (c) two differ-
ent proportions based on V2.
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1.6.3 Continued fraction expansions

Perhaps the most convincing evidence of the mathematical pedigrees
of &, 6, and V2 is given by expanding them in what is known as a con-
tinued fraction (see Appendix 1.A) [Khinchin, 1964], [Olds, 1963). Since
¢ satisfies

=0 +1
we can solve for ¢:
1
=1+
=1ty

Replacing ¢ repeatedly in this expression yields

¢b=1+1
1+1
1+1
Likewise,
62=20+1
and so,
6=2+%=2+1
241
241

Also, since V2 = 6 — 1, it too can be expanded as the continued frac-
tion.

By terminating these fractions at different stages, the ratios called
convergents given by Equations (1.9) and (1.13) for ¢ and 6 are ob-
tained. The series of partial fractions for V2is

1 =1.0,%1=2.0,% =1.5,% = 1.4,1%2 = 1.4166,... (1.14)

From the theory of continued fractions, these ratios are the best ap-
proximations to ¢, 6, and \/ﬁpossible with denominators no larger
than the given ones.

Now that we have established ¢, 6, and V2 as the cornerstone of a
satisfactory system of proportion, we will study in more detail the sys-
tem based on 0 and V2 used by Roman architects of the first and sec-
ond century and the Modulor system of Le Corbusier based on ¢.
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1.7 The Golden Mean and lts Application to
the Modulor of Le Corbusier

Le Corbusier created the first modern system of proportion, which he
called the Modulor [1968a]; [1968b], [Martin, 1982]. This system sat-
isfies the three canons of proportion in addition to being built to the
measure of the human body. Unlike the Renaissance system, which
used a static series of commensurable ratios to proportion the length,
width, and height of rooms, Le Corbusier’s system developed a linear
scale of lengths based on the irrational number ¢, the golden mean,
through the double geometric and Fibonacci ¢ series:

..ea
¢ o
for some convenient unit a.

In general, the ratios involved in this system were incommensura-
ble, although Le Corbusier often used an integer Fibonacci series ap-
proximation to this series, enabling him to operate in the realm of
commensurable ratios. However, the fact that Series (1.15) is a
Fibonacci series satisfying Equation (1.5) enables the Modulor system
to be manipulated analytically in terms of ¢ and its powers rather
than through its decimal equivalent. In this section we will study the
Modulor.

aadad’ad® - (1.15)

1.7.1 The red and blue series

Le Corbusier created a double scale of lengths which he called the red
and blue series. The blue series was simply a ¢ series. This series is
constructed by cutting an arbitrary length in the golden section, i.e.,
two segments with lengths in the ratio ¢:1. A method for doing this
will be described in Section 3.4. Since Series (1.15) is a Fibonacci se-
ries, all lengths of the double series can be constructed with compass
and straightedge. The sequence of elements of the blue series is shown
in Series (1.16), with 2d replacing a in the ¢ series for arbitrary d (not
drawn to scale).

2d 2d

= == 94 2dé 2dd* 2dd®

o & ¢ 2dd° 2dd
Blue series: - X X X b'd X X
Red series: - -- X X X X X

d dé  do? dé® do* (1.16)
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The red series is constructed according to the pattern of Series (1.3);
each length is the arithmetic mean of successive lengths of the blue
series that brace it. Therefore, the resulting sequence of elements of
the red series is interspersed between lengths of the blue series as
shown in Series (1.16). According to Section 1.4, each length of the
blue series is the harmonic mean of the two successive lengths that
brace it from the red series. The following computation shows that the
harmonic mean divides the difference between each pair of lengths of
the red series in the golden section 1:¢. Consider the interval (&2, &%
from the red series. Using Equations (1.1) and (1.5), the harmonic
mean of this interval is

2d)2d)!)
c = -
- d)Z + d).}

=2d)

which is the element from the blue series that intersperses the inter-
val. By using the additive properties of the ¢ series, it is easy to show
that 2¢ cuts the interval in the golden section. (Show this!)

Another relationship between the red and blue series can be seen by
considering any length from the blue series, say 2¢". It equals the dif-
ference between the lengths ¢”"*% and ¢" ' from the red series as we
shall show in Section 3.3, i.e.,

2d)" = d)n+2 _ d)n—l (117)

The series are drawn to scale in Figure 1.9 which shows how the two
series work together with lengths of one interspersed with lengths of
the other. This mitigates the effect of the too-rapid geometric growth
of either series taken by itself.

Figure 1.10 shows a set of rectangular tiles whose lengths and widths
are measurements from either the red or blue series or both. Represented
among these tiles are squares, double squares, and golden mean rectan-
gles. This figure also shows that since the lengths and widths are mem-
bers of a Fibonacci series, if two rectangles having the same width and
two successive lengths from either the red or the blue series are joined, a
rectangle with the next length in the red or blue series emerges.

To get some experience with the many relationships between these
tiles, the reader is encouraged to construct a set of rectangles and try
to find interesting ways to combine them. Figure 1.11 shows several

d db de? g3 dat s 48
Crea= dG(#) LI l l |

Coe= 2d4G(4) I I | |

2d g 2 233 gt 71/|¢5

Figure 1.9 The Modulor red and blue scale of lengths measured from a common origin.
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Figure 1.10 The red and blue series of Le Corbusier's Modulor and the tiles of various
proportions which the system gives rise to. There are three groups: rectangles whose
side lengths are drawn only from the blue series (shaded in one direction), rectangles
whose side lengths are drawn only from the red series (shaded in the opposite direc-
tion), and those rectangles produced from pairs of dimensions, one red and one blue
(both shadings superimposed).

tilings of rectangles by red and blue tiles, found in Le Corbusier’s book
Modulor [1968a].

Problem 1.2 Use the Fibonacci properties of the & series shown in Equation
(1.5) to show that the sum of the lengths across the top edges of the rectangles of
Figure 1.11 agree with the sum of the lengths across the bottom edges. Also
check the sum of the right and left edges for agreement.

The Modulor system is extremely versatile. Once a rectangular area
has been tiled by the Modulor, the tiles can be rearranged in many
different ways to form new tilings of the rectangle. It can also be used
to tile rectangles of arbitrary dimensions to within any preset toler-
ance (see Section 3.3).
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Figure 1.11 A Modulor exercise by Le Corbusier. Eight rectangles are subdivided by
Modulor rectangles and coded according to the table in the upper right-hand corner.

Figure 1.12 shows some interesting breakdowns of a square 2¢2 on
a side into rectangles of the Modulor. In the last column a 5-inch
square is tiled to V4-inch tolerance. Each column rearranges the same
tiles in three different ways. Thus the Modulor satisfies the three can-
ons of proportion. It provides a small number of modules (the rectan-
gles in Figure 1.10) capable of tiling a given rectangular space; the
modules all have proportions based on the golden mean, ensuring rep-
etition; and the system has sufficient versatility to enable the de-
signer to find aesthetically interesting subdivisions.

Construction 1.1 Construct your own set of modules and find your own break-
downs of a 2¢* square. Also test the versatility of the Modulor system by tiling
a 5-inch square with red and blue rectangles to within a Y-inch tolerance.

Despite these satisfactory properties, the Modulor was useful to Le
Corbusier and other architects primarily as a theoretical tool, and
only rarely has it been used for designing complete buildings. As Le
Corbusier suggests in Modulor 2 [1968b], this is to some extent be-
cause the scale is too coarse and leaves large gaps at significant points
in the design. However, we now show one way in which these gaps can
be filled.

1.7.2 Filling in the gaps

Since any gap between two successive lengths of either the red or blue
scale equals the preceding length of the scale, an exact scaled-down
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Figure 1.12 A Modulor tiling by Allison Baxter. In the first three columns a 242 by 2¢>
square is subdivided into three different sets of of tilings. Each set uses the same tiles
but is arranged in three different ways. The last column presents the tiling of a 5- by
5-inch square to within Vi-inch tolerance by the same tiles arranged in three different
ways.

replica of the red and blue series up to this length fits exactly into the
gap. For example, the gap of the length ¢ between ¢Z and &2 of the red
series can be filled in by the red and blue series up to ¢. In this way
the Modulor can be extended to a series that is self-similar at every
scale, much as we shall see in the next chapter for the fractal patterns
of Section 2.12 and the biological patterns of growth of Section 2.10.
This can be done without leaving the Modulor system. We shall refer
to such a self-similar system as being closed.

1.7.3 Human scale

Renaissance artists were well aware that the golden mean modulates
the parts of the human body. For example, the Botticelli Venus shown
in Figure 1.13 was subdivided by Theodore Cook into a sequence of
powers of the golden mean [1979]. For example, ratio

Navel to top of head ¢’ &
Navel to feet  ¢* + ¢*  4°
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In other words 1:4. This appears to be close to the average value for
this ratio in the adult population at large [Huntley, 1970]. It is also
the proportion that seems to have been chosen, both consciously and
unconsciously, by artists in all ages to scale human figures in their
paintings.

The trademark of the Modulor is shown in Figure 1.14. A 6-foot
British policeman with arms upraised provides the determining points
of the red and blue series. If the policeman’s upraised arm is given the
value 2d/4 on the blue scale while the top of his head is d, the remain-
der of the scale is completely determined and can be constructed by
compass and straightedge. (Try it!)

Le Corbusier made these lengths concrete by choosing d so that it is
the height of the 6-foot policeman (or 183 centimeters in the metric
system). His upraised hand was then set at 226 centimeters. The other
lengths of the scale are then approximated rather well by constructing
two integer Fibonacci series based on these values, as shown in Figure
1.14:

Red: ...27, 43, 70, 113, 183,...
Blue: ...54, 86, 140, 228,... (1.18)

Since Le Corbusier worked on both sides of the Atlantic, he found it
to be of great practical importance and quite miraculous that when
the red and blue scales based on the 6-foot policeman were converted
to English units, the corresponding lengths were, to a close tolerance,
either an integral number of inches or on the half inch [March and
Steadman, 19741

Blue: ...8in, 13 in, 21 in, 34 in, 55 in, 89 in, 144 in

Red: ...6%21in, 10%21in, 17 in, 272 in, 44%2in, 72in  (1.19)

Equally good design results can be obtained by using the abstract
scale of Series (1.16) or its Fibonacci approximations in Series (1.18)
and (1.19).

226

183

Figure 1.14 The “trademark” of
140 the Modulor. A man-with-arm-
113 upraised provides, at the deter-
. 85 mining points of his occupation
0 of space—foot, solar plexis, head,
] tips of fingers of the upraised
arm—three intervals which give
rise to a Fibonacci series.
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1.8 An Ancient System of Roman Proportion

Near the mouth of the Tiber River stand the excavated brick remains
of the ancient Roman port of Ostia. Among the ruins of this rich ar-
chaeological site are those of a neighborhood of apartments, shops,
and garden houses. According to the Watts, who studied the system of
proportions that underlies the Garden Houses of Ostia, “even in their
ruined state they convey a palpable sense of order and design.”

According to the Watts, the key to the design of the Garden Houses
is a single geometric pattern based on the square and a particular way
of dividing it came to be called the sacred cut. By ensuring propor-
tional relations among the parts of the complex and the parts to the
whole, the sacred cut lends unity and harmony to the design. The sa-
cred cut works as follows [Watts and Watts, 1986]:

A sacred cut of a reference square is constructed by drawing arcs that are
centered on the corners and pass through the center of the square [as
shown in Figure 1.15(a)]. By connecting the points where the arcs cut the
side, one obtains a nine-part grid, whose central square is called the
sacred-cut square. The length of each arc AB is equal, to within .6 per-
cent, to the length CD of (the diagonal of) half the reference square [see
Figure 1.15(b)]. Hence the sacred cut provides an approximate method of
squaring the circle. The perimeter of a square composed of four lines CD
is nearly equal to that of a circle composed of four sacred cuts [see Figure
1.15(c)].

It is evident from Figure 1.15(a) that the ratio of the side of the square
to the radius of the sacred cut is V'2:1 while the ratio of the diagonal
of the large square to the radius of the sacred cut is 2:1. The problem
of squaring the circle, which was one of the central problems of Greek
mathematics, probably marks the influence of the Greeks on this sys-
tem of Roman proportions. As a matter of fact, it was the Danish

REFERENCE SACRED-CUT
SQUARE SQUARE

(a)

Figure 1.15 Sacred cuts of a reference square. (Reprinted from “A Roman Complex” by
Donald J. and Carol M. Watits. Illustrated by Tom Prentiss. © Scientific American.)
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scholar Tons Brunes who coined the term sacred cut. Brunes claims
that the sacred cut was transmitted from Egypt to Greece in the sixth
century B.C. by Pythagoras and then through the Romans to medieval
Europe. As the Watts point out in their article,

To ancient geometers, the circle symbolized the unknowable part of the
world (since its circumference was proportional to the irrational number
) while the square represented the comprehensible world. Squaring a
circle was a means of expressing the unknowable through the knowable,
the sacred through the familiar. Hence the term sacred cut.

According to Watts,

The geometric order of Ostia’s Garden House complex is established by
three successive sacred cuts. In Figure 1.16, a square roughly congruent
with the perimeter of the complex encloses a circle that touches the cor-
ner of the courtyard (a). Sacred cuts of the east and west sides of this ref-
erence square determine the position of the outer walls of the courtyard
buildings (b). The second reference square, concentric with the first, is
defined by the width of the courtyard and the position of the fountains;
the sacred cuts of its east and west sides guide the placement of the party
walls along spines of the courtyard buildings (¢). The third reference
square is the sacred-cut square of the second and its cuts define the in-
nermost walls of the courtyard buildings (d). The buildings are precisely
five times as long as the final sacred-cut square, and their width is equal
to its diagonal (e). A superposition of all sacred cuts shows how they un-
fold from a common center, thereby emphasizing the major east-west axis
of the complex ().

The sacred cut appears to have been used to proportion the design at
all scales from the overall dimensions of the courtyard to the individ-
ual buildings to the rooms within each building and even to the tap-
estries on the wall.

1.8.1 A double series based on the sacred cut

The sacred cut can be related to a double scale quite similar to the red
and blue series. Here each scale is the double geometric and Pell’s se-
ries with common ratio 6 discussed in Section 1.6.1, where as before
8 = 1 + V2. The ratio of adjacent elements from Series 2 to Series 1 is
V2:1. Thus,

\/E% V2 Vae Veer Ve

Series 2: -+ x X X X X
Series 1: - - X X X X

8? 0 (1.20)



Figure 1.16 Geometric order of Ostia’s Garden House complex is established by three
sacred cuts. (Reprinted from “A Roman Apartment Complex” by Donald J. and Carol

M. Watts. lllustration by Tom Prentiss. © Scientific American.)
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It can be verified that the lengths of Series 1 are the arithmetic
means of the lengths from Series 2. Thus, according to the results of
Section 1.4, the lengths of Series 2 supply the harmonic means be-
tween adjacent pairs of lengths from Series 1. This breaks the distance
between pairs of lengths from Series 1 in a ratio of 1:8, or 0.414 (as
compared to 1:d or 0.618 for the red and blue series).

A double series of commensurable lengths which are good approxi-
mations to Series 1 and 2 can be derived from the convergents of the
continued fraction expansion of V2, given by Equation (1.14). The re-
sulting double series:

Series 2:
1 3 7 17 41
X X X X X
Series 1:
X X X X X
1 2 5 12 29 (1.21)

are each Pell’s series with ratios closely approximating V2. Series 1

and 2 of Series (1.19) and (1.20) also possess the following additive
properties:

1. The sum of two successive elements of Series 1 is an element of Se-
ries 2, e.g., 1 + 2 = 3.

2. The sum of an element of Series 1 and the corresponding element of
Series 2 results in the next element of Series 1, e.g., 2 + 3 = 5.

3. The difference between two successive elements of Series 2 is twice
an element of Series 1,e.g.,7 - 3 =2-2.

Using these additive properties and beginning with the two
lengths 1, V/2, all other lengths of Series 1 and 2 can be constructed
with compass and straightedge. These properties can also be used to
subdivide squares or rectangles into lengths from Series 1 and 2
(see Figure 1.8).

Of course this subdivision can be repeated at different scales. In fact
courtyard buildings at Ostia are regulated by the sacred cuts of a
square whose sides are 41 Roman feet and whose diagonal is equal to
the interior width of the building, or 58 feet (twice 29 feet from Addi-
tive Property 3). Also, gaps between lengths of Series 1 or Series 2 can
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be subdivided into scaled-down, self-similar replicas of these series
just as was done for the Modulor. However, there is an important dif-
ference, discussed below.

1.8.2 Filling in the gaps

Just as the lengths of gaps in the red and blue series were found
within the same series, Series (1.21) shows that the length of a gap in
Series 1 is found in Series 2 of Series (1.21). As a result, gaps from
Series 1 can be tiled by a self-similar replica of the entire double series
up to this length. However, gaps from Series 2 are not found in the
double series; if elements of Series 2 are doubled, a third series is ob-
tained which contains the gap lengths of Series 2:

Series 3: ---2 20 26° 203 -
Series 2: --*V2 V28 V202 ..
Series 1: ---1 6 0% @*--

Series 2 and 3 now fill gaps from Series 2 with a double scale that is
self-similar to the original pair. This process can be continued at any
scale; however, it will require an infinite progression of scales ob-
tained by doubling the preceding scale to get the next. We refer to
such a system as being open.

In conclusion, the Roman system based on the sacred cut appears to
have been extremely successful as a system of proportionality. The
system shows that the Romans and the Greeks were quite comfortable
dealing with incommensurable proportions and that it was Renais-
sance architects who lost this knack. As a result of the Renaissance
architects’ insistence on limiting themselves to commensurable pro-
portions only, their systems lacked the additive properties needed for
this whole design to be the sum of its parts.

APPENDIX 1.A

Under what conditions can a rectangle of proportions a:b be tiled by a
finite number of congruent squares? If this rectangle is to be tiled by a
finite number of squares, a and b must be divisible into a finite num-
ber of segments of equal length, i.e.,

a =mp (LAD)
and

b=np (1.A.2)
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for m and n nonzero integers, where p is maximized in order to tile
with the fewest number of squares. The number of congruent squares
N is then

N=mn

Dividing Equation (1.A.1) by (1.A.2) yields

m (1.A.3)

from which it follows that lengths a and & must be commensurable. If
they are not, finite numbers m and n do not exist and the rectangle
cannot be tiled by a finite number of squares.

In the event a and b are commensurable, it follows from Equation
(1.A.3) that

a=Fkm and b =kn (1.A.4)

Thus, from Equations (1.A.1) and (1.A.2), p is maximized when m and
n are the smallest positive integers satisfying Equation (1.A.3). In
other words, k is the largest number that divides both a and & to yield
integer quotients. If @ and & are both integers (and they can always be
taken to be integers by scaling the rectangle), £ is what mathemati-
cians call the greatest common divisor (GCD) symbolized by & = {a,b}.
When integers a and b have no common divisor but 1, 2 = 1 and ¢ and
b are said to be relatively prime. So we see that m and n are merely the
integers in the representation of a/b in lowest terms. It is also evident
from Equation (1.A.4) that % is the side length of the congruent
squares.

It can be shown that if positive integers a and b are relatively prime
and d is a positive integer, the Diophantine equation,

am + bn =d (1.A.5)

for m and n integers, always has solutions when d is a multiple of the
GCD {a,b} [Courant and Robbins, 1941]. In the event that m and n are
constrained to be positive numbers as they would be if they repre-
sented the numbers of two modular lengths subdividing an overall
length L (see Section 1.3) and a and & are relatively prime, i.e.,
{a,b} = 1, it can be proven that there exists a critical number (CN) that
equals (@ — 1Xb - 1) such that Equation (1.A.5) has at least one so-
lution for d = CN and that there are exactly CN/2 - 1 solutions for
values of d less than CN.

To complete this cycle of ideas, the GCD of any two integers ¢ and b
can be determined by expanding a/b in a special class of compound
fractions known as continued fractions. Rather than give a lengthy ex-
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planation of how to carry out this expansion, we will generate it for
one typical example and leave it to the reader to generate examples of

his or her own or study more extensive treatises on this subject
[Khinchin, 1964], [Olds, 1963]:

%z“%:”éﬁ%@
%=2+£_3=2+2_2;1ﬁ
%=1+%=1+F31/%

Since 76/1 leaves no remainder, this sequences of quotients ends and
the GCD can be shown to be equal to the denominator of this quotient,
or 1, which shows that 611 and 229 are relatively prime.

Putting these results together,

840
éﬁ' =1+ —1
2+ 1
1+ 1
2+ 1
76

This continued fraction method of finding the GCD is equivalent to a
procedure known as Euclid’s algorithm [Courant and Robbins, 1941].

Problem 1.A.1 Find the continued fraction developments of %5, %50, and 2%s.
What is the GCD of the numerator and denominator in each case?
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Similarity

To see a World in a Grain of Sand

And a Heaven in a Wild Flower

Hold Infinity in the palm of your hand

And Elernity in an hour. WiLriam Brake
“Auguries of Innocence”

2.1 Introduction

The natural world presents itself to us with a great multiplicity of forms.
The shapes of plants, animals, forests, mountains, clouds know no
bounds. Yet something in the human mind has sought to tame this great
diversity and reduce its orders of complexity to a few general principles.
All religions and mythologies begin by creating a world of order from the
surrounding chaos. The words of Blake express a yearning to see through
the diversity of nature to the underlying connectedness of all things.

Mathematics and science have introduced ways of naming, then clas-
sifying, and finally understanding our observations of the natural world
in order to gain mastery over it for better or worse. Much of this book is
about how geometry presents us with ways of understanding the diver-
sity of forms. In this chapter we shall see how the geometrical notion of
similarity gives a way of describing the process of growth in nature.

We begin with a discussion of the the mathematics of similarity and
then show how this relates to self-similar forms. We also present a
brief introduction to the fractals of Benoit Mandelbrot, which are ul-
timate generalizations of the notion of self-similarity and present us
with a way of literally “holding infinity in the palm of your hand.” We
conclude this chapter with a brief discussion of some of the ideas of
D’Arcy Thompson from his classic study, On Growth and Form [1966],
in which he describes some of the factors that influence the growth of
biological structures and cause organisms to alter their forms to fit
their sizes.
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2.2 Similarity

Perhaps the most elementary transformation of a geometrical figure
is a similarity in which the shape of a figure is preserved but its size is
altered. Two figures are similar if corresponding lengths have the
same ratio, that is, if one is either a magnification or a reduction of
the other. We shall refer to the common ratio between lengths as the
magnification or growth factor.

Figure 2.1 shows lines drawn between corresponding points of two
similar figures intersecting at a common point, P, called the center of
similitude. This point is familiar; it is the point between the object and
image in a pinhole camera. In Figure 2B.1 the object and image are
placed side by side and corresponding points are stretched away from
O by a stretching factor k. Such transformations are called dilatations,
and £ is the growth factor of the two similar figures, since

Dilatations will be discussed further in Appendix 2.B where we will
show that they are related to another important geometrical transfor-
mation called inversion in a circle.

If the corresponding lengths are all equal, i.e., the growth factor is
unity, the two figures not only have the same shape but also have the
same size although they may have different positions and orientations
in space. Therefore, they can be matched point for point by moving
them rigidly in space as we shall describe in more detail in Chapter
11. In elementary geometry such figures are called congruent. In this
book we will consider two kinds of congruence. When two figures can
be matched point for point by a rigid body motion, they will be called
directly congruent; when they can be matched by some combination of
a rigid body rotation followed by reflection in a mirror, they will be
called indirectly congruent, or enantiomorphic.

Figure 2.1 Object and image of a pinhole camera are similar fig-
ures.
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2.3 Families of Similar Figures

Figure 2.2 shows three similar squares, triangles, and sombreros. It is
clear by the definition of similarity that any two circles or squares are
similar, whereas for two triangles to be similar the lengths of their
corresponding sides must be proportional and their angles must be
equal. For two sombreros or for any two forms, in general, to be sim-
ilar, a much larger number of proportional lengths may have to be
specified. The following important theorem governs the areas of fam-
ilies of similar figures.

Theorem 2.1 The areas of a family of similar two-dimensional figures are pro-
portional to the square of any characteristic length within the figures; the con-
stant of proportionality depends on the shape of the figure and the characteristic
length, i.e.,

A =cl? (2.1)
Thus for any pair of shapes from such a family,
Ay =cly? and A, = cly?
or

Ay \?
‘4—1 = <(1) (2.2a)

In this equation, % = (€,/€;), the growth factor. For example, if the
characteristic length of a square is taken to be the length of its side,
¢ = 1, which is consistent with the common definition of the area of a

4%%
~ DS S

Figure 2.2 Families of similar figures.
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square, A = s*. However, if the characteristic length is taken to be the
diagonal, A = Y2 d and ¢ = Va.

Also the areas of families of circles and equilateral triangles are
given in terms of the diameters d of the circle and sides s of the tri-
angles by

A=7d* and A =\/T§s2
From Equation (2.2a), we notice that if we double a length, i.e.,
€,/€, = 2, the area is multiplied by 4, i.e., A,/A, = 4, as Figure 2.3 il-
lustrates for squares and triangles.
In Section 8.10 we shall use a version of this theorem generalized to
volumes. The volumes of a family of similar three-dimensional figures

are proportional to the cube of any characteristic length, i.e.,

V=ct

from which we conclude that the volumes of any pair of figures from
the family satisfy

Va_ (&Y (2.2b
7= (@) i

2.4 Self-Similarity of the Right Triangle

The dissection of a right triangle results in a family of similar right
triangles. To see this, construct two congruent right triangles ABC, of
any shape, as shown in Figure 2.4(a). Cut one of them along the alti-
tude BD of length 4, drawn to its hypotenuse AC to obtain the right
triangles ABD and BCD, respectively. The altitude cuts the hypote-
nuse of triangle ABC into line segments AD and DC of lengths ¢ and
¢, respectively. That these two triangles along with the original are a
family of similar figures can be seen by superimposing their common
right angles, as shown in Figure 2.4(4). The common ratio between
corresponding sides is

Growth factor = &

b
5" ¢ (2.3)

&\ B
Al B A Figure 2.3 When a characteris-
£ tic length is doubled, the area
M multiplies by four, illustrated
for (@) a square and (b) a trian-
fal b gle.
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(a) (b)

Figure 2.4 Dissection of a right triangle into a family of three similar right
triangles.

Thus the right triangle embodies self-similarity.

Also, by Equation (2.3), the altitude of the right triangle of length
divides the hypotenuse into two segments of lengths a and ¢, where b
is the mean proportional (same as the geometric mean) between a and
c. We refer to this as the theorem of the mean proportional. Equation
(2.3) plays an important role in describing self-similar forms in na-
ture, as we shall see in Section 2.10. Johannes Kepler fully recognized
the importance of the self-similarity of the right triangle when he
wrote:

Geometry has two great treasures; one is the Theorem of Pythagoras, the
other, the division of a line into extreme and mean ratio. The first we
may compare to a measure of gold, the second we may name a precious
jewel,

Many proofs of the pythagorean theorem have been given, including
one by President Garfield, another by Leonardo da Vinci, and an an-
cient proof given in Section 5.13.3, based on rotational symmetry. One
of the most elegant proofs is based on the similarity of triangles ABC,
ABD, and BCD obtained by dissecting triangle ABC [see Figure
2.5(a)]. In order to get a better picture of these similar triangles, we
reflect them in mirrors lying on each of their hypotenuses as shown in
Figure 2.5(b). If we denote the respective areas of these triangles by
A A, and A,,

Ay=A + A, (2.4)
From Equation (2.1),
A.’i =c (63)2,A2 =c (6’2)2, A1 =cC (61)2 (2.5)

where ¢, €,, and ¢; are the sides of triangle ABC and the hypotenuses
of the three similar right triangles.
Replacing Equation (2.5) in (2.4), it follows that

(63)2 = (61)2 + (62)2
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(c) (d}

Figure 2.5 Similar families placed on the sides of (a) a right triangle ABC, (b) right
triangles reflected from within ABC, (¢} squares, and {(d) busts of Pythagoras.

From this proof, we see that if three squares are erected on the three
sides of a right triangle [see Figure 2.5(c)], the sum of the areas of the
squares equals the area of the square constructed on the hypotenuse.
But Theorem 2.1 also shows this to be true of any similar figures con-
structed on the three sides of the triangle, such as the busts of
Pythagoras that H. Jacobs whimsically illustrates in Figure 2.5(d)
[1987].
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2.5 Line Choppers

A family of similar triangles can be used to divide a given length into
fractional parts using only compass and straightedge. Such a line
chopper can be constructed with an arbitrary number of division
points, as Figure 2.6 shows for a line chopper with six equally spaced
division points A,, A, A,,..., A5 and parallel line segments A,B;,...,
A B;. Here lines AjA; and A, B, are drawn arbitrarily and we use the
fact that through any point a line may be drawn parallel to the given
line A |B,.

Now if we want to divide a line segment of length L into three equal
parts, we merely place the line segment with one end on A, and the
other end along A,B, as shown in Figure 2.6. By similar triangles, L
is subdivided into thirds. To create a line segment of length 44L,
merely use a compass to mark off one additional length of magnitude
L/3.

In this way, segments of length (m/n)L for m and n positive integers
can be constructed from a line segment of length L using only compass
and straightedge.

2.6 A Circle Chopper

A pair of intersecting lines can be cut by a circle in six distinct ways,
two of which are shown in Figure 2.7. In Figure 2.7(a), the intersec-
tion point O lies interior to what we call a circle chopper and AOB,
COD are chords of the circle. In the other figures, O either lies exte-
rior to the circle chopper and OAB, OCD are either secant lines or tan-
gent lines to the circle.

That the two intersecting lines are cut by the circle chopper into two
pairs of proportional line segments is given by the following remark-
able theorem.

B)

Figure 2.6 A line chopper subdivides a length L into a ra-
tional proportion (m/n)L illustrated for V4 L and % L.



42 Chapter Two

Figure 2.7 A circle chopper di-
vides a length so that OA -
OB = OC - OD where (a) O is an
interior point to the circle and
(b) O is an exterior point.

Theorem 2.2 The circle chopper subdivides any pair of intersecting lines so
that

OA OD
0C - OB (2.6)
A limiting case of this theorem states that the two tangent lines
drawn from a circle to their point of intersection are equal.

The proof of this theorem for the case in which O is interior or ex-
terior to the circle, as it is in Figure 2.7(a) and (b), follows from the
fact that triangle AOD is similar to triangle BOC. These triangles are
similar because the intersecting angles are equal, i.e.,

<« DOA = ¢« COB
¢ BAD = ¢« BCD

and < ADC = ¢ ABC

because of Theorem 2.3 (also referred to in Appendix 2.A as Theo-
rem 2.A.1).

Theorem 2.3 Inscribed angles to a circle that intercept equal arcs on the cir-
cumference of the circle are equal.

For a proof of this theorem, see Appendix 2.A. Another proof of Theo-
rem 2.2 following a radically different logic is developed in Appendix
2.B along with a cycle of ideas leading to a formulation of Ayperbolic
geometry. As a corollary to Theorem 2.2, when O is interior to the cir-
cle, it. follows from Equation (2.6) that the products of the segments of
the two intersecting chords are equal, i.e., OA - OB = OD - OC. This
corollary can lead to alternate ways of solving geometrical problems.
Consider Martin Gardner’s [1978] two problems, following, which can
be solved either by this corollary or by other means.

Problem 2.1 In the middle of a park there is a large circular play area. The city
council would like to put a diamond-shaped wading pool inside the circular area,
as shown in Figure 2.8(a). How long is each side of the pool?
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(a) (b)
Figure 2.8 Two problems by Martin Gardner.

Problem 2.2 There is a famous puzzle about a water lily that the poet Henry
Longfellow introduced into his novel, Kavenaugh. When the stem of the water
lily is vertical, the blossom is 10 centimeters above the surface of the lake. If you
pull the lily to one side, keeping the stem straight, the blossom touches the wa-
ter at a spot 21 centimeters from where the stem formerly cut the surface. How
deep is the water? Figure 2.8(b) helps to visualize this problem. Your task is to
solve for x.

2.7 Construction of the Square Root of a
Given Length

In Section 2.5 we were able to construct, with compass and straight-
edge, any length m/n that is a rational fraction of a given unit. A
length equal to VL can also be constructed with the aid of Figure 2.9
as follows:

—

. Construct a circle with diameter AB where DB is taken to be one
unit and AD is a line segment of length L.

2. Draw a line through D perpendicular to AB.

w

The length of line segment CD, where the circle cuts the perpen-
dicular, has magnitude VL.

Figure 2.9 Construction of the
square root of a given length L.
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This construction follows from the observation that ACB is a right
triangle by the corollary to Theorem 2.A.2. As a result, the theorem of
the mean proportional of a right triangle [Equation (2.3)] states that

AD _CD

CD ~ BD
But if AD = L, BD = 1 while we let CD = x,
L

X

from which it follows that x = VL.

=R

2.8 Archimedes Spiral

In Section 2.4 we showed that the right triangle can be subdivided into
self-similar right triangles. But the right triangle is also connected to the
more general theme of self-similar growth through the geometry of the
spiral. The spiral is an archetypical symbol found in the art and meta-
physics of people in every age. For example, spiral patterns appear on the
walls of the cave dwellers, in the sacred symbols of the Buddhists and
Hopi Indians, and in the mazes found on the doors of early Gothic cathe-
drals. Jill Purce [1974], Anne Tyng [1969], and Jay Kappraff [1990] have
explored the cultural and metaphysical meaning of the spiral.

There are two fundamentally different kinds of spirals, the
Archimedes spiral and the logarithmic spiral. The Archimedes spiral
is rarely found in natural forms although it does correspond to the for-
aging pattern of certain shellfish. It is the pattern formed on the
ground by a horse tethered to a tree as it walks round and round the
tree letting out its rope as it walks [see Figure 2.10(a)] or by a coiled
snake. We represent this schematically as shown in Figure 2.10(b),
where only the labeled points actually lie on the spiral.

We see from Figure 2.10(5) that each time the horse walks around the
tree it increases its distance from the tree by % units. Thus, since 2w ra-
dians equals the angle of one revolution, 6 / 21 gives the total number of
revolutions that the horse has made, and Table 2.1 shows the relation
between the number of revolutions and the distance r from the tree.

The Archimedean spiral leads to an arithmetic series in r. Thus we
see from Table 2.1 that 6/2w and r both increase in arithmetical pro-
gression and we obtain the following relationship between them:

k

=§T6 or r = ab.

r

where a = &/2%
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Figure 2.10 (a) A horse tethered to a tree walks an Archimedes spiral as it unwinds
the rope but keeps it taut; (b) a schematic diagram of the Archimedes spiral.

TABLE 2.1
0/2+w r
0 0
1 k
2 2k
3

2.9 Logarithmic Spiral

Now let us consider the more important logarithmic spiral. Interest-
ingly, this spiral is built up from a right triangle. Consider any right
triangle to which an altitude has been drawn to the hypotenuse from
the opposite vertex, such as the one shown in Figure 2.4(a).

Restating the theorem of the mean proportional, given by Equation
(2.3),

a_b
b ¢
Now consider a sequence of right triangles arranged to form a spider
web plotted on polar coordinates, as shown in Figure 2.11. The verti-
ces of these triangles lie on a logarithmic spiral. By repeatedly apply-
ing the theorem of the mean proportional to these right triangles,
¢ _b _a_b_c_d_

5" a b ¢ d e
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Figure 2.11 A schematic dia-
gram of a logarithmic spiral.

Now, if we let the distance from the center of the spider web to two
vertex points of the spiral displaced by 90 degreesbea = 1 and b = &
units, the above ratios all equal 1/k, making the successive points
c=Fk%d=Fk*etc,and b’ = 1/k, ¢’ = 1/k?, etc. Thus we generate the
double geometric series of numbers,

LAl 243...

Wk 1k k%K 2.7
shown in Table 2.2. Since /2, or 90 degrees, represents a quarter of a
revolution in radians,

o
/2
records the number of quarter revolutions from point to point in the
sequence.
From Table 2.2 we see that the distance r from the center of the spi-
der web forms a double geometric series as the number of quarter rev-
olutions,

0

/2

forms an arithmetic series.
From the table we obtain the following relationship between 6 and

r==rh 0{m2) or r=a’ (2.8)
where ¢ = £*™. Taking logarithms of both sides of Equation (2.8),
log r = (loga)6 (2.9)

Therefore, on semilog graph paper, r versus 6 is a straight line con-
necting (8,r) = (0,1) to (w/2,k).
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TABLE 2.2
b
Vertex w2 r
¢ -2 1/k?
b’ -1 1/k
a 0 1
b 1 k
c 2 k?
d 3

Problem 2.3 Spirals grow at different rates. With the help of a semilog plot,
draw four spirals on polar coordinate graph paper in which 2 = 2, &, \/& , and 1,
where ¢ stands for the golden mean. Notice how the growth rates of the spirals
depend on k.

Using the growth principle for the logarithmic spiral that the radial
distance squares as the central angle doubles and the mean property of
the right triangle given by Equation (2.3), other points of the logarith-
mic spiral can be constructed with compass and straightedge. (Try
this!)

Gardner uses Problem 2.4 involving logarithmic spirals to demon-
strate the value of insightful mathematical thinking [1978]:

Problem 2.4

Tom Pizza has trained his four turtles so that Abner always crawls to-
ward Bertha, Bertha toward Charles, Charles toward Delilah, and
Delilah toward Abner. One day he put the four turtles in ABCD order at
the four corners of a square room. He and his parents watched to see
what would happen.

“Very interesting son,” said Mr. Pizza. “Each turtle is crawling directly
toward the turtle on its right. They all go the same speed, so at every
instant they are at the corners of a square.” (See Figure 2.12.)

“Yes Dad” said Tom, “and the square keeps turning as it gets smaller
and smaller. Look! They're meeting right at the center!”

Assume that each turtle crawls at a constant rate of 1 centimeter per
second and that the square room is 3 meters on the side. How long will it
take the turtles to meet at the center? Of course, we must idealize the
problem by thinking of the turtles as points.

Mr. Pizza tried to solve the problem by calculus. Suddenly Mrs. Pizza
shouted: “You don't need calculus, Pepperone! It's simple. The time is 5
minutes,”



48 Chapter Two

e
3

~
\?\

Ji N - .H&v

Figure 2.12 Four turtles, Abner, Bertha, Charles, and Delilah, traverse the sides
of a square but are constrained to follow each other at all times. Their paths must
be logarithmic spirals whose common center is the center of the square.

What was Mrs. Pizza's insight? If you cannot provide the requisite in-
sight to solve this problem, you can always diagram the paths of the tur-
tles in small increments of time, drawing four sides of the square at the
end of each interval. The result is the pattern shown in Figure 2.12.

2.10 Growth and Similarity in Nature

The logarithmic spiral is commonly found in nature, for example, in
the form of the nautilus shell or the striations of the shells of other sea
animals, as shown in Figure 2.13. This follows from an important
property of spirals. Any arc of the spiral between two radii separated
by an angle 6 is similar. In other words, one such arc can be magnified
or reduced to form the others, as shown in Figure 2.14. It was pointed
out by D'Arcy Thompson [1966] that the nautilus shell and the horns
of a steer grow by accretion according to the genetic code of the ani-
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(a) (b)

Figure 2.13 Natural forms illustrating logarithmic spiral growth. (a) Shell
forms; (b) nautilus.

A~B

Figure 2.14 The central angle of a logarithmic
spiral intercepts similar arcs on the spiral.

mal. Thus, if the outer part of the horn grows at a constant rate but
faster than the inner part, a logarithmic spiral results as shown in
Figure 2.15(a) for a sequence of wooden chips that approximate the
annual growth of the horn [Stevens, 1974]. Furthermore, the above
property ensures that each section of shell or horn will be self-similar,
preserving the identity of that aspect of the organism. If the wooden
chips are cut so that the cross sections of the cuts are not perpendicu-
lar to the horizontal plane, as they are in Figure 2.15(), the spiral
will wind into three-dimensional space and is called a kelix. Horns
and teeth actually grow in helices whose projections onto the horizon-
tal are logarithmic spirals.

Problem 2.5 The helix shown in Figure 2.16(a) can be thought to represent a
spiral ramp rising on the surface of a cylindrical building with radius R and
height H and constant pitch «, where the pitch is defined as the angle between
the direction of the spiral and the horizontal as seen in the edge view. If the
height of the cylinder is H = 100 feet and the pitch is o = 30 degrees, how far
must a person walk up the ramp compared to the distance straight up the side of
the wall? Show that the distance up the ramp does not depend on the radius R of
the cylinder. The following experiments with spirals supply a hint for the solu-
tion of Problem 2.5.
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(b)

Figure 2.15 A logarithmic spiral is formed when a horn grows faster on the outside
than the inside illustrated with rectangular wooden blocks cut by a perpendicular
plane, If the plane cuts the block at an angle, the growth pattern is helical,

Experiment 2.1. Get hold of the cardboard cylinder from a roll of paper
towels. Mark the spiral ridge of this roll with a red pencil. Cut open
the roll along a vertical line AB to form a period rectangle of height H,
width 2%wR, and pitch «, as shown in Figure 2.16(b) for the spiral
ramp. Measure R, H, and « for this spiral. Since the points on both
vertical sides of this period rectangle are considered to be identical,
ie, A=A" B =B C=C, the line of constant pitch « continues to
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Figure 2.16 (a) A helical curve on the surface of a cylinder; (b)
the cylinder is opened to a period rectangle by cutting along a
generator. The trace of the spiral is shown.

rise from point C on the left side after reaching the identical point C’
on the right side of the period rectangle.

Also note that the spiral revolves about the cylinder in a counter-
clockwise manner as in the threads of a standard screw. Such a spiral
is called a right-handed spiral because the fingers close in a counter-
clockwise direction when the right hand is closed into a fist. Right-
handed spirals are distinguished from spirals that slope in the oppo-
site direction, left-handed spirals.

Can a right-handed spiral be moved in space and matched up
point for point with a left-handed spiral? Look at a right-handed
spiral in a mirror and notice that it is different from a left-handed
spiral.

Construct a double helix as illustrated on the period rectangle of
Figure 2.17(a). The configuration of the DNA molecule (the double
helix) was discovered by Crick and Watson [see Figure 2.17(b)]. An-
other property demonstrating the self-similarity of logarithmic spi-
rals can be shown using calculus; namely, the angle between the
radius and the tangent at any point is the constant angle { as
shown in Figure 2.18. For this reason this spiral is sometimes
called an equiangular spiral. This property is used by certain in-
sects that fly toward a light along a logarithmic spiral. They may

A

Figure 2.17 (a) Double helix drawn on a period rectangle. (b) the DNA double helix.
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Figure 2.18 A fly moves toward
a light source by intercepting
light rays at equal angles . The
path is a logarithmic spiral.

be thought to possess sensing mechanisms which cause them to in-
tersect light rays at a constant angle. It can be shown, using calcu-
lus, that

tany = 1/Ina (2.10)

where a = k%™ as before. These angles were also studied by Theodore
Cook [1979] who correlated them with the spiral growth of various
natural forms.

2.11 Growth and Similarity in Geometry

We have seen in Section 2.10 that spiral forms generally comprise
dead tissue such as shells or horns in which new growth adds to old
growth in just such a way as to maintain similarity. Let us investigate
this process of growth geometrically.

Begin with some geometric form or pattern, which we call a unit,
and add to it another form or pattern, called a gnomon (see Section
1.2), which is required to enlarge the unit while preserving its form.
For example consider the following sequence of units:

and gnomons

The units are square patterns of dots while the gnomons are the L-
shaped patterns of dots which must be added to one unit to get the
next largest unit in the sequence.
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If we consider any rectangle whose sides are in proportion a:b and
draw a line from one vertex that intersects the diagonal at right an-
gles, the rectangle can be divided into two rectangles. The smaller of
the rectangles, whose sides are in proportion b:c, is similar to the par-
ent, as shown in Figure 2.19(a). This subdivision was known histori-
cally as the principle of the repetition of ratios and was used by archi-
tects during the Renaissance [Scholfield, 1958].

Referring to the similar right triangles AOB, BOC, and COE and
using the theorem of the mean proportional given by Equation (2.3), it
follows that the hypotenuses are in proportion,

a/b = b/c (2.11)

and thus rectangle ABCD is similar to BCEF.
We may state this in another way. Represent the class of similar
rectangles with sides in ratio a:b by the symbol U, in which case

U=U+@G

where G is the leftover portion, or gnomon, that remains when a sim-
ilar rectangle U is removed from the parent [see Figure 2.19(4)]. This
process can be repeated over and over again to yield a decomposition
of U into an indefinite number of gnomons G and one similar unit U:

U=G + U
U=G+G+U

U=G+G+ - +G+U

as shown in Figure 2.19(c). Successive units in this decomposition sat-
isfy the geometric Series (2.7). For example, if the unit U is the rect-
angle with proportions V/2:1, shown in Figure 2.20,

A a F B o
a b
G/
. b G U O
o ’,G hOSY
pl— Llc
(a) (b) (c)

Figure 2.19 Illustration of the principle of repetition of ratios. (a) Diagonal AC
of rectangle ABCD is intersected at O by a line segment EB at right angles to
AC; (b) rectangle ABCD is divided into a proportional unit U and a leftover part,
or gnomon, G; (c) the process is repeated. Corresponding points of G form a log-
arithmic spiral with center at O.
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_l Figure 220 The unit U and gnomon G of a
_J square of proportion V2:1 are equal.
p— X

V2 _1 V2

= or x=-——

1 x 2
Thus G = U, and if we have a rectangle of proportion 2:1, folding it in
half and in half again must yield only rectangles of the same propor-
tion.

Sacred architecture is an area of study in which architects try to re-
cover the geometrical ideas that have gone into the creation of certain
revered structures of antiquity. The V'3:1 rectangle occurs in one such
sacred form known as the Vesica Piscis. As Figure 2.21 shows, the
Vesica Piscis is the fish-shaped region in common to two intersecting
circles of equal radii whose centers lie on each others circumference.
The common radius AB and the intersection points C and D form two
inverted equilateral triangles. As a result, the surrounding rectangle
has proportionsV/3:1.

Problem 2.6 If the parent rectangular unit has ratio 3:1, use the principle of
repetition of ratios to find the gnomon (G).

D
(a)

Figure 2.21 (a) The Vesica Piscis; (b) marble relief of
Christina vesica.
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e 1 —>
Figure 2.22

Now consider the inverse problem: Given that the gnomon G is a
square (i.e., G = S), as shown in Figure 2.22, what is the unit U? First
note from Equation (2.3) that

1
x -1

JIC = or 1l+x=4x?
Solving for x, x = ¢ as we saw by Equation (1.4) where ¢ is the golden
mean.

Thus the rectangle whose gnomon is a square has the proportion
&:1, and a breakdown of this rectangle by the principle of repetition of
ratios results in a logarithmic spiral of “whirling squares.” Also, the
proportions of successive units in this breakdown satisfy the double
geometric and Fibonacci ¢ Series (1.6) and form the basis of the
Modulor series of Le Corbusier, discussed in the last chapter.

As we did for the golden mean rectangle, ¢:1, we can show that the
unit (U) whose gnomon (G) is a double square, i.e., two squares situ-
ated side by side (G =DS) has ratio 6:1 where 6=1+
V2 = 2.414....(Do this!) (See Section 1.6.1.)

2.12 Infinite Self-Similar Curves

In recent years, Benoit Mandelbrot, a Polish-born mathematician, has
made a study of a strange-looking class of self-similar curves known
as fractals [1982], [Kappraff, 1986]. He discovered that these curves
and certain variants of them are a basic tool for analyzing an enor-
mous variety of natural phenomena such as the shape of mountain
ranges, coastlines, rivers, trees, star clusters, and cloud formations. In
this section we will examine some of these self-similar curves a little
more closely.

2.12.1 Length and scale of a curve

Viewing a curve at a given scale and the definition of its length are
two intimately connected notions. There are many different ways to
represent a curve at a given scale. One method is illustrated in Figure
2.23, where the curve on the left, spanning the unit interval [0,1], is
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«* 1, N=1
L{1) =1
(a)
«=1/3, N4
L(1/3)=1/3 x4 1.
(b) X 333

€= 1/9, N«20
(¢) LU/9) = 1/9 x20 = 2.222

Figure 223 Determination of the length L of a curve spanning |0, 1| by
approximating the curve with N line segments. (a) Representation of
curve at scale of € = 1; (b) representation of curve at scale of ¢ = V3,
(c) representation of curve at scale of e = Vo.

shown on the right at scales of 1, V4, and % in Figures 2.23(a), (b), and
{c), respectively. The scaled curves are derived from the actual curve
by subdividing the curve with dividers set to intervals of length equal
to one-third and one-ninth of the unit, starting at the beginning of the
curve as illustrated by the arcs. Each new point is gotten by setting
the compass point on the previous point and marking the intersection
of the arc of the compass and the curve. The marked points are then
connected with line segments. The length of the curve, L(e) at scale €
is then defined by

L(€) = eN(e) (2.12)

where N(e) is the number of segments of length L that span the curve.
The total length L of the curve is then defined as the limiting value
that L(e) approaches as € approaches zero or, mathematically,
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L = lim L(e)

A British meteorologist, Lewis Richardson, applied this definition to
determine the coastal length of many different countries, and he dis-
covered that, for each of them, the number of segments at scale ¢ sat-
isfied the empirical law

N(e) = Ke? (2.13)

where K and D are constants depending on the country. Inserting
Equation (2.13) in (2.12),

L(e) = Ke'™P (2.14)

which yields straight lines when L is plotted against e on log-log
graph paper.

Richardson’s data indicate that the configuration of coastlines is de-
rived from a general law of nature, and Mandelbrot's analysis of
Richardson’s data led to the following expression of that law:

Each segment of a coastline is statistically similar to the whole, i.e., the
coastline is statistically self-similar.

2.12.2 Geometrically self-similar curves

Curves are called geometrically self-similar if they appear the same
at every scale. In other words, if we look at the curve from afar, it
appears the same as it does in a closeup view, in terms of its details.
In his book The Fractal Geometry of Nature [1982], Mandelbrot pre-
sents a procedure for constructing curves that are geometrically
self-similar. To understand how self-similar curves relate to

Richardson’s law, it is sufficient to set K = 1 and rewrite Equation
(2.14) as

L(e) = € (%)D (2.15)

First, consider a trivial example of a self-similar curve, the straight-
line segment of unit length shown in Figure 2.24. This segment is self-
similar at any scale. For example, at the scale V3, three similar edi-

tions of the segment replicate the original. Thus, from Equation
(2.15),

L(Vvs)y =Y x 3

or
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Figure 2.24 The unit interval: A trivial example
of a self-similar curve with dimension D = 1.

)1
3 3 (ya)
and consequently D = 1,

Now consider a less trivial example of a curve, self-similar at a se-
quence of scales (¥3)", n = 0, 1, 2, 3,... known as the Koch snowflake.
Since the curve is infinite in length, continuous, and nowhere smooth,
it cannot be drawn. However, it can be generated by an infinite pro-
cess, each stage of which represents the curve as seen at one of the
scales in the above sequence. Figure 2.25(a), (b), and (¢) shows views of
the Koch snowflake at scales of 1, V4, and Y, respectively, both as lin-
ear segments on the left and incorporated into triangular snowflakes
on the right. The snowflake is generated iteratively by replacing each
segment of one stage with four identical segments one-third the orig-
inal in length in the next stage. Thus, whereas for stage 1,

L1 =1
for stage 2,
Iy _1
L(g) - 2x4 2.16)
or
1\ 1. 1
L(3) R 2.17)

Solving for D from Equations (2.16) and (2.17),

log 4 261
D= Tog3 - 1.2618...
For each successive stage in the development of the snowflake, the
length is determined from Equation (2.15) for the same value of D.
Each segment of a given stage is seen to be similar to a segment 3
times as large as in the previous stage. Thus, in the limit, each seg-
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Figure 225 The Koch snowflake: a nontrivial example of a self-similar
curve with dimension D = 1.2618. (a) Koch snowflake at scale of ¢ = 1; (b)
Koch snowflake at scale of € = V4; (¢) Koch snowflake at scale of € = Y; (d)
Koch snowflake at an advanced stage in its generation.

ment of length (¥4)” of the Koch snowflake must be geometrically sim-
ilar to the whole, satisfying both Richardson’s data and Mandelbrot’s
interpretation of it. This property of self-similarity at a sequence of
scales is more evident in Figure 2.25(d), which shows a Koch snow-
flake at an advanced stage in its development.

Mandelbrot shows that, as for the Koch snowflake, any geometri-
cally self-similar curve satisfies

log N

= Tog (17 (2.18)

where N is the number of congruent segments of length r, the con-
traction ratio, that replaces the unit interval in the initial stage of
the iteration. Thus, for the Koch snowflake, N = 4 and r = V3.
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Mandelbrot refers to D as the dimension of the curve, and he shows
that for curves of infinite length on a plane surface spanning a fi-
nite distance

1<D<2

where 1 is the dimension of a line and 2 is the dimension of a surface.
The magnitude of D is a measure of the roughness of the curve.

The relationship between N and r, expressed by Equation (2.18), is
quite general and is illustrated for other geometrically self-similar
structures in Figures 2.26 and 2.27. Figure 2.26 is an analogous curve
to the Koch snowflake with dimension D = %%, while Figure 2.27 is the
third stage of a space-filling Peano curve of dimension 2 that fills up
the interior of the Koch snowflake. In its final stage, it would be a
non-self-intersecting curve that touches every point within its outer
boundaries.

Mandelbrot coined the term fractal curves to refer to curves with di-
mension 1 < D < 2, the term fractal surfaces to refer to surfaces with
dimension 2 < D < 3, and the term fractal point sets for point sets with
0 < D = 1. Although, according to this definition, fractals need not be

N=8
r=4/b=1/4
D=3/2

Figure 2.26 Another fractal curve with dimension %-.
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Figure 2.27 The third stage in the generation of a space-filling Peano curve filling the
interior of a Koch snowflake. (“Mandelbrot's Space Filling.” < 1978 by Benoit B.
Mandelbrot. Reprinted by permission of Scientific American, Inc.)
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self-similar, it is the class of self-similar fractals that are generated by
Mandelbrot’s recursive procedure.

2.12.3 Fractals and scale

Let’s revisit the Koch snowflake shown in Figure 2.25, but this time
imagine the curve to represent a spectrum of amplitudes of sound over
an interval of time. Generally, a phonograph recording of sound, such
as the sound of a violin, changes if the record is played fast or slow. In
fact, a record of whale sounds is inaudible until the record is played at
a sufficiently high speed. However, Koch snowflake music would
clearly sound the same played at one-third the speed and then ampli-
fied three times. More precisely, if the amplitude at time ¢ is repre-
sented by the function B(¢), the scaling property of snowflake music is
a statement about the identity of the functions B(¢) and B(r¢)/t, where
r is the contraction ratio. Such sounds are called scaling noises and
have been studied by a colleague of Mandelbrot’s, Richard Voss, a
physicist at IBM Watson Research Center [Gardner, 1978d].

It is this so-called scaling invariance which is the most important
property of fractals. To the degree to which a fractal represents a nat-
urally occurring form or process, virtually all of the relevant informa-
tion about the fractal model of this form or process is already present
in the initial stages of its generation. This includes its self-similar
unit, its mode of transformation from stage to stage, and its dimen-
sion. Thus, a realistic image of the form or simulation of the process
can be obtained with relatively little information about it. This has
extremely important implications for image processing as Michael
Barnsley shows in Fractals Everywhere [1988].

2.12.4 Statistical self-similarity

Although the Koch snowflake can serve as a mathematical model of a
coastline, as we mentioned in Section 2.12.1, it fails to represent ac-
tual coastlines in two important respects. Its sequence of scales is
bound to powers of V4. Thus, examining the curve at intervals of V4
would yield none of its self-similar properties. Also as irregular as the
snowflake is, its strueture is completely ordered, unlike that of coast-
lines. Both of these shortcomings can be overcome by randomizing the
fractals. It was Mandelbrot’s discovery that many natural phenomena
such as coastlines and mountain ranges are statistically self-similar.
For example, no matter at what distance the mountain range shown
in Figure 2.28 is viewed, a similar pattern is reproduced, in a statis-
tical sense.

Mandelbrot also discovered that such things as fluctuations in the
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Figure 2.28 A computer-generated landscape with dimension D = 2.5.

levels of rivers; variations in the brightness of sunspots; changes in
the rhythm, variations, and pitch of music; and fluctuations in the
stock market all appear to be statistically self-similar. This has led
Voss to make the daring conjecture: “The changing landscape of the
world seems to be statistically self-similar [Gardner, 1978d].”

2.13 On Growth and Form

In Lilliput, “His Majesty’s Ministers, finding that Gulliver's stature
exceeded theirs in the proportion of twelve to one, concluded from the
similarity of their bodies that his must contain at least 1728 (or 12°) of
theirs (by volume), and must needs be rationed accordingly [Thomp-
son, 1966].” But as Galileo showed in great detail, creatures with di-
mensions one-twelfth those of a human’s body would not be able to
survive unless their entire form changed appropriately. In order to
confront the forces of their environments, organisms spanning the
scale from very little to very big, e.g., from ants to elephants, must
evolve different forms. The connection between growth and form is a
subject of great fascination. Thompson's classic, On Growth and Form
[1966], and J. T. Bonner’'s Morphogenesis [1963] are devoted to inves-
tigations of these and related issues.

Similarity is also a concept of crucial importance to architects who
must design buildings to large and small scales. Before the relation of
size to form was understood, the architect had to be satisfied with
copying examples of successful architecture without altering its di-
mensions or else risk the collapse of the structures. History is replete
with structures that failed after they were scaled up. In the back-
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ground we always have Galileo’s warning that as a structure becomes
larger it gets weaker. He cites as examples [1954]:

Who does not know that a horse falling from a height of three or four
cubits will break his bones, while a dog falling from the same height will
suffer no injury? Equally harmless would be the fall of a grasshopper
from a tower or the fall of an ant from the distance of the moon. And just
as smaller animals are proportionately stronger and more robust than
larger, so also smaller plants are able to stand up better than larger

In this chapter we have described the mathematics behind similar-
ity and discussed how certain biological structures are able to main-
tain similarity during growth, which let us consider the question of
why organisms generally must alter their forms to fit their sizes.

In Section 2.2, we showed that

V=ct while 8 =c,f
Thus,

v of

S c,f?

=cl

so that the ratio of volume to area is proportional to the characteristic
length of a given form. We give two examples of how this relation in-
fluences the form of living organisms.

First consider a cylinder, shown in Figure 2.29, which may be
thought of as a crude model of a limb. Its volume and cross-sectional
area is given by V = ¢,d® and S = c,d” where d is the diameter of the
cylinder. Thus,

YV _d (2.19)

But V is proportional to the weight of the cylinder so that V/S is pro-
portional to the force per unit area, or stress, upon the base of the
limb. Equation (2.19) thus states that doubling the size of an animal

§

Figure 2.29 A cylinder of volume V, cross-
sectional area S, and diameter d exerts a stress
of VIS = cd.
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has the effect of doubling the stresses experienced by its limbs. To
compensate, the elephant has developed very thick limbs.

As a second example of Equation (2.19), let S be the surface area of
a warm-blooded animal, while V is its bulk (volume). The rate of heat
loss from a warm-blooded animal is proportional to its surface area,
while the rate of heat gain is proportional to its bulk (larger animals
tend to burn a greater amount of energy per unit time), and the rate of
heat loss must equal the rate of heat gain so as to keep its tempera-
ture constant, according to Equation (2.19). Since the rate of heat loss
for small animals (low values of €) relative to rate of heat gain is
greater than for larger animals, small animals must consume many
more calories in the course of a day, relative to their weight, than
large animals. According to Thompson,

Man consumes a fiftieth part of his own weight of food daily, a mouse will
eat half its own weight in a day; its rate of living is faster, it breeds
faster, and old age comes to it much sooner than to man. A warm-blooded
animal much smaller than a mouse become an impossibility; it could nei-
ther obtain nor digest the food required to maintain its constant temper-
ature.

Appendix 2.A

Theorem 2.A.1 Inscribed angles that intersect equal arcs on a circle are equal.

proof The following proof was communicated to me privately by Amos
Franceschelli, a mathematics teacher retired from the Rudolf Steiner School in
New York. It differs from the standard proof in that it is not analytical but,
rather, it makes use of the symmetry of the circle and calls upon the reader to
use quiet contemplation along with the logic of Euclidean geometry. We sketch
the proof and leave the details (or quiet contemplation) to the reader.

intuitively accepted or preproved properties (IAP)

1. A circle has perfect symmetry by which we mean it can be rotated into itself
about its center through any chosen angle (see Figure 2.A.1). A circle rotated

Figure 2.A.1 A circle has perfect
symmetry: any inscribed angle
AVB can be rotated through an
A arbitrary arc VV' to a congruent
angle A'V'B’.
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into itself about its center will carry an inscribed angle AVB into a new po-
sition A'V'B’. Arcs VV', AA’, BB’ will all be equal.

2. The perpendicular bisector of any chord to a circle goes through the center of
the circle and divides the circle into two symmetric halves related to each
other by reflection. As a result of this reflection symmetry, two parallel lines
intercept equal arcs on a circle. Conversely, if the endpoints of two equal arcs
AB and CD are connected by chords AC, BD, the lines AC, BD will be par-
allel, i.e., AC | BD (see Figure 2.A.2).

Figure 2A.2 Two pairs of paral-
lel lines intersect equal angles.

3. If two angles have their sides respectively parallel and in the same sense, the
angles are equal (Figure 2.A.3).

v

AB X

Figure 2A3 4 a =4 B

proof proper Given a circle with inscribed angles AVB and AV'B intercepting

the same arc AB, rotate the circle about itself, together with angle AV'B only,

say counterclockwise, until AV’ takes on the position A'V" || AV and angle

AV'B moves into the position of angle A’V "B! (by first IAP) (see Figure 2.A 4).
Then arc A'B’ = arc AB and 4A'V"B’ = 4AV'B. Now

arc AA' = arc VV” (by second IAP) (2.A.1)

Also, arcs AB' - A'B=AB - A'B (since arc A'B' = arc AB). Thus, arc
BB’ = arc AA’ and it follows from Equation (2.A.1) that arc BB’ = are VV".
Hence BV || B'V " (hy the second IAP) and AV || A'V " (by the rotation we made).
Therefore $AVB = <A'V"B’ = 4AV'B (by the third IAP and by our rotation).
Q.E.D.

Theorem 2.A.2 Inscribed angles equal one-half of the central angle that inter-
cepts the same arc.
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Figure 2.A.4 Angle AV'B is rotated
through arc V'V" to A'V "B’ where
AV’ = A'V"

proof

1. Given an arc AB of a circle, draw the central angle 20, extend one of the radii
to a diameter of the circle at C, and consider the inscribed angle 4<ACB as
shown in Figure 2.A.5.

%
) A‘A ’

Figure 2.A.5 Inscribed angle 6
equals one-half the central an-
gle intercepting the same arc.

2. If the central angle is taken to be 26, the inscribed angle must be 6, making
use of the fact that the exterior angle of a triangle equals the sum of the al-
ternate interior angles. This proves the theorem.

corollary Any angle inscribed in a semicircle is a right angle.

Appendix 2.B
2.B.1 Centers of similitude and inversion

If two similar figures are placed side by side with the same orienta-
tion, the joins of any two corresponding points P and @ or M and N
define a center of similitude O as shown in Figure 2.B.1. Similarly,
corresponding points are stretched away from O by a factor & where

oM _ OP _

ON 0@
In general, transformations in which points are stretched away from a
center are called dilatations |Coxeter, 1955].

k
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Figure 2.B.1

O
N M

Now consider what happens if two circles with centers at M and N
are transformed by a dilatation as shown in Figure 2.B.2 where O is
the center of similitude and P and @ are two points on the circle that
correspond to each other under the dilatation

ON _OP _OP -OP _ OP’- OP (2.B.1)

OM 0 OP -0Q OA-OB

where OP'0OQ = OA OB follows from Theorem 2.2.
From Equation (2.B.1) it follows that,

OA-OB:-ON _
oM
Now, any pair of points lying on the same half of a line through O

and satisfying Equation (2.B.2) are said to be related by inversion in a
circle of radius £ and center at O. Thus, Theorem 2.B.1.

(2.B.2)

OP - OFP' = k?

Theorem 2.B.1 Any two circles, the corresponding points of which are related
by dilatation, are also related by inversion.

2.B.2 Another proof of Theorem 2.2

Now let’s look at a proof of the “circle chopper” Theorem 2.2 in Section
2.6. Consider the circle of radius r and center at M that cuts a ray
drawn from O at points A and B as shown in Figure 2.B.3. Drop a per-
pendicular MS to OB. It is evident from the figure that

OA - OB = (0S - 5)(0S + 5)
= (08? - %) = 08 - (* - h?)
= (O8% + h?) - r* = OM? - r?

=t (2.B.3)

where ¢ depends only on point O and the circle but not points A and B.
Thus any other line through O would yield the same value of ¢,
Much more can be gotten from the proof of this theorem than we
bargained for. Since from Equation (2.B.3), t2 + > = OM?, we can see
from Figure 2.B.4 and the fact that the tangent to a circle is perpen-
dicular to its radius, by use of the pythagorean theorem, that ¢ must
be the length of the tangent to the circle from O. But lots of circles
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Figure 2.8.2 Two circles related by dilatation.

i
llh Figure 2.B.3 Alternative proof
P | of Theorem 2.2 that QA - OB =
-7 s ' s constant.
)

Figure 2.B.4 Construction of a circle orthogonal to a fam-
ily of circles that share a common chord.

69
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have AB for a chord. Therefore, there is a whole pencil of circles with
tangent lines of the same length ¢ from O. Thus, a circle through O of
radius ¢ is orthogonal to all circles from this pencil of circles through
AB,

Also, if point O is moved along line AB to O, a new circle with its
center at O’ cuts the pencil of circles through AB orthogonally. In this
way, we can construct the set of mutually orthogonal circles shown in
Figure 2.B.5.

As a final piece in this web of ideas, since OA - OB = t2, A and B are
related by inversion in each of the orthogonal circles to the pencil of
circles through AB, as stated in Theorem 2.B.2.

Theorem 2.B.2 Any circle through two points that are inverse with respect to a
given circle intersects that circle orthogonally.

2.B.3 The Poincaré plane and
stereographic projections

The parallel axiom of euclidean geometry says that there is only one
line parallel to a given line. This axiom was the subject of much dis-
cussion throughout the history of mathematics. For centuries mathe-
maticians tried to deduce it from the other axioms. Finally, in 1823
Bolyai and Lobachevsky gave an example of another geometry called
hyperbolic geometry that satisfied all the other axioms of euclidean
geometry except the parallel axiom. This established that the parallel

Figure 2.B.5 Two families of orthogo-
nal circles.
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axiom is independent of all the other axioms. In Bolyai's geometry,
through any point there can be an infinity of lines parallel to a given
line [Coxeter, 1961].

Poincaré constructed a “model” of this hyperbolic geometry in which
the euclidean plane is replaced by the interior of a circle called the
Poincaré plane and lines are represented by arcs of circles that cut the
circle orthogonally. Figure 2.B.6(a) shows how an infinite number of
lines (arcs) can be parallel to a given line (arc) in hyperbolic geometry.
A pencil of arcs in the Poincaré circle correspond to the set of lines
intersecting at a common point in euclidean geometry [see Figure
2.B.6(b)]. By Theorem 2.B.1 each of these arcs shares the chord
through the intersection point and its inverse in the Poincaré circle.
Likewise, using Theorem 2.B.2, given two points P,@ in the Poincaré
plane, the unique line (arc of a circle) between them is an arc of the
unique circle through P,@ and the inverse of either P or @ with re-
spect to the Poincaré circle.

Poincaré’s hyperbolic universe is as different from the euclidean
universe of our geometric experience as we can imagine. In Figure
12.17, Douglas Dunham has generated, by computer, a print in the
style of Escher’s famous woodcut, Circle Limit I. All the fish in
Dunham’s print are “congruent.” In what sense is this true? The
Poincaré circle is considered to be the “infinitely distant” edge of the
“universe” and the fishes’ “apparent” sizes decrease as they approach
this circle. In other words, if you lived in this universe and wanted to
walk from a point within it toward the edge, your footsteps would, in
the euclidean view, seem to diminish to length zero as you approached
the Poincaré circle so that you would never be able to reach it. More -
generally, in hyperbolic geometry, all similar figures are congruent in
the sense that if they are transformed one to the other, their lengths
in the metric (formula for measuring length) of hyperbolic geometry
are equal. There are many other geometric curiosities exhibited by the
Poincaré model of hyperbolic geometry such as the “idealized” equi-
lateral triangle shown in Figure 2.B.7. It is the largest triangle in the
hyperbolic plane. It has finite area, infinite perimeter, and angles of

Figure 2.8.6 (a) Two parallel lines;
(b) a pencil of lines intersecting at a
point in the Poincaré plane.
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Figure 2.B.7 The largest trian-
gle in the Poincaré plane.

zero degrees (although its vertices have a specious existence since
they lie outside the “universe”).

The Poincaré model of the hyperbolic plane can be made more trans-
parent by looking at it as the stereographic projection of the points on
a sphere to points on a plane T tangent to the sphere at the south pole
S from a projection point at the north pole N of the sphere (see Figure
2.B.8).

In this projection, the image of a typical point P is the intersection @
of NP with T. Thus points on the equator [ map to the circle % in the
plane. The south pole is at the center of k. Points in the northern
hemisphere map to points outside of 2 while points in the southern
hemisphere map to points inside 2. The most notable property of the
stereographic projection is that it maps circles on the sphere to circles
on the plane and preserves angles between arcs that intersect on the
sphere [Coxeter, 1961].

As P moves toward the north pole, its image @ moves further away
from the south pole. Also, concentric small circles on the sphere of de-
creasing radius around N map to circles in the plane of increasing ra-
dius. N is a singularity point of the projection, but sometimes it is said
that N maps to the “circle at infinity.” In this way, the “infinitely dis-

N

c

Figure 2.B.8 A stereographic projection.
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tant” points of the plane are made palpable by associating them with
the north pole of the sphere.

Now take the projection £ of the equator [ in Figure 2.B.8 to be the
boundary of the Poincaré circle or plane. Intersect the sphere with a
plane perpendicular to plane 7. The curve of intersection between this
plane and the sphere is a small circle v orthogonal to [. Since
stereographic projections preserve angle, the arc of the small circle
maps to an orthogonal arc of the Poincaré circle, i.e., a line from hy-
perbolic geometry.
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Chapter

The Golden Mean

Behind the wall, the gods play; they play
with numbers, of which the universe is made
up. Le Corsusier

3.1 Introduction

Fine artists, composers, architects, scientists, and engineers have of-
ten created their best works by keeping an open dialogue with the nat-
ural world. The natural world consists of a wonderful duality between
order and chaos. Careful study of a cloud formation or a running
stream shows that what at first appear to be random fluctuations in
the observed patterns are actually subtle forms of order. Mathematics
is the best tool that humans have created to study the order in things.

Despite the infinite diversity of nature, mathematics and science
have always attempted to reduce this complexity to a few general
principles. In this chapter we investigate some of the many ways in
which one enigmatic number, the golden mean ¢, appears and reap-
pears throughout works of art and science [Huntley, 1970], [Doczi,
1981], [Ghyka, 1952], [Tyng, 1975], [Kappraff, 1990]. Much of Chapter
1 is devoted to describing the Modulor, an architectural system of pro-
portion based on the golden mean, while Section 2.11 shows how ¢ is
related to patterns of spiral growth. In Chapters 5 and 6, the golden
mean is shown to form the basis of a special kind of tiling that is now
being used to explain the phenomenon of quasicrystals. In Chapter 8
we shall see that the golden mean lies at the mathematical basis of
the platonic solids. In this chapter, we shall see that this number,
which proportions the Pyramid of Cheops and the Parthenon, also or-
chestrates the growth of plants and serves as a key organizing ele-
ment in the music of Béla Barték.
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3.2 Fibonacci Series

Special consideration was given by the Greeks to the two harmonizing
numbers, 10 and 6. Their ratio is

0 5
6 3
Why is this ratio so special? According to Ghyka [1978], the cross sec-
tion of the Pyramid of Cheops shown in Figure 3.1 has a hypotenuse
and semibase of 89 ells and 55 ells, respectively (the ell was an an-
cient Egyptian measure).
The F series of Section 1.6.1, rewritten below,

1123581321345589--- 3.1)

is a Fibonacci series, and thus the ratio of successive terms approxi-
mates the golden mean (see Section 1.6.1). Notice that 8 = 1.667 and
8945 = 1.619 are two such approximations. Actually, the right triangle
shown in Figure 3.1(a), which approximates the measurement of the
Pyramid of Cheops, has sides: 1, V&, é. Up to similarity, this is the
only right triangle with sides in a geometric series just as the 3,4,5
right triangle is the only right triangle with sides in an arithmetic se-
ries.

Problem 3.1 How far out in the F series must one go for the ratio of successive
terms to get within five decimal place accuracy to ¢? Answer this question for
the Fibonacci series that begins with 1, 3 (the Lucas series, 1, 3, 4, 7, 11, ...).

_LEPI
JPHI
(a) (b)

Figure 3.1 (a) The perfect phi pyramid; (b) top view and elevation 89 ells along the
hypotenuse with a semibase of 55 ells.
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Anne Tyng [1975] has looked at a Fibonacci chain of linked forms as
a model for neuron chains. Such a chain is shown in Figure 3.2.

At each level a link acts either as an element in an ongoing chain or
as one of the initiators of a new chain. These series within series may
then be included as hierarchies within hierarchies of patterns. The
spacing of elements in each row has a high degree of randomness; at
the same time order is achieved through the overall pattern of propor-
tional linkages.

Similar hierarchical arrangements result in countless other pat-
terns such as the one shown in Figure 3.3. According to Tyng:

Here the growth of the trunk and branches of a tree is shown, where the
sleeve of the cambium adds a new layer of wood annually, thickening
each part of trunk and limbs in proportion to the amount of new growth
of twigs and branches above it.

Tyng has hypothesized that this tree diagram may be analogous to the
clustering of nerve bundles in the brain. In the input from twigs to
trunk, the Fibonacci size ratios increase from 1 to 13 in increased wire
size, reducing friction for increased current, so that in the high
Fibonacci numbers the size ratios would correspond to the ¢:1 ampli-
tude ratio for observed values of neuron stability.

T e e O I T O
LETETTEE e e e e b er e ey s
T T EEE T FE e e R T T TEH I ss

Figure 3.2 An illustration of pattern, order, and hierarchy in Fibonacci growth.
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I=1

QUANTITY RATIOS
'S1ZE' RATIOS

/I\ REVERSIBLE
OUTPUT - INPUT

TREE ANALOGY
Figure 3.3 A tree illustrating Fibonacci growth.

Exercise 3.1 Create a hierarchical pattern from the Fibonacci series {1, 2, 3, 5,
8, ...}. Your fundamental pattern can be dots, lines, or anything else of your
choosing. Order your modules to give a geometrical rendering of the Fibonacci
series. It might be useful to use graph paper to help organize your work at first.
One result of this exercise is shown in Figure 3.4.

T ) S 0 T

—

e

i
B )

H S U 8 10 W I I

Figure 3.4 Hierarchical pattern embodying the Fibonacci numbers.
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The Fibonacci series had its origin in Liber Abaci, written in 1202
by the mathematician Leonardo of Pisa, alias Fibonacci. In this book,
Fibonacci posed the following problem:

Rabbits always give birth to a pair of rabbits of opposite sexes. A pair of
newborn rabbits must wait for a month to pass before they are mature
enough to reproduce. Starting with a pair of rabbits determine the pro-
gression of rabbit pairs as time goes on.

Figure 8.5(a) shows the population of rabbit pairs on a tree graph (not
the usual genealogical tree graph). Of course, this graph can be con-
tinued indefinitely (continue it for two more months). Notice that the
graph of the F series, which is an approximate geometric series, has
more of the organic quality of an actual tree than the symmetric tree

graph corresponding to the geometric progression shown in Figure
3.5(6):

124816 -

Actually, the F series is an approximate geometric series. In fact,
any number in the series is approximately the geometric mean (see
Section 1.4) of the numbers directly preceding and succeeding it, in
the sense that

FIZL = n—an+1 + (_ 1)n+1 (3.2)

where F, is the nth number in the F Series (3.1). This equation can be
rewritten

Fn Fn+1 _ (— 1)n+1

Fn—l_Fn _FnFn—l

(3.3)

This equation is also the consequence of the fact that the ratios of suc-
cessive terms of the F series are convergents of a continued fraction
[Khinchin, 1979].

As a consequence of Equation (3.3), the ratios of successive terms
approach the limiting value ¢ by approximating it successively from
above and below. In Section 6.9 we will see how this limiting process
manifests itself in patterns of plant growth.

Because the ratio of successive terms in a Fibonacci series ap-
proaches ¢ in the limit, the golden rectangle, whose sides are the ratio
¢:1, is the most “stable” of all rectangles in the sense that starting
with any rectangle, a Fibonacci sequence of rectangles must approach
a golden rectangle. A sequence of rectangles whose sides have ratios of
successive terms from the F series beginning with a square (ratio 1:1)
is shown in Figure 3.6.
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Figure 3.5 A tree pattern (a) from the Fibonacc
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3.3 Some Tiling Properties of ¢

Since the Modulor scale, introduced in Section 1.7.1 is constructed ei-
ther with lengths from the F series or powers of ¢, it is important to
know whether these lengths can fit together to form lengths of arbi-
trary dimensions. Otherwise, this series will be restricted to con-
structing a special class of linear dimensions.

One mathematical result along these lines is given by Theorem 3.1.

Theorem 3.1 Any positive integer can be written uniquely as the sum of
nonconsecutive Fibonacci numbers from the F series.

Furthermore, the first number in the decomposition is obtained by
extracting the largest number of the F series less than the given num-
ber. The second number is the largest number from the F series less
than the remainder and so on. For example,

32=21+8+3

As a matter of fact, this decomposition gives the winning strategy for
a game known as Fibonacci Nim [Gardner, 1978a]. A stack of pennies
is placed on the table. One player removes an arbitrary number of
them. The other player can then remove up to and including twice as
many pennies as the preceding number. The person to remove the last
penny wins. The winning strategy is to always withdraw a number of
pennies equal to the smallest number in the decomposition of Theo-
rem 3.1.

Another theorem of this kind is more directly applicable to our re-
quirements; it is Theorem 3.2.

Theorem 3.2 Any positive real number can be represented uniquely as a sum of
nonconsecutive numbers from the ¢ series:

11
SR

As aresult of Theorem 3.2, any length can be constructed to within an
arbitrary preset tolerance by a sum of lengths from this series. Thus,
lengths from the red and blue series can be arranged to fit any real-
istic measurements, e.g., the 5-inch square of Construction 1.1.

In other words, the ¢ series works much like the number system
base 2. In this system, every number up to and including 2V can be
written uniquely as a sum of all or some of the numbers from the se-
ries:

L, ¢, ¢% ¢°,...

11

L2 92 93 gN-1
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where

N-1
2 9k — 9N

k= -

Likewise, it can be shown that

N-1
2 d)k = ¢N+1 (3'4)

k= -x

Problem 3.2 Using the fact that the sums of infinite and finite geometrical pro-
gressions with common ratio r are 1/(1 ~ r) and (1 - r**1/(1 - r), respectively,
prove Equation (3.4).

Another important tiling property of ¢ is due to the additive prop-
erties of the ¢ series. Any positive power of ¢ can be decomposed into
a combination of ¢ and &2, e.g.,

¢ = 16 + 147
bt = 1 + 2¢°
¢° = 26 + 347
¢° = 3¢ + 5¢?

O = F,_, + Fn—1¢’2

where the pattern of coefficients follows the numbers of the F series
and F, denotes the nth number in the series. We leave to the reader
the task of using this series to verify Equation (1.17).

3.4 The Golden Rectangle and the
Golden Section

In Section 3.2, a golden rectangle was built up from a rectangle of ar-
bitrary proportions. On the other hand, in Section 2.11 we showed
that a golden rectangle could be broken down arbitrarily into a se-
quence of many whirling squares and one similar golden rectangle.
For reasons mentioned in Sections 1.6 and 1.7, the golden rectangle
has aesthetic qualities that have singled it out as an ideal geometric
element with which to apportion space on an artist’s canvas or propor-
tion the doorways, windows, and facades of buildings, from the
Parthenon to brownstones in Brooklyn. The following procedure can
be used to construct a golden rectangle with compass and straight-
edge:
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1. Start with a square.

2. Add the semilength of a side to the length from a vertex to the mid-
point of the opposite side.

The resulting length, along with the side of the original square, con-
stitutes a golden rectangle, as shown in Figure 3.7.

-

L Figure 3.7 Construction of a

— —

golden rectangle using compass
and straightedge.

DU WP SO
2 2

It is useful to be able to section a line into two subintervals with
golden mean ratio, ¢:1. A simple construction of the golden section is
found in the artist Paul Klee's Notebooks [1961]. To subdivide a line
segment in the golden section, Klee suggests the following procedure
(see Figure 3.8):

1. Start with line segment AB.

2. Draw AC = VY2 AB perpendicular to AB.

3. Circular arc CA intersects CB at F.

4. Circular arc BF intersects AB at G, breaking AB into the golden

section.

Once a pair of lengths 1 and & are determined, the ¢ series can be
constructed with compass and straightedge by making use of its
Fibonacci properties given by Equation (1.5) as shown in Figure 3.9.

Strange as it may seem, the 3,4,5 right triangle can be found inside
of a square and related to the golden mean as follows: bisect the sides
of the square and connect three of the square’s vertices to the mid-

C

B

[ }G I A

Figure 3.8 Dividing a line into its golden section
with compass and straightedge.
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11 1 ) 02 03

92 ¢

Figure 3.9 Construction of a ¢ series with compass and straight-
edge beginning with lengths 1 and .

points of the sides by diagonals as shown in Figure 3.10. Each of these
diagonals has length V'5/2, or ¢ — Y%, and the resulting triangle is a
3,4,5 right triangle [Lawlor, 1982].

Construction 3.1 Euclid showed in Book XIII of The Elements that the golden
mean is closely related to the structure of a set of symmetric polyhedra known
as the platonic solids. These solids are the subject of Chapters 7 and 8, and their
relation to the golden mean is discussed in Section 8. 7. In the meantime, you
can construct one of the platonic solids called the icosahedron by cutting slits
through three golden rectangles and arranging them to form three mutually or-
thogonal, self-intersecting rectangles as shown in Figure 3.11(a) and (b). Three-
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Figure 3.10 A 3,4,5 right triangle within a square.
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]

(a) (b)

Figure 3.11 An icosahedron, a polyhedron with 20 equilateral triangle
faces, defined by the 12 vertices of three mutually orthogonal golden rect-
angles.

by-five index cards are very close approximations to golden rectangles and can
be used for this construction. The icosahedron is formed by connecting the cor-
ners of the rectangles by 30 equal lengths of string corresponding to the 30
edges of the icosahedron. H. F. Verheyen has also related the structure of the
Pyramid of Cheops to the icosahedron (see Section 9.9).

3.5 The Golden Mean Triangle

In Figure 3.12, an isosceles triangle ABC is shown with base angles of
72 degrees. Using a compass, AD is marked off so that AD = AB and
triangles ABD ~ ABC. Thus AD cuts triangle ABC into a unit and a
leftover isosceles triangle ADC, or gnomon. If we let AB =1 and
AC = x, by similar triangles

R

Figure 3.12 The base angle of a
golden isosceles triangle of type
1, ABC. Angle CAB is bisected
to form a similar golden triangle
ABD and a gnomon ADC, also a
golden triangle of type 2.
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from which it follows, by algebraically solving for x, that x = ¢. Since
triangles ABC and ADC have sides in the ratio ¢:1, they are both
called golden triangles. The process can be repeated to form a se-
quence of whirling triangles, as Figure 3.13 shows.

Construction 3.2 Make designs using modules which are golden triangles and
their gnomons, the sizes of which are related to each other by powers of the
golden ratio.

3.6 The Pentagon and Decagon

The pentagon is totally governed by the golden mean since it may be
subdivided into three golden triangles as shown in Figure 3.14. This
figure also illustrates that for a pentagon

Diagonal:side = ¢:1

As aresult, given lengths 1 and ¢, a pentagon can be constructed with
compass and straightedge. (Do this!)

There are many equivalent ways of constructing a regular penta-
gon, but if you really want to construct one painlessly, you can do it
with a loop of a strip of paper [see Figure 3.15(a) and (b)]. Draw the
loop tightly and crease along the edges neatly, and there you have it!
Did you ever realize that every time you tie a knot, you are construct-

1

4

A

Y

Figure 3.13 Whirling golden tri-
angles.
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Figure 3.14 A pentagon subdi-
vides into one type 1 and two
type 2 golden triangles.

(b)

{a)

Figure 3.15 A pentagon can be constructed from a knot-
ted strip of paper.

ing a regular pentagon in the sense of Figure 3.15? See if you can
come up with a geometric proof that this figure is a regular pentagon
[Davis and Chinn, 1969].

According to John Michell, “an important exercise in sacred geom-
etry is to combine the hexagon [symbolic of inanimate life; see Section
1.2] and pentagon [symbolic of animate life] in one synthetic figure”
[1988]. How this is achieved with tolerable accuracy using the Vesica
Piscis (see Section 2.11) is shown in Figure 3.16. This figure was pub-
lished by the artist Albrecht Diirer in his Course in the Art of Mea-

/ Figure 3.16 Approximate con-
struction of a pentagon from the
Vesica Piscis.
~
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surement with Compasses and Rulers and was reproduced in C.
Bouleaw’s The Painter’s Secret Geometry [1963]. Michell relates how
the Dutch artist Franz Deckwitz explained Diirer’s enigmatic print
rich in geometric imagery, Melancholia (see Figure 3.17), by using
this combination of hexagon and pentagon [1988]. D. Crowe also
traces the history and geometry of the print [1990].

Figure 3.17 Melancholia I, 1514. Engraving 243 x 187 mm. Centennial gift of Landon
J. Clay. (Courtesy, Museum of Fine Arts, Boston)
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Figure 3.18 (a) Star pentagons at decreasing scales. The ratio of lengths from
scale to scale is $Z:1. The edges of the star cut each other in the golden section.
(b) Star octagons at decreasing scales. The ratio of lengths from scale to scale
is 0:1. The edges of the star cut each other in the ratio V2:1.

The star pentagram, a pentagon along with all its diagonals, was an
ideal symbol for the Brotherhood of Pythagoras since the diagonals of
a pentagon cut each other in the golden section as shown in Figure
3.18(a). Notice how the envelope of the star pentagram forms another
pentagon of edge length 1/42. Contrast this with the diagonals of a
star octagon, shown in Figure 3.18(b), which cut themselves in either
V2 or 6. Medieval and Renaissance artists and architects, influenced
by the compass and straightedge constructions of Greek mathematics,
based some of their art on star pentagon and octagon constructions.
Figure 3.19 shows a reproduction of Raphael's The Crucified Christ
with Ghyka's analysis to show its structure based on the pentagon and
the decagon [1952]. A sketch (not shown) from the Notebooks of
Leonardo da Vinci shows a church, never built, that has the structure
of a star octagon [Scholfield, 1958].

The decagon can also be inscribed in a circle. For such a figure,

Radius:side = ¢:1

The decagon shows up in the natural world as the shape of the DNA
molecule (see Figure 3.20). The vertices of a decagon star are also ev-
ident in Dan Winter’s star crystal illustrated in Figure 8.22.

3.7 The Golden Mean and Patterns of
Plant Growth

3.7.1 The geometry of plant growth

As a young man, Le Corbusier studied the elaborate spiral patterns of
stalks, or paristiches as they are called, on the surface of pine cones,
sunflowers, pineapples, and other plants (see Figure 3.21). This led
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Figure 3.19 (a) Raphael's The Crucified Christ (courtesy of the National
Gallery, London); (b) a struztural diagram of it due to M. Ghyka

him to make certain observations about plant growth that have been
known to botanists for over a century.

Plants, such as sunflowers, grow by laying down leaves or stalks on
an approximately planar surface. The stalks are placed successively
around the periphery of the surface. Other plants such as pineapples
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Figure 3.19 (Continued)

or pinecones lay down their stalks on the surface of a distorted cylin-
der. Each stalk is displaced from the preceding stalk by a constant an-
gle as measured from the base of the plant, coupled with a radial mo-
tion either inward toward or outward from the center for the case of
the sunflower [see Figure 3.21(b)] or up a spiral ramp as on the sur-
face of the pineapple [see Figure 3.21(a)]. The angular displacement \
is called the divergence angle and is related to the golden mean. The



Figure 3.20 Detailed computer-generated model of DNA
seen from above.

(a)

Figure 3.21 Spiral growth in plants. (@) Pineapple and pinecone; (b)
sunflower.
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(b)

Figure 3.21 (Continued)

radial or vertical motion is measured by the pitch h. The dynamics of
plant growth can be described by A and h; we will explore this further
in Section 6.9 [Coxeter, 1953].

Each stalk lies on two nearly orthogonally intersecting logarithmic
spirals, one clockwise and the other counterclockwise. The numbers of
counterclockwise and clockwise spirals on the surface of the plants are
generally successive numbers from the F series, but for some species
of plants they are successive numbers from other Fibonacci series such
as the Lucas series (see Problem 3.1). These successive numbers are
called the phyllotaxis numbers of the plant. For example, there are 55
clockwise and 89 counterclockwise spirals lying on the surface of the
sunflower; thus sunflowers are said to have 55,89 phyllotaxis. On the
other hand, pineapples are examples of 5,8 phyllotaxis (although,
since 13 counterclockwise spirals are also evident on the surface of a
pineapple, it is sometimes referred to as 5,8,13 phyllotaxis). We will
analyze the surface structure of the pineapple in greater detail in Sec-
tion 6.9.

3.7.2 Nature responds to a physical constraint

After more than 100 years of study, just what causes plants to grow in
accord with the dictates of Fibonacci series and the golden mean re-
mains a mystery. However, recent studies suggest some promising hy-
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potheses as to why such patterns occur [Jean, 1984], [Marzec and
Kappraff, 1983], [Erickson, 1983].

A model of plant growth developed by Alan Turing states that the
elaborate patterns observed on the surface of plants are the conse-
quence of a simple growth principle, namely, that new growth occurs
in places “where there is the most room,” and some kind of as-yet-
undiscovered growth hormone orchestrates this process. However,
Roger Jean suggests that a phenomenological explanation based on
diffusion is not necessary to explain phyllotaxis. Rather, the particu-
lar geometry observed in plants may be the result of minimizing an
entropy function such as he introduces in his paper [1990].

Actual measurements and theoretical considerations indicate that
both Turing’s diffusion model and Jean’s entropy model are best sat-
isfied when successive stalks are laid down at regular intervals of
27/¢? radians, or 137.5 degrees about a growth center, as Figure 3.22
illustrates for a celery plant. The centers of gravity of several stalks
conform to this principle. One clockwise and one counterclockwise log-
arithmic spiral wind through the stalks giving an example of 1,1
phyllotaxis.

The points representing the centers of gravity are projected onto the
circumference of a circle in Figure 3.23, and points corresponding to
the sequence of successive iterations of the divergence angle, 2mn/¢?,
are shown for values of n from 1 to 10 placed in 10 equal sectors of the
circle. Notice how the corresponding stalks are placed so that only one
stalk occurs in each sector. This is a consequence of the following spac-

Figure 3.22 A plant, such as the celery plant, lays
down new stalks where there is the most room.
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Figure 3.23 Points 2wn/d? placed
onacircle forn =1, 2, ..., 10.

7

ing theorem that is used by computer scientists for efficient parsing
schemes [Knuth, 1980].

Theorem 3.3 Let x be any irrational number. When the points [x], [2x],
[3xls..., [nx]r are placed on the line segment [0,1], the  + 1 resulting line seg-
ments have at most three different lengths. Moreover, [(n + 1)x], will fall into
one of the largest existing segments ([ }, means “fractional part of”).

Here clock arithmetic based on the unit interval, or mod 1 as math-
ematicians refer to it, is used, as shown in Figure 3.24, in place of the
interval mod 21 around the plant stem. It turns out that segments of
various lengths are created and destroyed in a first-in-first-out man-
ner. Of course, some irrational numbers are better than others at
spacing intervals evenly. For example, an irrational that is near 0 or
1 will start out with many small intervals and one large one. Marzec
and Kappraff [1983] have shown that the two numbers 1/ and 1/¢?
lead to the “most uniformly distributed” sequence among all numbers
between 0 and 1. These numbers section the largest interval into the
golden mean ratio, ¢:1, much as the blue series breaks the intervals of
the red series in the golden ratio.

Thus nature provides a system for proportioning the growth of
plants that satisfies the three canons of architecture (see Section
1.1). All modules (stalks) are isotropic (identical) and they are re-
lated to the whole structure of the plant through self-similar spirals
proportioned by the golden mean. As the plant responds to the un-
predictable elements of wind, rain, etc., enough variation is built
into the patterns to make the outward appearance aesthetically ap-

. .
01 234567 82391

Figure 3.24 Points {n¢],placed in the unit inter-
val forn =1, 2, ..., 10.
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pealing (nonmonotonous). This may also explain why Le Corbusier
was inspired by plant growth to recreate some of its aspects as part
of the Modulor system.

3.7.3 Wythoff’s game

Theorem 3.3 is the key to describing the mathematics of plant growth.
I made my own personal discovery of this theorem as the result of
playing a Nim-type game known as Wythoff’s game [Coxeter, 1953]
with my students in a course called The Mathematics of Design that I
teach at the New Jersey Institute of Technology [Kappraff, 1986a].
This game begins with two stacks of pennies. A proper move is to re-
move any number of pennies from one stack or an equal number from
both stacks. The winner is the person removing the last penny. The
winning strategy is based on Theorem 3.4 due to S. Beatty.

Theorem 3.4 If 1/x + 1/y = 1, where x and y are positive irrational numbers,
the sequences [x], [2x], {3x],... and [y], [2y], [3y],... together include every pos-
itive integer taken once ([ ] means “integer part of,” for example, [&] = 1).

For a proof, see [Coexter, 1953]. Since 1/¢ + 1/b* = 1 from Equation
(1.5), Beatty's theorem shows that [nd], [nd?] exhausts all of the nat-
ural numbers with no repetitions as n takes on the valuesn = 1, 2,....
Table 8.1 shows results forn = 1, 2, ..., 6. Can you notice a pattern in
these numbers that will enable you to continue the table without com-
putation? The pairs are also winning combinations for Wythoff’s
game. At any move a player can reduce the number of counters in
each stack to one of the pairs of numbers in Table 3.1. The player who
does this at each turn is assured victory.

After playing Wythoff’s game a number of times with my students,
I noticed that if I considered the fractional parts of n rather than the

TABLE 3.1

[nd] (nd?)

10
13
15

OO WS
- O 00O W
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integer parts, these satisfied Theorem 3.3. This led me to my work on
plant growth.

3.8 The Music of Bartok: A System Both
Open and Closed

It is understandable that architects should look to music in search of a
system to proportion their buildings, as Alberti and Palladio did (see
Section 1.5). After all, musical composition superimposes its emo-
tional and aesthetic elements on a structure of supreme order. The
music of Barték, as analyzed by the Hungarian musicologist Erné
Lendvai, embodies perhaps the fullest interplay between emotional
‘content and structure [1966], [Bachmann and Bachmann, 1979].
Bart6k based his music on the deepest layer of folk music. He believed
that every folk music of the world can finally be traced to a few pri-
meval sources. Through these sources, according to Lendvai, “[Bartdk]
discovered and drew into his art the laws governing the depths of the
human soul which have not been touched by civilization.” He was also
greatly influenced by Impressionism and the atonal trends of his day,
and combined the Western structures of harmony with folk music into
an organic whole.

Artists must create a system in which to frame their work. It is in-
teresting to me that to achieve these primitive or “natural” effects,
Bart6k based the entire structure of his music on the golden mean and
Fibonacci series—from the largest elements of the whole piece,
whether symphony or sonata, to the movement, principal, and second-
ary themes and down to the smallest phrase. In this regard his music
resembles the organic wholeness of the Modulor, exemplifying a
closed system (see Section 1.7.2). He contrasts this closed golden mean
system with a dual system based on the overtones ascending from a
fundamental tone-—an open system analogous to the system of propor-
tions at the basis of the Garden Houses of Ostia (see Section 1.8.2). It
is beyond the scope of this book to examine Bartdk’s music in detail.
We will, however, give three examples of his use of Fibonacci series:

1. From Lendvai:

In the first movement of Music for Strings, from the pianissimo (soft) the
movement reaches the boiling point by a gradual rise to forte-fortissimo
(very loud), then gradually recedes to piano-pianissimo (very soft) as
shown in Figure 3.25. The 89 bars of the movement are divided into parts
of 55 and 34 bars by the pyramid-like peak of the movement.... The form
is proportioned within these units by cancellations of the sordino (or mute)
in the 34th bar and its repeated use in the 89th bar.... Positive and neg-



98 Chapter Three
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(b)

Figure 3.25 (a) Important transitions in the first movement of Music for
Strings, Percussion and Celesta by Barték; (b) the theme is divided into
positive and negative sections.

ative sections embrace each other like the rising and sinking of a single
wave. [Here, positive sections are long followed by short sections while
negative sections are short followed by long sections as shown in Figure
3.25(b).] It is no accident that the exposition ends with the 21st bar and
that the 21 bars concluding the movement are divided into parts of 13 + 8
[all elements of the F series].

2. In order to understand the other two applications of the
Fibonacci series and the golden mean to the structure of Barték’s mu-
sic, some understanding of musical notation would be helpful. Never-
theless, even without such a background the ideas can still be appre-
ciated, and they give a striking example of the utility of the golden
mean. The ideas involve Barték’s use of the pentatonic scale.

Pentatony is perhaps the most ancient human sound system. It rests
on a pattern reflected by the melody steps of the major second (2), mi-
nor third (3), and the fourth (5). The numbers in parentheses are the
number of semitone intervals separating a note from the fundamental
tone in the 12-tone chromatic scale. (The well-tempered scale, the
scale upon which the piano is based, divides the frequency length cor-
responding to an octave into an increasing geometric sequence with a
common ratio, 2V/!2. The tones of the well-tempered scale are harsh
when compared with tones corresponding to the ratio of small integers
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of the just, or Ptolemaic scale (see Figure 1.7). There is unfortunately
no way to define the chromatic scale so that the change from one key
to another does not introduce new tones slightly different from the
corresponding tones of the former key while also preserving the ratios.
While players of stringed instruments can change the position of their
fingers slightly to compensate for these changing pitches, the well-
tempered scale was a necessary compromise in order to accommodate
the invention of the piano, which can have only a set number of keys.)
Don'’t confuse these numbers with the notion of the musical “second,”
“third,” ete., which denotes the number of notes that separate a given
note from the base note in the seven-tone scale in any key, i.e., do, re,
mi, ...(see Section 1.4). The black notes on the piano make up a
pentatonic scale. Successions of two and three halftones are the inter-
vals between the black notes, and almost any succession of notes
played on the piano using only the black notes leads to a pleasant
sounding tune.

The pentatonic scale lies at the basis of the oldest folk melodies and
the simplest nursery songs, which follow a la, sol, mi (2,3,5) form. The
interval from la to sol is two halftones, thus “sol” breaks the interval
from la to mi in the ratio 3:5—a Fibonacci approximation to the
golden section. This golden-section cell division pervades all of
Barték’s music. Barték’s use of this Fibonacci progression of tones can
be followed in the last movement of the Divertimento. According to
Lendvai, the principal theme appears in the variations (see Figure
3.26). The intervals of the pentatonic scale demark the rising and fall-
ing of the musical line about a center located at the golden section just
as the musical dynamics (loudness and softness) were centered by the
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Figure 3.26 Golden section cell division in the last movement of Divertimento.
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Fibonacci series in example 1. In line 1, the notes rise one halftone
above the central note and fall one beneath it, i.e., (1,1). In line 2 they
rise two halftones above and fall one below the center (2,1). Line 3 is
(2,3), while lines 4 and 5 continue this progression to (3,5) and (5,8).

3. Barték also used Fibonacci numbers in an another way. Roughly
speaking, the musical tissue of his music may be imagined to be built
up of cells 2, 3, 5, 8, and 13 in size, i.e., the minor second (2), minor.
third (3), fourth (5), minor sixth (8), and the augmented octave (13).
Such a progression, starting with C as the fundamental tone, C, D, E
flat, ¥, A flat, C sharp, is represented in musical notation in Figure
3.27.

Barték contrasted this Fibonacci scale with a scale based on the se-
quence of overtones of the fundamental note. To explain what is
meant by the overtones of a tone, we must consider another aspect of
the tone, namely, its wave properties. For example, a plucked string
sets up condensations and rarefactions in the air that travel with the
speed of sound. If a fundamental tone vibrates with a frequency of 100
cycles per second, its octave vibrates at 200 cycles per second (2:1), its
fifth at 150 cycles per second (3:2), etc. In other words, the frequency
of musical interval is the inverse of the ratio of string lengths corre-
sponding to that interval. It is well known that when a tone is
sounded loudly, the ear manufactures all multiples of the tone, with
the lower multiples more audible than the higher ones [Benade, 1976],
(i.e., tones in the frequency ratios 2:1, 3:1, 4:1, 5:1, etc.). The first is
the octave. The second is the fifth if it is lowered by one octave (i.e.,
% X V2 = 32). The third is a double octave. The fourth overtone is a
major third when lowered by two octaves (i.e., 51 X & X Va2 = 54). Con-
tinuing in this manner, we find that the overtone scale is given by the
increasing sequence of ratios along with their corresponding tonal
names as follows:

109 510 1 3_12 18 7_14 15  2_16
8 48 8 2 8 8 4 8 8 1 8
C D E F* G A B B C

The ratios are named from the tones on the well-tempered scale that
they closely approximate. With the exception of A, there are no ap-
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Figure 3.27 The Fibonacci scale of Barték. The successive tones of the
scale increase in a Fibonacci series of halftones.
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proximations for those notes that use ratios of smaller integers. It is
also notable that the frequencies of the overtone series form an arith-
metic series with common difference of ¥. Thus, removing the arith-
metic progression of the tones that form the overtone series from the
geometric progression of tones that comprise the 12-tone chromatic
scale leaves an F series of halftones, the only exception being the ma-
jor second, D, that appears in both series. These two worlds of har-
mony complement each other to such a degree that the Bartokian
scale can be separated into Fibonacci and overtone scales, much as
were the red and blue series of Le Corbusier and the pair of scales of
the Garden Houses (see Sections 1.7 and 1.8). Separately, each is
merely a part of a whole and neither can exist without the other, as
shown in the following table:

0)=Q12) (2) (3) (5) 8 13)=Q)
Fibonacci
scale: C D E flat F A flat C sharp
Acoustic (2) 4) (6) (7) 9 (10) (11)
scale: C D E F sharp G A B flat B

First of all, this system decouples all the notes of the 12-tone scale
into two scales (although the D appears on both scales). Furthermore,
the two systems reflect each other in the octave, or as musicians say,
the fifth, 3:2, reflects the fourth, 4:3, since the fifth breaks the octave
into a fifth and a fourth:

R
L]

0 1
1
F

-1—Njw

3:2 4:3

Similarly, the major third, 5:4, breaks the octave into the major
third and minor sixth, 8:5 (see Section 1.4):

0 1
-
I

L
L]

o}~ Bjon
e N)

5:4 8:5

For the most part, Barték builds his compositions on this system al-
though he deviates from it occasiohally to create special effects. For
example, in the finale of the Sonata for Two Pianos and Percussion,
the acoustic scale C, E, F sharp, G, A, B flat, C contrasts with the
golden mean section of the piece, C, E flat, F, A flat that dominates
the first movement (see Figure 3.28).

Systematically, the two scales are related by organically comple-
menting and reflecting each other. Each is the other’s negative reflec-
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Figure 3.28 Fibonnaci and acoustic scales in “Sonota for Two Pianos and Percussion.”

tion in the 12-tone system. These two scales also complement each
other in terms of the emotional content of the music. The overtone sys-
tem can only admit consonant intervals (by nature of the overtone
harmonies). In other words, chords made up of notes from this scale
are all pleasing to the ear. On the other hand, chords from the
Fibonacci system are “tense” and “dissonant.” Thus each system is ca-
pable of disclosing one aspect of life.

As Lendvai explains, Barték was able to use his double scale to set
up a duality between both the structural and emotional elements of
his music. The essence of this duality lies in the closed nature of the
Fibonacci scale, in contrast to the open nature of the overtone scale.
While the dissonant golden mean harmonies move around the circle of
fifths (a circle of progressively increasing fifths upon which Western
music is built) and modulates from key to key, according to the par-
ticular laws of harmony developed by Barték, the overtone scale rises
linearly from a common fundamental note. In this way tensions devel-
oped in the first movement of a piece by golden mean harmonies are
resolved in the last movement by the familiar chords of Western mu-
sic based on the overtone scale. A striking example of this organic re-
lation between the dual systems is shown by the opening and conclud-
ing bars of the Cantata Profana (see Figure 3.29) in which the two
scales mirror each other tone for tone—a Fibonacci scale and a pure
overtone scale.

diminished
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23St peginning of <
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e o "

golden-section scale
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acousuc scale

Figure 3.29 The opening and closing of Cantata Profana shows how the Fibonacci and
acoustic scales mirror each other tone for tone.
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The Golden Mean

Fibonacci scale
Golden-section system
Closed world

Circular pattern of melody
Uneven meter
Asymmetries

Demonaic world

Organic

Inspiration
Augmentation-diminution

Finite (circular motion)

Overtone scale

Acoustic system

Open world

Straight pattern of melody
Even meter

Periodicity

Serene, festive world
Logic

Thought

Stabilized forms

Infinite (straight line)
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Lendvai says much more about the duality of Bartdk’s two scales.
Several of his dualities are illustrated in Table 3.2.
The closed nature of the golden-section harmonies can be likened to
the emblem of Dante’s Inferno—the circle or ring—while the overtone
scale is akin to the symbol of his Paradisio—the straight line, the ar-
row, the ray. Lendvai dramatizes this notion with the following illus-

tration:

The golden-section can easily be (constructed) with the aid of a simple
“knot” [as shown in Figure 3.15]; every proportion of this knot will dis-
play the golden-section. It is this property of the pentagram that Goethe
alludes to in Faust, Part I:

Mephistopheles:

Faust:

Mephistopheles:

Let me admit; a tiny obstacle
Forbids my walking out of here:
It is the druid’s foot upon your
threshold.

The pentagram distresses you?
But tell me, then, you son of hell.

If this impedes you, how did you come in?

How can your kind of spirit be deceived?

Observe! The lines are poorly drawn:
That one, the angle pointing outward,
Is, you see, a little open.
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Chapter

Graphs

The crucial quality of shape, no matter of
what kind, lies in its organization, and when
we think of it in this way we call it form.
CHRISTOPHER ALEXANDER
Notes on the Synthesis of Form

4.1 Introduction

An artist or architect usually captures the earliest stage of an idea
through a sketch depicting its raw outline. As work progresses, the
rendering of the idea reveals more and more structure. Objects appear
in their proper perspective, and length and angle become more defi-
nite. This range of visual thinking also pervades mathematics
through the subject of geometry. Like the artist or architect’s finished
product, euclidean geometry—the geometry most of us studied in high
school——congiders line segments to be of definite lengths and to meet
each other at precise angles. However, not all geometries have these
metric properties of length and angle.

In this chapter, we discuss a freewheeling geometry of dots and
lines called graph theory [Baglivo and Graver, 1983], [Trudeau, 1976],
[Ore, 1963]. As for the artist’s or architect’s rough sketch, graph the-
ory preserves geometrical relationships only in their most general
outlines. In graph theory, polygons are defined as cycles of lines con-
necting two or more dots as shown in Figure 4.1. However, a line does
not have to be straight in dot and line geometry, nor are there such
things as perpendicular or parallel lines, and it does not make sense to
talk about bisecting lines or measuring lengths and angles.

The power of graph theory is that it can be used to model many pat-
terns in nature from the branching of rivers to the cracking of brittle
surfaces to subdivisions of cellular forms (see Figure 4.2) as well as
many abstract concepts. The free-form geometry of dots and lines can
be used to study these structures, and we shall see that this geometry
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(a) (b) (c)
Figure 4.1 Some graphical polygons.

(c)

Figure 4.2 (a) Pattern in soap bubbles; (b) patterns observed on the shore of a river
when the mud has been dried up by the sun; (c) branching patterns of rivers.

has a rich underlying foundation. We are going to start by investigat-
ing what happens in a freewheeling situation. Before reading on, try
this exercise.

Exercise 4.1 Place dots on a piece of paper and then connect them with lines.
Lines begin and end at dots and may loop around to begin and end at the same
dot; however, two lines will not be permitted to intersect except at a dot. Can
you find any pattern to the results? At first thought it would seem impossible for
any order to come out of such an unstructured exercise. But is it?

In order to make it easier to analyze things, let

D = number of dots
L = number of lines
A = number of enclosed areas

Observer 1 carrying out this exercise made two conjectures:

L=D-1 if all the dots are connected with a minimum of l(i‘rllis )
Jda

A+D-L=1 (4.1d)
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Let’s look at the diagrams in Figure 4.3 from which the observer made
his conjectures. From the results it appears as though he is correct.
But wait! observer 2 came up with the diagrams in Figure 4.4. These
diagrams appear to each have more than one segment and so Equa-
tion 4.15 does not apply. However, this equation can be modified so
that it is true in every case that

A + D - L = number of pieces in the diagram (4.2)

It may appear at first that this exercise could have been made even
more freewheeling if we permitted lines to cross at points other than
the dots. However, Figure 4.5 shows that the same number of dots and
lines can give rise to any number of enclosed areas if lines are permit-
ted to cross. It may help to think of the lines as strings connecting a
set of tacks—the problem is to untangle the strings so they don’t cross
in order to discover what A is. As we will see later, it's not always pos-
sible to untangle the strings, so there are some diagrams in which A is
not well defined.
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Figure 4.3 Some dots and lines pictures.
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Figure 4.4 Some more dots and
lines pictures.
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< =3

(a) (b) (c) (d)

Figure 4.5 If edges are permitted to cross, an arbitrary number of enclosed areas
are possible.

Equation (4.2) has a very deep relationship to the nature of space
and the real-world limitations which it imposes on design. By impos-
ing more restrictions (the only ones that we have imposed so far are
that lines must end in dots and must not cross), several startling re-
sults will follow from this seemingly simple relationship. But first,
let’s put things in more formal mathematical terms.

4.2 Graphs

The theory of graphs will play a central role in this book since it gives
us a way to study spatial structures unencumbered by the details of
euclidean geometry. We will go into the subject enough to appreciate
the applications to spatial design found in this chapter and the re-
mainder of the book. First we redefine dots, lines, and areas to agree
with common mathematical conventions. We call the dots, vertices, V,
or sometimes nodes, the lines, edges, E, and the areas, faces, F. Often,
we will use the same symbols, E, V, and F, to mean both the entity
and the number of edges, vertices, and faces in the diagram.

The reason for calling the lines edges is that we may consider them
as the boundary edges of shapes, and the reason for referring to closed
areas as faces will become clearer when we extend our ideas into three
dimensions. (The enclosed areas will become the faces of polyhedra.)

In addition, we are going to call the kind of diagrams we've been
drawing graphs, or sometimes networks. By formal definition, a
graph, G, is a set of edges and vertices:

G = {V.E}
We are relying here on the reader’s naive idea of a set as a bunch of
things along with a rule of membership that determines whether some
object does or does not belong to the set. Sets also have no implied or-
der and there are no duplications.
The definitions of G, V, and E themselves contain sets. V is the ver-
tex set and E is the edge set. E consists of pairs of vertices taken from
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the set V. Thus if a and b are vertices, {a,b} or just ab is the edge con-
necting a and &. It should be noted that in this definition:

® {0,b} and {b,a} are the same thing (order doesn’t count in sets) so
that we do not give a direction to an edge.

® (g,a) is meaningless (no duplications in sets).

For example:
G = {V.E}
V ={1,2,34}

E = {{1,2},{1,3}, {2.4}}

Given this information, we could draw a diagram showing the ver-
tices and edges with no trouble [see Figure 4.6(a)] However, you
should note that the formal definition of what a graph is makes no ref-
erence to diagrams; it is a purely abstract idea. As such the graph can
be expressed in other ways. For example, we can represent the graph
by a matrix in which rows and columns represent vertices and a 1 is
placed at each position wherever corresponding vertices are connected
by an edge and a 0 is placed in the matrix wherever there’s no con-
nection. The matrix is

Vertex number
1 2 3 4

1 710 1 1 0
Vertex 2 |1 0 0 1
Number 3 1 0 0 0
4 Lo 1 0 0
or, with the labels dropped, simply
0110
1 0 01
G = 100 0 4.3)
0100

We call this the incidence matrix and denote it by G to emphasize that
the matrix may be considered an abstract representation of the graph.

Armed with either V and E or the matrix, we can also illustrate the
graph by Figure 4.6(6). There is no unique way to represent the graph in
a diagram, as can be seen by the examples above. However, each of the
diagrams unambiguously shows the connections in the graph. We say
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4 e 2
{b)
Figure 4.6 A planar graph can
1 .3 be redrawn with no crossovers.

that these graph diagrams are isomorphic to one another, meaning that
they exhibit the same structure and can be redrawn to look identical. If
you think of the graph diagram as being composed of tacks and elastic
strings, as we did earlier, you should be able to visualize means of chang-
ing one diagram into another. While you should not confuse the diagram
of a graph with the graph itself, since a graph is an abstract mathemat-
ical concept and the graph diagram is a pictorial representation of the
graph, it is common practice to refer to the graph diagrams as graphs,
and we will follow that practice in this book.

If two different graphs can be made to have identical matrices by
relabeling their vertices, these graphs are isomorphic. For example,
the two graphs shown in Figure 4.7,

G, = {VhEl} G, = {Vy,E}
VvV, =1{1,2,3,4} V, = {a,b,c,d}
E, = {{1,2},{2,4},{4,3},{3,1}}  E, = {{a.bh{b,ch{c.dbidal}

are isomorphic even though one has crossing edges while the other
does not since by matching up the vertices as follows:

loa, 256, 3od 4oc

both can be represented by the matrix

0110
1 001
1 001
0110

Problem 4.1 Find as many pairs of isomorphic graphs in Figure 4.8 as you can.

The essence of graph theory lies in the fact that two graphs can be
visually very different and yet isomorphic, as Figure 4.9 shows. This
can be of great use in spatial design when we wish to create a variety
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3 (a) ¢ ¢ (b}

Figure 4.7 Two graphs with the same connectivity;
they are graphically identical.

A\

Figure 4.8 Identify the isomorphic graphs in this figure.

13 14 15 16

(a) {b)

Figure 48 (a) A graph with many crossovers; (b) an isomorphic copy drawn with two
crossovers,

of structures that look quite different but share the same basic plan
(see Section 4.17). On the other hand, it is one of the difficult problems
of graph theory to determine, in general, if two complicated graphs
are isomorphic. They must certainly have the same number of faces,
edges, and connected pieces. Each graph must also have the same dis-
tribution of the number of edges touching each vertex. However, this
is not enough as Figure 4.10 shows. (Why?) Another criterion helpful
in deciding whether two graphs are isomorphic is given in Section 4.8.
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G H 7 8
(a) (b)

Figure 410 Two graphs with the same number of edges and vertices, but they are not
isomorphic.

We have seen in Figures 4.6 and 4.7 that the same graph may be
represented with crossing edges in one diagram but with noncrossing
edges in another diagram. In general, if a graph can be drawn with
edges that cross only at the vertices, it is called a planar graph, to dis-
tinguish it from nonplanar graphs that can only be drawn with some
edges crossing. Thus the graphs in Figures 4.6 and 4.7 are planar. In
Section 4.10, nonplanar graphs will be discussed in greater detail.

As we have noted, the formal definition of graphs does not allow:

® More than one edge between two vertices
® An edge with both ends attached to the same vertex
® Directionality of edges

But when we draw diagrams, it's easy to make sketches of “graphs”
having some or all of the above properties. How can they be included
in graph theory? The answer is to define new entities:

¥ Multigraphs are graphs with one or more multiple edges, that is, du-
plicate edges between vertices.

® Pseudographs are graphs with loops, that is, one or more vertices
have an edge starting and ending at the same vertex.

® Digraphs are graphs with directed edges, that is, one or more edges
have a specified direction to them.

Figure 4.11 shows examples of a pseudograph and a digraph.

The formal definitions for multigraphs, pseudographs, and digraphs
are made by redefining the edge set so that it contains ordered pairs of
vertices instead of sets of pairs of vertices. A more illuminating way to
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b
a b a
c ¢
d d
{a) (b)

Figure 4.11 (a) A pseudograph; (b) a directed graph
(digraph).

see the differences is to look at incidence matrices for the diagrams of
each type. Here are some matrices. The graphical representations of
the pseudograph and the digraph shown in Figure 4.11 are

a b ¢ d a b c d a b ¢ d
a 01 0 2 a 1 1 01 a 0 01
b 1 01 1 b 1 011 b |0 0 0 0
c 0101 c 0101 c 0100
d 2 1 10 d 1 110 d 1110
Multigraph Pseudograph Digraph

a b ¢ d

a 1100

b |0 0 01

c 0100

d 2 110

Combination

Problem 4.2 Try your hand at drawing the multigraph and the combination
graph.

You should compare the matrices and diagrams and see if you can
recreate one from the other. There are certain characteristics of the
matrices of each type that help in recognizing them:

® A matrix of a graph is symmetric: If you read down a particular col-
umn, it will read the same as reading across the corresponding row
(the row for the same vertex as the column). In addition, the matrix
of a graph always has zeros along the main diagonal—the diagonal
line from the upper left of the matrix to the lower right corner.

® The matrix of a multigraph has numbers other than 1s in the ma-
trix (signifying that there are multiple edges).
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# The matrix of a pseudograph has 1s on the main diagonal whenever
a loop occurs; 1s on the main diagonal signify loops.

® The matrix of a digraph is not, in general, symmetric; corresponding
rows and columns are not identical.

4.3 Maps

Everyone is familiar with maps. Figure 4.12 can either be looked at as
the map of Europe, or it can be interpreted as an abstract map in a
mathematical sense. The mathematical maps that we are going to ex-
amine in this section are similar to the cartographer’s map in that the
faces are countries, the edges are their borders, and the vertices are
the corners of the countries. Now let’s turn to a formal mathematical
definition of a map. A map M is a set of edges, vertices, and faces,

M = {V.E,F}

where F is the face set. The edges and vertices satisfy a specified in-
cidence matrix, while each face from the set F consists of a cycle of
non-self-intersecting edges (a cycle is defined in Section 4.5) and ver-
tices with no repeats except for the first and last vertex and contain-
ing no vertices inside it, i.e., F' is a polygon (in Chapter 5 we will con-
sider star polygons whose edges self-intersect). Polygons can have
curved edges in this definition, and we will have to extend our notion

PORTUGAL

L]
SPAIN

Figure 4.12 A map of Europe.
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of a polygon to include figures with two edges [see Figure 4.1(a)]. The
faces of a map are linked together at edges so that each edge lies in
exactly two faces. Finally, in the definition of a map, no country can
lie completely within another as Vatican City does within Italy (see
Section 4.5). For example in Figure 4.13,

f1 = vsesvseqUsesvs
f2
f3

where f1, fs, and f3 are three-, four-, and five-sided polygons, respec-
tively. It may appear strange that the exterior of the map is consid-
ered to be a face surrounded by the outer edges, the outside face. An
explanation of this is in the next section.

At this point, let us pause to wonder why a concept as natural and
familiar as a map needs to be belabored and stated in the technical
language of mathematics. Is this language artificial, or is it natural
and necessary to convey the meaning? Qur intuition about maps
serves us well so long as we do not stray too far afield from the concept
of a geographical map. Yet in this book, we will consider maps far
from this familiar territory. Here, the language of mathematics serves
as our only compass. Whether or not this language serves a purpose or
is unnecessarily pedantic must await judgment.

By defining the face of a map to be a polygon and each edge of a map
to lie in exactly two faces, we have excluded some diagrams that we
would like to consider as maps, namely, diagrams with hanging, or
pendant, edges or faces. In Figure 4.14 the face connecting the hang-
ing triangle lies in only one face, and the enclosed area with the pen-
dant face is called a face even though it is not a polygon. Maps with
pendant edges or faces are called pseudomaps.

Copies of a map formed by placing the map on a flexible membrane
and stretching the membrane without cutting are considered identical

U1€1Ug€5U3€3V 44Uy

U1€1U2€2U385U5€6U4€4V1

5
f
06 ¢ € 5 3
1
v,
" € 3 V3
€4 £ € Figure 4.13 A map with three
2 faces (including the outside face),
five vertices, and six edges.
1 e 2
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Figure 4.14 A pseudomap with a pendant face.

or isomorphic. Edges and faces become distorted but sets E, F, and V
maintain their integrity.

The diagrams of maps and graphs are very much alike. In fact, any
map may be considered to be a planar graph or a multigraph by tak-
ing into account its vertices and edges and their interconnections but
neglecting its set of faces. However, there are subtle differences be-
tween graphs and maps:

¥ A connected planar graph can always be represented as a map or a
pseudomap (a connected graph is a graph in one piece).

® A graph can give rise to more than one map (see Section 4.5). Figure
4.15 shows two different maps with the same graph.

® Graphs which are not connected (i.e., which occur in more than one
piece) cannot be represented as maps (see Figure 4.16).

Figure 4.15 The same graph can represent two different maps.
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N
7

\ not a map; the shaded face is not
\ a graphical polygon.

Because of the great similarity in the structures of graprhs and
maps, we develop their theory together.

4.4 Maps and Graphs on a Sphere

It may seem strange and needless to define the exterior of a map to be
a face; however, there is a compelling reason for doing this. If the map
is drawn on a sphere as shown in Figure 4.17(a), it is clear that the
outside face is no longer unbounded and should be treated as any
other face. In fact, any face could just as well serve as the outer face by
imagining the sphere to be an infinitely stretchable membrane
pierced at some point within this face as shown in Figure 4.17(b) and
{c). The membrane is then stretched until the puncture point is moved
to infinity [see Figure 4.17(d)]. A map results in which the punctured
face becomes the outside face.

Points on the sphere are now paired with points on the plane. (See
Appendix 2.B for another way to pair points on a sphere with points in
the plane.) The corresponding maps also share the same sets of faces,
edges, and vertices and have the same incidence matrix. Thus, from a
mathematical point of view, maps on the plane and maps on the
sphere with one point removed are isomorphic. The same holds for

graphs.

w141
@@ S &

(c) (d)

Z

Figure 4.17 Transformation of a map on a sphere to a map on the
plane. (@) Map on the sphere with face 1 punctured; (b,c) the
puncture is widened; (d) map in the plane with face 1 on the ex-
terior.
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1 4 5
2 A 3 f
fa fiy 1
fe fy
A fa

(a) (b) (c)

Figure 4.18 The outside face of a map is arbitrary. (a) Face ¢
is the outside face; (b) map redrawn with face a as the out-
side; (c) redrawn again with face b as the outside face.

A map can always be redrawn with any one of its internal faces
serving as the exterior face by first drawing the edges surrounding
this face as the outer boundary of the new map as shown in Figure
4.18. The other faces are then redrawn inside this outer boundary,
making sure that their connectivities are preserved. It is helpful to la-
bel all the vertices of the original map before exchanging faces in or-
der to keep track of the connections between the vertices.

Problem 4.3 Redraw the map shown in Figure 4.19 so that face f is the outer
face.

Since all the enclosed areas, including one additional outer one, are
now considered to be faces, and maps are always considered to be in
one piece (connected), we can restate the constraint on space intro-
duced at the beginning of the chapter for the case of maps on the plane
or a sphere as

F+V-E=2 4.4)

This relation, discovered by Swiss mathematician Leonhard Euler and
known as Euler’s formula, is proven for connected planar graphs in
the next section.

4

Figure 4.19 Redraw this map with face f as the outside
face.
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Problem 4.4 Show that Euler’s formula holds for the graphs in Figures 4.14 and
4.15, but it does not hold for the graph in Figure 4.16. Why is this so?

In Section 4.11 we will generalize this relation to maps drawn on
other surfaces.

4,5 Connectivity of Graphs and Maps

Information about the connectivity of a graph is given by the incidence
matrix. A path between two vertices of a graph or map is defined as a
succession of adjacent edges in a graph (i.e., a “walk” from vertex to
vertex along specified edges). If there is a path connecting each pair of
vertices, the map or graph is said to be connected. Since we have spec-
ified in our definition of maps that no country can be buried within
another, maps are always connected graphs.

A cycle is a path from one vertex back to itself excluding the case
where the steps are merely retraced. If a graph has no cycles, it is
called a tree, an example of which is shown in Figure 4.20. The pat-
terns of branching processes shown in Figure 4.2(c) are, in a sense, in-
finite trees.

Any connected graph with cycles can be transformed into a tree
graph by removing some of its edges and leaving its vertices alone.
The tree contains the least number of edges necessary to keep the
original graph in one piece (connected). Thus, the result that we found
in Equation (4.1a) of the introductory exercise holds for trees:

E=V-1 (4.5)

As a matter of fact, this equation can be used to prove Euler’s theo-
rem, Theorem 4.1,

Theotem 4.1 F + V - E = 2 for connected, planar graphs.

proof Transform a connected, planar graph into a tree by removing selected
edges. But for each edge that is removed, a face is also eliminated, which pre-

Figure 4.20 A tree graph.
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serves the value of F + V - E. However, since the tree graph can be viewed as
having a single exterior face, Equation (4.5) can be rewritten as

F+V-E=2
which must then have been satisfied by the original graph.

A connected graph can be disconnected into more than one segment
by removing certain of its vertices and all the edges connected to these
vertices. If the graph can be disconnected by removing only one ver-
tex, it is I-connected. If two or three vertices must be removed to dis-
connect it, the graph is 2-connected or 3-connected (providing these
graphs have more than two or three points, respectively, to start
with). Graphs can also be disconnected by removing edges and leaving
vertices untouched. However, this is of no interest to us. Examples of
1-, 2-, and 3-connected graphs are shown in Figure 4.21.

All connected planar graphs drawn in the plane can be represented
by maps. Theorem 4.2 tells us which of these graphs can be drawn
uniquely (except for isomorphic distortions) as maps.

Theorem 4.2 There is only one map corresponding to a 3-connected planar
graph. Some 1- and 2-connected planar graphs can be represented by more than
one map.

There are two special kinds of connected graphs that we will be re-
ferring to in this chapter. The first is a complete graph with n vertices,
abbreviated K, in which each vertex is connected to each of the other
vertices. Ky is illustrated in Figure 4.22(a). The other is the bipartite
graph, abbreviated K,, ,, which is defined to be a graph whose vertices
are divided into two sets. Each of m vertices of the first set is con-
nected to each of n vertices of the second set as shown in Figure
4.22(b) for K3 5.

4.6 Combinatorial Properties

The structure of a graph is determined by its incidence matrix. For
example, the sum of the 1s in a row (or column) of this matrix indi-

4
p

(a) (b) (c)
Figure 4.21 (a) 1-connected graph; (b) 2-connected graph; (¢) 3-connected graph.
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W Figure 4.22 (a) A complete graph
with five vertices, K;; (b) a bi-
Ks
(a)

Ks,2 partite graph, K ;.
(b)

cates the number of edges that touch (are incident to) the vertex cor-
responding to that row (or eolumn). The number of edges incident to a
vertex v is called its vertex valence, which is symbolized by ¢(v) since g,
in general, depends on v. We will refer to vertices having odd or even
values for their vertex valences as odd or even vertices. Since each
edge of a graph contains two vertices, the following relation holds:

> q(v) = 2E (4.6)
v

where the summation is over all vertices v of set V. In the future, for
the sake of brevity, we shall assume that the quantity being summed,
e.g., q, depends on the elements of the set indicated under the summa-
tion sign and omit the variable, e.g., v. In other words, Equation (4.6)
will be rewritten:

>q=2E
v

Problem 4.5 Show that in a graph with more than one vertex there must be at
least two vertices of the same valence. Remember that a graph cannot have
more than one edge between vertices.

The same relation holds for maps. In addition, another quantity
called the face valence p is defined to be the number of edges that sur-
round a given face. Since each edge of a map lies in exactly two faces,

> p=2E 4.7)
F

where summation is over all the faces of the map and the same short-
hand convention is used as for Equation (4.6).

This equation does not hold for graphs with pendant edges or faces
such as the ones shown in Figures 4.14 and 4.20. However, Equation
(4.7) holds for these graphs if the pendant edges are counted twice. To
make sense out of this seemingly arbitrary counting procedure, imag-
ine that the edges of such graphs are walls and a bug crawls around
all the edges of the face with the pendant edge. As the bug crawls
along either side of the wall corresponding to the pendant edge, this
edge is counted twice.
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Figure 4.23

(a) (b)

Problem 4.6 Verify Equations (4.6) and (4.7) for the graphs shown in Figure
4.23.

Many properties of graphs and maps can be deduced from Equations
(4.6) and (4.7). One surprising result is expressed by the handshake
lemma which states:

At a party, the number of people who shake hands an odd number of
times is always even.

proof Draw a graph in which the people at the party are the vertices and an
edge connects two vertices if these two people have shaken hands. Divide the
graph into two sets of vertices, one set with odd vertex valence q, and the other
with even ¢,. From Equation (4.6),

2 Qo t+ 2 qe=2E or 2 q; = 2E - 2 ¢ = even number (4.8)
vV vV v vV

Since odd + odd = even and odd + even = odd, it follows that the odd numbers
on the left-hand side of Equation (4.8) must pair in order to result in an even
number. The proof follows since each term on the left-hand side represents a
party goer who shook hands an odd number of times.

Problem 4.7 For a hypothetical party with five people, draw the handshake
graph and verify the lemma [Baglivo and Graver, 1983].

Another problem in the spirit of the handshake lemma follows.

Problem 4.8 What can you say about the number of people at a party at which
everyone knows exactly four other pecople present, except the host who knows
everyone present [Baglivo and Graver, 1983]?

4.7 Regular Maps

There is a family of maps for which each vertex and face is like every
other vertex and face. These are called regular maps. They could be
said to have a “perfect symmetry.” If you found yourself placed in a
mathematical country defined by such a map, you would experience
vistas of sameness in all directions and find yourself hopelessly lost.
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In the search for order in a seemingly chaotic world, mathemati-
cians and philosophers since antiquity have been fascinated by struc-
tures exhibiting the level of perfection and order of the regular maps.
The fact that there are only five of them, as we will show, makes them
all the more precious. The next chapter will be devoted to a detailed
study of these maps in a different context.

Regular maps are defined as maps whose vertices have identical
vertex valence g and whose faces have identical face valence p. For
regular maps, Equations (4.6) and ¢4.7) can be rewritten as

qV=2E and pF=2E (4.9) and (4.10)

Figure 4.24(a) and (b) illustrate two infinite families of maps (which
we refer to as trivial maps) with this property. This leads to Theorem
4.3.

Theorem 4.3 Except for the two trivial families, there are only five regular
maps on the plane (or sphere).

proof Solving Equations (4.9) and (4.10) for V and F and replacingin F + V -
E = 2 yields

2E , 2E _

E=2 (4.11)
p q

After some algebra,

pa-2p-2q= —J’—q'% (4.12)

Since the right side of this equation is negative, factoring the left side yields
@-2)g-2)-4<0 or -2)¢g-2)<4

The only solutions to this equation, other than the trivial ones, are listed in
Table 4.1 along with the number of edges, faces, and vertices of the correspond-

e o o ctc.
(a)
(b)

Figure 4.24 Two trivial families of regular maps.
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TABLE 4.1
Schlafli notation
q p {p.q} F v E
3 3 {8,3} 4 4 6
3 4 {3,4} 6 8 12
3 5 {3,5} 12 20 30
4 3 {4,3} 8 6 12
5 3 {5,3} 20 12 30

ing maps. F, V, and E are determined by solving Equation (4.12) for E and re-
placing E in Equations (4.9) and (4.10) to get, after a little algebra,

F= E = V= (4.13)

[NCIEN
|~

t
¥4
where ¢ = 4pq/ 2p + 29 - pq)

Problem 4.9 [Illustrations of the graphs in Table 4.1 are shown in Figure
4.66(a). Before looking at them, try drawing them for yourself. Each of these
maps is 3-connected and can, therefore, according to Theorem 4.2, be drawn in
only one way.

4.8 New Graphs from Old Ones

Through isomorphism, the visual appearance of a graph can be dras-
tically changed while preserving its underlying structure as we
showed in Section 4.2, We now consider ways of transforming the
structure of a graph G by adding or subtracting vertices and edges.
There are three distinct ways of doing this:

1. Graph G can be augmented to a new graph H by selectively add-
ing additional vertices and edges. Since each vertex and edge of the
original graph G is also a vertex and edge of the transformed graph H,
we say that G is a subgraph of H and that H is a supergraph of G. For
example, K is a subgraph of Figure 4.25(a) while Kj 5 is a subgraph of

Figure 4.25(b).

(b) (a)
Figure 425 These graphs contain (a) K; as a subgraph; (b) K ; as a subgraph.
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2. Graph H can be reduced to G by selectively erasing certain edges
and vertices. However, whenever a vertex is erased, all edges incident
to that vertex must also be erased (otherwise G would not be a graph).
In this case G is a subgraph of H.

3. An arbitrary number of vertices may be placed within the edges
of graph G to obtain graph H, called the subdivision of G, i.e., a hole is
erased on an edge and a vertex is inserted in the hole. In this case G is
usually not a subgraph of H.

In Section 4.2 we showed that it can be tricky to determine whether
or not two graphs are isomorphic, Besides the four properties men-
tioned there, another property preserved by isomorphism is the distri-
bution of subgraphs. That is, if two graphs are isomorphic and you se-
lect a subgraph at random from either one, the other will necessarily
have an isomorphic subgraph. Hence, you can prove that two graphs
are not isomorphic by finding a subgraph of one that is not a subgraph
of the other. For example, Figure 4.10(a) and (b) cannot be isomorphic
since Figure 4.10(a) has a cycle of eight edges and vertices A, C, D, F,
E, G, H, B, A but Figure 4.10(b) does not.

In Section 4.10 these three ways to alter a graph will be used to
state an important theorem about nonplanar graphs making use of
the obvious fact that supergraphs and subdivisions of nonplanar
graphs are also nonplanar.

4.9 Duality

Each map contains the seeds of another map called its dual, which
is constructed by placing a vertex within each face, including its
outside face, and connecting two vertices by an edge if their corre-
sponding faces are adjacent (share an edge). Thus, since each edge
of the original map lies in exactly two faces, each edge of the orig-
inal is paired with one edge of the dual map. An example of a map
and its dual is illustrated in Figure 4.26(a) and then redrawn in
Figure 4.26(b).

Notice in Figure 4.26(e) that the dual of the dual map is the origi-
nal. This reciprocal relationship is true of all duals so long as the ex-
terior of the map is considered as a face. In fact, vertex v, of the orig-
inal map corresponds to the outside face f; of the dual. However, any
face of the dual could equally well serve as the outside face (see Sec-
tion 4.4). For example, Figure 4.26(c) and (d) shows the dual redrawn
so that f; is now an inner face and vertex v, of the original map cor-
responds to the outside face f, of the dual. (It is possible that for some
maps, the redrawn dual may not be isomorphic in a map sense to the
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(a)

4
(d) (e)

Figure 4.26 Dual maps. (@) A map is drawn with dotted lines and its dual map
is drawn with solid lines; face 1 is the outside face; (b) the dual is redrawn; (¢, d)
the dual map with face 4 as the outside face; (e) the vertex corresponding to the
outside face of the original map is taken to be the point at infinity.

original dual and so one should probably refer to “a” dual rather than
“the” dual.)

Finally in Figure 4.26(e), the vertex of the dual corresponding to the
outside face of the original map is taken to be the point at infinity in
the sense of Section 4.4. In this case the edges of the dual that corre-
spond to the outer edges of the original map are drawn with arrows to
indicate that they all meet at the point at infinity.

From a mathematical point of view, a map and its dual may also be
considered structurally identical despite their different appearances
although they are not isomorphic. To explain what we mean by struc-
turally identical, let's consider a map in terms of its abstract struc-
ture. To each face of the original there corresponds a vertex of the dual
while edges are paired, i.e.,

face < vertex
edge < edge

In this sense, the dual map is encoded in the original, and any state-
ment made about the faces of the original can be translated into an
equivalent statement about the vertices of the dual. For example, if a
face of the original is surrounded by p incident edges, p incident edges
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surround the corresponding vertex of the dual. Likewise, if a vertex of
the original has g incident edges, the corresponding face of the dual
has ¢ edges incident to it. Also if two vertices are connected by an
edge in the original, the corresponding two faces share an edge (are
adjacent) in the dual.

Although the original and its dual are structurally identical (but
usually not isomorphic), they are visually dissimilar. Duality will
play an important role throughout this book as it offers alternative
ways of viewing a given structure as we already saw in the duality of
Barték’s music (see Section 3.8).

Problem 4.10 Draw the map dual to the one shown in Figure 4.19.

Problem 4.11 For the regular maps shown by looking ahead to Figure 4.66(a),
show that one of these maps is self-dual (the map and its dual are isomorphic)
while the other maps form dual pairs.

4,10 Planar and Nonplanar Graphs

The development of graph theory has been motivated by the search for
solutions to puzzles and games. The bipartite graph K33, shown in
Figure 4.27(a), is the source of one such puzzle for a rainy day.

Probiem 4,12 Three people at odds with each other, each represented by one of
the upper vertices of the bipartite graph, want to draw water from each of the
three wells represented by the lower vertices, but they do not wish to have the
possibility of meeting each other during their trips to the well. Can you devise
paths from people to wells that meets this condition?

After trying different ways to redraw this graph, you will come to
the conclusion that at least one path must cross, i.e., the bipartite
graph is nonplanar. Figure 4.27(b) shows the graph redrawn with one
crossover.

Puzzle solvers have never been put off by the challenge of trying to
solve a problem advertised as being impossible; witness the many “so-
lutions” that are still found for squaring the circle or trisecting an an-
gle. However, it is instructive to see how the impossibility of unravel-

A B c A
b Figure 4.27 (a) The bipartite
graph K,z (b) K;; redrawn
b b 4 x with one crossover.

(a) (b)
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ing a bipartite graph is inherent in the basic constraints on space that
we have already accepted.

proof that K ; is nonplanar If K, ; is planar, it forms a map in the plane for
which V' = 6 and E = 9. Replacing these values in Euler’s formula for the plane
and solving for F yields

F=2+E-V=5

The smallest cycle of edges on the bipartite graph has four edges. If it is as-
sumed that all faces have face valence p = 4, a lower estimate of Equation (4.7)
is

20 =4F < 2E = 18

which gives rise to a contradiction. The conclusion is that the bipartite graph
must not have been planar.

It may seem strange that a geometrical property of a graph (edge
crossings) has been proven by algebraic means. This is frequently
done by mathematicians and it usually endows the proof with an aura
of magic. The proof materializes apart from our intuitive understand-
ing, i.e., it is not obvious. When this occurs, there is often a more
transparent geometrical proof of the same result. For such a proof we
refer you to [Ore, 1963].

Problem 4.13 The complete graph with five vertices, K, is another example of
a nonplanar graph. Prove this by the same technique that we used to prove that
the bipartite graph was nonplanar. Redraw this graph with only one crossing.

Why have we gone to such great lengths to demonstrate and prove
that the bipartite graph Kj ; and Kj are nonplanar? It would be rea-
sonable to imagine, and it is most certainly true, that countless other
graphs are also nonplanar. However, in 1930 K. Kuratowski made the
amazing discovery that all nonplanar graphs must contain within
them, in a special sense, either Kj or the bipartite graph Kj 3.

Theorem 4.4 (Kuratowski) Every nonplanar graph is a supergraph of a subdi-
vision of K, 3 or K (see Section 4.8 for an explanation of supergraph and sub-
division).

According to Kuratowski, the graph in Figure 4.9(6) must be
nonplanar since it contains a subdivision of K, 3 within it (check this!).
Although Kuratowski's theorem represents another interesting con-
straint on space, it is generally not very helpful in spotting nonplanar
graphs since the two basic nonplanar graphs are usually well camou-
flaged within the the graph under consideration. How then does one
go about unraveling a complex graph with many crossing edges? A
good way is to do what was done for the bipartite graph in Figure
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(a) (b}

Figure 4.28 Planar graphs can be drawn without edge crossings by reorganiz-
ing its vertices around the periphery of a circle. (a) A planar graph with many
crossovers; (b) the same graph without crossovers.

4.27(b). The vertices are arranged around the periphery of a circle and
numbered so that nearby vertices on the circle connect to each other.
This technique is illustrated in Figure 4.28 for a more complicated
graph.

Of course once you have unraveled the planar graph and made it into
a map, it is easy to generate other maps by reordering the vertices.

Problem 4.14 Apply this technique to drawing another map corresponding to
the graph in Figure 4.28(a).

4.11 Maps and Graphs on Other Surfaces

A legend [Tietze, 1965] states that once upon a time in a remote land,
there lived a man with five sons who were to inherit his land after his
death. However, in his will the father made the condition that each of
the five parts into which the land was divided must border on each of
the other four parts. In addition, he required that each of his sons
build a road from his residence to the residence of each of his brothers
and that each of these roads was to run separately without crossings
and without touching the land of a third brother.

When the father died, the five sons worked hard to find a division of
the land to meet the terms of the will—all in vain. The brothers sank
into gloom as it became clear to them that their father’s will could not
be fulfilled. Suddenly a traveling wise man appeared and claimed to
have a solution.

Problem 4.15 Before reading on, try to find this solution. Before attempting the
five brothers’ problem, solve the same problem assuming that there were only
four brothers (much easier).
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The solution to the four brothers’ problem is shown in Figure
4.29(a). A solution to the five brothers’ problem is shown in Figure
4.29(b). The solution involved building a bridge from the land of
brother D to the land of brother E. The moral of this story is that what
is possible to do on a surface depends on the nature of the surface.

Up to this point we have limited ourselves to a study of graphs on a
plane surface or a punctured sphere, which is equivalent to the plane.
In the introduction to this chapter we saw how subtle properties of the
plane imposed constraints on graphs. What if we consider graphs and
maps on other surfaces? Will there be new constraints? In this section

(b}

Figure 429 (a) Solution to the four brothers’ problem; (b) solution to the five
brothers’ problem.
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we will explore this question using the intuitive concept of a surface
as a thin membrane rather than the highly abstract mathematical
definition in which a surface has no thickness. The mathematical
point greatly disturbed Buckminster Fuller, who refused to acknowl-
edge its existence since it confounds all practical experience.

The general study of curves and surfaces is carried out in the branch
of mathematics called topology [Firby and Gardiner, 1982], [Francis,
1987]. From an intuitive point of view, two surfaces are considered to
be topologically identical, or homeomorphic (the topological equiva-
lent of isomorphic), if one surface can be imagined to be constructed of
a flexible membrane capable of being deformed without cutting to
form the other surface. In this deformation, nearby points on the orig-
inal surface are still nearby on the deformed surface. For example, the
donut and cup of tea in Figure 4.30 are topologically equivalent.

This definition is not very good from a mathematical point of view
since surfaces do not have thickness and cannot be dealt with materi-
ally (despite Fuller’s protests). Nevertheless, it gives us an easy way
of visualizing different families of surfaces. For example, by this def-
inition, a cube is certainly homeomorphic to a sphere. Also a sphere
with two holes and a bent cylinder, or handle as it is called, extending

TEACUP

Figure 4.30 A torus is shown to be homeomorphic to a teacup.
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(a) (b) (c)

Figure 4.31 The torus in (a) is homeomorphic to a sphere with one handle in (b) and
(c) to a cube with a tunnel through it.

from one hole to the other is homeomorphic to a torus (inner tube) [see
Figure 4.31(e) and (b)] as is the cube with a tunnel pictured in Figure
4.31(c). Spheres with more than one handle are homeomorphic to
multitori as Figure 4.32 shows. The sphere is called a singly connected
surface, which means that any closed curve within it can be shrunk to
a point and still remain entirely within the surface. Tori and multitori
surfaces are called multiply connected surfaces, which means that cer-
tain closed curves within the surface (e.g., the curves surrounding the
holes) cannot be shrunk to a point without leaving the surface.

Figure 4.32 A sphere with three handles is homeomorphic to a triple torus.
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If a map is drawn on a surface such as a torus or sphere, the value of
the Euler number, X = F + V — E, can be computed. For example,
X = 2 for a cube where F, V, and E are the faces, vertices, and edges of
the cube while x = 0 for the map drawn on the cube with a tunnel (pic-
ture frame) shown in Figure 4.31(c). (Check this!) It can be proven
that maps on homeomorphic surfaces share the same Euler number.

Although surfaces can be extremely complex, as Figure 4.33 shows,
this complexity is nicely organized by Theorem 4.5. In it, closed sur-
faces are surfaces that enclose a region of space, while oriented sur-
faces have well-defined notions of “in” and “out” defined at each point
on them (see the next section for an example of a nonoriented surface).

Theorem 4.5 Any closed oriented surface in three-dimensional space is
homeomorphic to a sphere with 2 handles.

The number of handles & characteristic of the surface is called its
order, or genus. Thus, a sphere is a surface of order 0 while a torus has
order 1. Euler’s formula can now be generalized far beyond its original
scope.

Theorem 4.6 For any map on a closed oriented surface homeomorphic to a
sphere with 4 handles,

F+V-E=2-2h (4.14)

An elementary proof of this theorem is suggested in [Beck, 1969].
The method that we used in Section 4.5 to prove the theorem for the
plane, i.e., h = 0, fails for 2 > 0.

Figure 4.33 Alexander’s horned sphere,
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4.12 The Torus and the Mobius Strip

Now that we have seen that the nature of graphs depends on the sur-
face upon which they are drawn, perhaps the two nonplanar graphs on
the plane, K and Kj 3, can be drawn without crossovers on some other
surface just as the five brothers’ problem was solved on a new surface.
In fact, we shall show that these graphs can be drawn as planar on a
torus.

In order to draw a map on a torus, it is convenient to cut the torus
open to a period rectangle as shown in Figure 4.34, which is much the
same as we did for the cylinder in Figure 2.16. The torus is given two
cuts and the edges @ and b where the torus was cut are identified. Fig-
ure 4.35 shows an example of a map drawn on the torus with F = 4,
V=4E=8and F+V - E = 0. Figure 4.36 shows K; drawn as a
planar graph on the period diagram of a torus.

Problem 4.16 Try your hand at drawing K3 ; as a planar graph on a period
torus. Cut a cylinder open to a period rectangle with a single crosscut and show
that K; and Kj 5 are still nonplanar on the cylinder.

The Mgbius strip is an example of a nonoriented surface. A render-
ing of this surface by the artist M. C. Escher is shown in Figure 4.37.
A sailboat making one cycle about a Mébius strip with its sail pointed
in an “upward” direction, as in Figure 4.38(a), would find its sail
pointed in the reverse direction after one cycle about the surface. This
indicates that up and down are ill-defined concepts for a Mobius strip.
Figure 4.38(a) represents a period rectangle of a Mébius strip. The op-
posite orientation of the arrows on the left and right sides of the period
diagram signifies that the strip is to be given one half twist before glu-
ing the identified edges together.

Figure 4.34 A torus is opened to a period rectangle
by cutting two loops on its surface.
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Figure 4.35 A map with four faces, four vertices,
and eight edges, i.e., F =V - E = 0, drawn on
the period rectangle of a torus.

Figure 4.36 K drawn on a torus without crossovers.

3

Problem 4.17 Build a Mébius strip by folding it up from its period rectangle.
Check to see that it is one sided by coloring it with one continuous stroke. Also
show that it is bounded by a single closed curve. Enjoy its surprising properties
by cutting it parallel to its edge along its centerline. Build another Mébius strip
and cut it along a line drawn parallel to the edge but one-quarter of the width of
the strip. Finally, show that K; and Kj ;3 can be drawn as planar graphs on the
Mébius strip [Struble, 1971].

Problem 4.18 Draw a solution to the five brothers’ problem on a period torus.
The following general theorem pertains to nonplanar graphs:

Theorem 4.7 Any graph that is nonplanar on the plane or a sphere can be rep-
resented with no crossings on some closed oriented surface.

The procedure is simple. Construct a wire model of the graph.
Thicken” the edges and solder them together at the vertices as illus-

trated in Figure 4.39%(a) for a model of K,. It is more of a challenge to
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Figure 4.37 Médbius Strip II,
1963. (Wood engraving by M. C.
Escher. © M. C. Escher Heirs/
Cordon Art-Baarn-Holland.)

£ V4

(b)
Figure 4.38 Folding up a Mébius strip from a period rectangle.

Figure 4.3 All graphs are planar on the appropriate surfaces
formed by constructing the graph from wires and thickening the
wires. (a) K, embedded in this way in its wire model; (b) Ky
drawn on a sphere with one handle.
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find the surface of lowest order upon which a nonplanar graph is pla-
nar. The genus of such a surface is called the genus of the graph
[Firby, 1982]. Figure 4.39(b) shows that Kj ; has genus 1 since it is
planar on a sphere with one handle.

4.13 Magic Squares

A magic square is a square matrix of numbers that add up to the same
value if added along the rows, columns, or diagonals. The following is
an example of a 3 by 3 magic square:

41912
5
811|6

Magic squares are ancient mathematical structures that some authors
feel were used to encode sacred information [Andrews, 1960], [Michell,
1983], [Critchlow, 1976], e.g., the magic square in Diirer’s “Melancho-
lia” (see Figure 3.17).

4.13.1 Construction of a magic square

There are many ways to construct n by n magic squares. If n is even,
the procedure is far from straightforward [Andrews, 1960]. If n is odd,
the following simple procedure can be used:

1. Place a 1 in the square beneath the central square.

2. Place all numbers from 1 to n® in the square in order. Any given
number is placed one square below and one square to the right of
the last number. In this process, think of the square as a period
torus. A square beneath the bottom square is equivalent to the top
square of the same column. A square to the right of the last square
of a row is equivalent to the first square to the left in the same row.

3. During the process of generating numbers, there may be a number
already occupying the square for which you are aiming. The rule
says to deposit the number two steps below the previous number in
the same column of the period torus.

4.13.2 Patterns from magic squares

Once you have generated an n by n magic square, you can use it to
generate patterns in many different ways. One way is to place the
numbers from 1 to n? (the last one) in rows and connect them in the
order in which they appear in the magic square. For example, the pat-
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Figure 4.40 A magic square pattern.

tern for the 3 by 3 magic square is shown in Figure 4.40. The numbers
are connected according to the order in which they appear in the
square above.

Problem 4.19 Create a.5 by 5 magic square and draw its pattern, using the
above procedure. This square represents the planet Mars in ancient cosmology.
According to John Michell [1988]}, the Litchfield Cathedral in England was ded-
icated to St. Chad, whose feast day is March 2, i.e., the month of Mars. Its un-
derlying design is suggested by the magic square for Mars. It is built of red
brick, the color of Mars. The city of Litchfield was formerly called “Liches from
Mars,” a remarkable set of coincidences.

Problem 4.20 Ancient cosmology associates the following magic squares with

the sun, the moon, and the five planets known at that time (in addition to the

Earth): 3 by 3, Saturn; 4 by 4, Jupiter; 5 by 5, Mars; 6 by 6, the sun; 7 by 7,

Venus; 8 by 8, Mercury; 9 by 9, the moon.

1. According to Michell, the sun and the moon governed the underlying struc-
ture of the New Jerusalum diagram described in Section 1.2. Generate the
magic square and patterns for the moon. Since the moon is an odd magic
square, you can use the above procedure.

2. The magic square of the sun is

32 3 34 3 1

7 11 27 28 8 30

19 14 16 15 23 24

18 20 22 21 17 13

25 29 10 9 26 12

36 5 33 4 2 31
Draw its pattern. All its numbers sum to 666, a sacred number known in
Revelation as “the number of the beast.” Early Christians associated this
number with Rome and pagan rites. According to Michell the chapel at

Glastonbury (see Section 1.2) was destroyed during the Reformation because
its dimensions embodied this number.

None of this can be taken too seriously from the vantage point of our
rational world. Nevertheless, the power that pure numbers held over
the ancient mind is fascinating.

4.14 Map Coloring

Exerclse 4.2 Take a piece of paper and make a map by drawing five straight or
curved lines, each starting and ending at the edge of the paper, and five closed
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curves. Your map might look like the one in Figure 4.41(a). How many colors do
you need to color the map so that two faces that share an edge have different colors?

It is surprising that even though your map might look like a com-
plex work of modern art, you only need two colors [see Figure 4.41()].
In fact, you would need only two colors regardless of how many lines
you drew in your map. To see this, draw another line in Figure
4.41(a), such as the one straight from one corner to the opposite corner
in Figure 4.41(c). Now to see that you only need two colors, all you
have to do is to reverse all the colors below or above the line you have
drawn. It will look like the drawing in Figure 4.41(d) [Struble, 1971].

Color the maps in Figure 4.21 using the fewest number of colors so
that no two faces bordering on each other (i.e., those that share an
edge) have the same color. You should find that no more than four col-
ors are needed. Although no one has ever found a map in the plane
that needs more than four colors, for nearly 100 years mathematicians
tried in vain to prove this easy sounding result for all maps on the
plane. Finally, in 1976 two mathematicians, K. Appel and W. Haken,
succeeded in proving the four-color problem with the help of a com-
puter, making it the first problem in pure mathematics to use the
computer in an essential way.

Although the coloring problem for the plane (and sphere) was solved
only recently, it has long been known that seven colors are sometimes
needed and always enough to color a map on the torus. Figure 4.42
illustrates two such maps (both isomorphic) called Szilassi Maps on
period diagrams of a torus. In each map, seven hexagons are drawn so
that each hexagon borders the other six. Figure 4.43(a) is folded up to
a torus in Figure 4.43(b) and (c). Another more interesting example of
a map requiring seven colors will be given in Section 4.186.

Since the maximum number of colors needed to color a map depends
only on the genus or order of the surface, and not on the map or shape

(b}
Figure 4.41 A two-color problem.
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(a) (b)

Figure 4.42 A Szilassi map with seven hexagonal faces each
bordering on the other six shown on a period parallelogram.

(a)

(b}

{c)

Figure 4.43 The seven-color problem on a torus. (a) A period rectangle with
seven faces each bordering on the other six is folded up (b) to the torus in (c).



Graphs 141

of the surface, we say that the chromatic number is an invariant of the
surface [Firby and Gardner, 1982]. The Euler number is another in-
variant of the surface (we proved this for a plane surface in Section
4.5).

4.15 Regular Maps on a Torus

Just as there are only five regular maps on the sphere (or plane), there
are only three classes of regular maps that can be created on a torus.
As before, we shall call a map regular if each face has identical face
valence p and each vertex has identical vertex valence ¢. One such
map was illustrated in Figure 4.42(b) in which seven hexagons meet
three at each vertex. Let's prove that there are only three classes of
regular maps on the torus and find out what they are.

Once again we make use of Equations (4.9) and (4.10) along with
Euler’s formula for a torus:

qV =2E pF=2E and V+F-E=0

Replacing the first two equations in the third we get
E(3+g—1)=0 (4.15)
q P

Since E is not zero, the second factor must equal zero. After a little
algebra this leads to

@-2)g-2)=4

The only positive integer solutions to this equation are p = 3, ¢ = 6;
p=4,q=4;,andp = 6, g = 3 or {3,6}, {4,4}, and {6,3} using Schlafli
notation.

There is an important difference between these regular maps and
the ones on the sphere in Section 4.4. The regular maps on the sphere
are unique in that their numbers of vertices, edges, and faces are
fixed. On the other hand, Equation (4.15) shows that the number of
edges E is indeterminate and therefore so are V and F. Thus the three
regular maps on the torus are actually classes of maps, and there are
an infinite number of possibilities in each class. For example, the reg-
ular map {6,3} with seven hexagonal faces drawn on a period rectangle
that has been distorted into a parallelogram was shown in Figure
4.42(b). The Hungarian mathematician Lajos Szilassi created a poly-
hedron based on this map, which will be discussed in the next section.

In fact, an infinite number of all three classes of regular maps can
be represented by triangles, parallelograms, and hexagons outlined on
the triangular graph paper shown in Figure 4.44. A different map of
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Figure 4.44 A triangular grid illustrates the three regu-
lar tilings on a torus {3,6}, {4,4}, and {6,3}.

each class is obtained by adjusting the size of the period parallelogram
that frames the map. In Section 5.3, the period parallelogram is per-
mitted to become infinitely large, which leads to three possibilities for
regular maps with an infinite number of faces covering the plane.

4,16 Szilassi and Csaszar Maps

We would like to focus now on the Szilassi map since it is interesting
from the point of view of design. We showed in Section 4.14 that this
map gives an example on the torus of a map that requires seven colors
to color it. We can make this map come to life in an interesting way.
The faces of the map become polygons with straight-line edges
spanned by planar membranes, and these faces combine to form a
closed surface that is a distortion (homeomorph) of a torus. Such a sur-
face is an example of a polyhedron, the subject of Chapter 7. One such
Szilassi polyhedron is illustrated in Figure 4.45 [Gardner, 1978c],
[Szilassi, 1986].

Construction 4.1 Using the patterns in Figure 4.46, construct a Szilassi poly-
hedron. Color each of the faces with a different color to demonstrate the need for
seven colors to color some maps on the torus.

A dual map to the Szilassi map, called a Csdszdr map, can be drawn
by placing a vertex in each of the hexagonal faces of the Szilassi map
and connecting vertices by an edge if the corresponding faces share an
edge [Gardner, 1975], [Beck, 1969], [Szilassi, 1986]. This dual map
{3,6} with all triangular faces has the property that each of its seven
vertices are connected to each of the other six, i.e., it is the complete
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Figure 4.45 A Szilassi polyhedron.
WS

graph K,. The Csaszdr map can also be materialized in the form of a
polyhedron as the following construction indicates.

Construction 4.2 A Csdszdr polyhedron, discovered in 1949 by the Hungarian
mathematician Akos Csdszdr, is pictured in Figure 4.47. It can be constructed
using the pattern shown in Figure 4.48 where the numbers represent the verti-
ces. Vertices 2, 5, 3, and 4 were selected to form a regular tetrahedron (see
Chapter 7). The edge lengths and interfacial or dihedral angles (see Section
7.10) are listed in Table 4.2.

Color the map in the table using the fewest colors. This is equivalent to col-
oring the vertices of the Szilassi polyhedron so that no two adjacent vertices
(connected by an edge) have the same color.

The Csészar map gives an example of a map on a torus with the
property that each vertex is connected by a single edge to each of the
others, and each of its faces is a simple polygon, with the result that
no face can have a diagonal. Can other complete graphs be repre-
sented as a map on some surface? Certainly the triangle map, K3, and
the regular map, K,, can be depicted as maps on the plane or sphere.

In order to find still other maps with each vertex connected to all
the others, i.e., with faces having no diagonals, we call upon Equa-
tions (4.9), (4.10), and (4.14) once again. Since each vertex is con-
nected to the others, ¢ = V - 1, and it follows from Equation (4.9) that

WV - 1) = 2E
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Figure 4.46 Patterns for making a model of a Szilassi polyhedron.

Since no face can have a diagonal, and vertices are connected by a
single edge, all faces must have exactly three edges; then p = 3, and
Equation (4.10) becomes

3F = 2E

Restating Euler’s formula for a surface homeomorphic to a sphere
with # handles,

F+V-E=2-2h
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4 3
Figure 4.47 A Csaszar polyhedron.

Inserting the first two of these equations into the third and doing
some algebra yields

(V-3)(V-4
- 12

where £ is an integer. There are an infinity of solutions to this equa-
tion. Each solution corresponds to a regular map on some surface. The
properties of the first three are computed from these equations and
listed in Table 4.3.

The case h = 0 corresponds to a regular map of K, drawn on a
sphere, while 2 = 1 represents the Csdszar map K; drawn on a torus.
The case of o = 6 has yet to be constructed in the form of a polyhedron.

h

4.17 Floor Plans
4.17.1 Evolution of a floor plan

Up to now we have focused on some mathematical aspects of graph
theory. We have shown how graphs follow naturally from the simplest
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Figure 4.48 Patterns for making a model of a Csészar

polyhedron.
TABLE 4.2
Edge Edge length Dihedral angle (degrees)
(1-6) 10.00 76.133
(2-5) 24.00 70.533
(3-4) 24.00 54.433
(2-4) = (5-3) 24.00 51.050
(2-3) = (5-4) 24.00 52.717
(8~7) = (4-7) 12.89 340.133
(2-7) = (6-7) 17.15 74.417
(1-5) = (6-2) 18.69 339.317
(1-2) = (6-5) 12,65 156.850
(1-4) = (6-3) 12.55 204.467
(1-3) = (6-4) 17.36 41.667
(1-7) = (6-7) 5.86 243.500
TABLE 4.3
h \'4 F E )4 q
0 4 4 6 3 3
1 7 14 21 3 6
6 12 48 66 3 11

notions of placing dots and lines on a piece of paper and lead to com-
plex questions of interest primarily to mathematicians. The remain-
der of this chapter is devoted to showing some applications of graph
theory. In this section we show how graphs provide a natural tool to
aid architects in developing a floor plan. In the next section we show
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that the bipartite graph serves as the appropriate tool with which to
study the bracing of structures, and we conclude this chapter with a
brief discussion of eulerian and hamiltonian paths through a graph.

There is a stage in the design process that precedes the concrete
planning stage. Alexander, whose quote introduces this chapter, has
written eloquently on this subject [Alexander, 1964]. In this initial
stage, linkages or connections may be drawn between the various
components of a design to indicate their relationships to each other in
the design of an airplane, an industrial process, or a building. These
linkages, or connections, can be understood and manipulated best by
using graphs.

Graphs enable the architect to conceive of the relation between the
rooms of a building with respect to each other and with respect to the
outside environment with no need to specify the details of room shape.
In other words, graphs reveal the underlying structure of a floor plan,
leaving the details of building planning for the next stage of the de-
sign.

In this section we show how graphs can be used in an evolutionary
process to design the floor plan of a one-story building.

4,17.2 From floor plan to graph

The floor plan of a one-story building can be thought of as a map. This
is illustrated by Figure 4.49(a). Corresponding to a floor plan, another
planar graph can be drawn such as the one shown in Figure 4.49(b).
This graph, called the adjacency graph, places a vertex in each room of
the floor plan and the exterior and connects vertices if the correspond-
ing rooms of the floor plan share all or part of a wall.

Another way to indicate the connectivity of the rooms in a house is
shown in Figure 4.50(5). This access graph connects two rooms, repre-
sented by vertices of the floor plan in Figure 4.50(a), by an edge if
there is direct access from one room to the other through a door or par-
tition. Access to the exterior is via a window or a door. The access
graph is generally more relevant to the design of floor plans than is

E
L- Living room

C-Circulating ‘\
L c B space
B- Bedroom
D K D-~Dining room

K-Kitchen
(a) E-Exterior

D K
(b)

Figure 4.49 (a) Floor plan; (b) adjacency graph.
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Figure 4.50 (a) Floor plan; (b) access graph.

the adjacency graph. Both access and adjacency graphs are sometimes
referred to as connectivity graphs of the floor plan.

A graphical analysis of three house projects by Frank Lloyd Wright
are shown in Figure 4.51(a), b), and (c) [March and Steadman, 1974].
Although the overall designs of these houses are square, circular, and
triangular, respectively, the access graph—identical for all three
houses—is shown in Figure 4.51(d). Thus Wright's rich repertoire of de-
signs led to strikingly different final results using the same underlying
structure. This also illustrates the potential value of the graphical
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(a)

(g)

(c)

B bedroom F family room O office

B’ Sundt bedroom J bathroom P pool

C carport K kitchen T terrace
D dining-room L living-room Y vyard

E entrance

Figure 4.51 Three houses by Wright: (a) Life house, 1938; (b) Ralph Jester
house, 1938; (c) Vigo Sundt house, 1941; (d) access graph for the three
projects. The dotted lines refer to the additional bedroom, B, in the Sundt
house.

method when used by a skillful designer, although there is no evi-
dence that Wright used this method himself.

4.17.3 From adjacency graph to floor plan

It is more important in designing a building to be able to go from the
adjacency or access graph to the floor plan. For simple adjacency
graphs this can be done directly.
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Problem 4.21 Draw the floor plan of a four-room house in which each room bor-
ders on the other three, i.e., K, is a subgraph of the adjacency graph.

Not every adjacency graph results in a floor plan on one story, as
the next problem shows.

Problem 4.22 Try to draw the floor plan of a five-room house in which each
room borders on the other four, i.e., K, is a subgraph of the adjacency graph.
Why can't this be done?

If the adjacency or access graph is planar, a one-story floor plan can
be constructed as the dual to this graph. In this section we outline a
procedure for generating a floor plan from partial information about
the access graph and apply it to generating the structure of Wright’s
Blossom House shown in Figure 4.52(6) [Rowe, 1976].

Step 1. The access graph generally emerges from the first step in the
design process. The architect begins by obtaining a partial list of re-
lationships between the rooms of the building from the client, i.e., a
partial list of adjacencies is given for a house (< means “is connected
to”). For example,

a Conservatory < c
b Rear porch o f
¢ Dining room o dh
d Butler's pantry o ¢ e
e Kitchen pantry o df
f Kitchen < b,e i
g Terrace < h
h Living room < gk
i Stairs o fh
J Library o k
k Hall o hj,l,m
! Reception room <k
<>

m Porch k

These accesses can be summarized by an incidence matrix (not shown;
see Section 4.2), in which the sum of all the 1s in each row represents
the number of rooms that access a given room.

An incomplete access graph is drawn [see Figure 4.52(a)]. Notice
how the accesses correspond to those in the actual floor plan of the
Blossom House shown in Figure 4.52(b). Also, notice that a vertex cor-
responding to the exterior of the house has not been included in the
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Figure 4.52 (a,b) A partial access graph and floor plan of
Wright’s Blossom House; (c) completed access graph of the
Blossom House shown with open vertices and dual map or
rough floor plan shown with closed vertices.
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access graph. In order to generate the floor plan, it is essential to in-
clude the exterior or outside vertex.

The architect must see whether this partial list of connectivities can
be realized as the floor plan of a one-story building. This can be done
if this partial access graph is a planar graph (as it is in this case). In
general, the access graph will have many edge crossings and will have
to be redrawn with no crossing edges before proceeding to the next
step. The technique for drawing such planar graphs was described in
Section 4.10.

Step 2. The architect completes this partial list of relationships to ob-
tain a complete access graph of the floor plan that satisfies both the
client's wishes and the architect’s design sense. This is shown by the
open dots in Figure 4.52(c) where the architect has connected the liv-
ing room to the butler’s and kitchen pantries and to the library in ad-
dition to specifying which rooms have openings to the exterior repre-
sented by the black dot.

Step 3. The dual map, whose vertices are shown with closed dots, is
superimposed in Figure 4.52(c) upon the access graph. The dual of a
planar access graph is, in general, a rough floor plan in that the walls
encircle spaces representing the rooms in an amorphous way. One
trick to drawing a coherent dual is to make sure that the vertex rep-
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resenting the exterior face of the access graph, labeled o in Figure
4.52(c), is on the opposite side of the dual map from the vertex of the
dual representing the outside face of the access graph, labeled 1 in
Figure 4.52(c).

Step 4. A problem can arise in generating the floor plan if the exte-
rior face appears as an interior face in the dual. This is not the case in
our example, but it can easily happen if the dual is drawn differently
[see Figures 4.26(a) and (c)]. If the outside face does appear as an in-
ner face of the dual, the dual must be redrawn with the exterior face
on the outside. The method for doing this is to place the map on a
sphere, puncture the face o, and stretch it out to the plane. The pro-
cedure for drawing a map with a given face on the outside was de-
scribed in Section 4.4.

Step 5. In the last step in the evolution of the floor plan, the rough
floor plan is changed into a more satisfactory design by distorting the
rooms without altering their connectivities as shown by the actual
floor plan of the Blossom House in Figure 4.52(b). Notice that the final
form of the floor plan is suggested in its rough outlines by the dual
map. It is at this final step in the evolution of a floor plan that the
design instincts of the architect enter the process. This method is use-
ful to the architect if it suggests possibilities for the design which may
not have been obvious to him or her from the start.

Remark 1. This procedure can also be used to design rooms of a mul-
tistory dwelling if the rooms on each story are separated and the
rooms on two different levels are connected by a stairwell.

Problem 4.23 It is an interesting design exercise to take an existing floor plan
and exchange some centrally connected space with the exterior while maintain-
ing all of the connectivities, i.e., adjacencies or accesses, from room to room. This
is done by the method developed in Section 4.4 where the dual map is placed on
a sphere and the space to become the exterior is punctured and the dual redrawn
with this space as the outside face. Try this idea out for the Blossom House
where the living room is to be exchanged with the exterior. Before proceeding, it
is best to number the vertices of the dual in order to keep track of the connec-
tions of vertex to vertex during the exchange.

Problem 4.24 In a somewhat artificial example, a client has requested an ar-
chitect to build a house with the following adjacencies:

b bedroom beoe,d e
¢ circulation space ceb k1

d dining room d<b k1
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e exterior eob k1
k kitchen kec d e
{ living room lec, d e

Draw the connectivity graph and construct a floor plan as the dual of the con-
nectivity graph. Show that if the kitchen is required to border on the exterior,
the floor plan cannot be realized. Why? Relocate the kitchen so that the floor
plan can be realized.

Construction 4.3 Starting with a hypothetical set of client constraints, apply
the five-step procedure of this section to create a floor plan of a house, office
suite, school, etc., that satisfies these constraints.

4.18 Bracing Structures

In this section we discuss a graphical solution to a problem of bracing
an architectural structure. This problem is, for the most part, repro-
duced from Incidence and Symmetry in Design and Architecture by
Jenny A. Baglivo and Jack E. Graver [1983], who based their exposi-
tion on the work of E. Bolker and H. Crapo [1977]. The structure is a
rectangular grid of squares whose edges are steel beams which are
pin-jointed at each point. Although each beam in the grid is rigid, the
structure itself is not since there is flexibility at the joints. Figure 4.53
shows some possible movements of 1 by 1 and 2 by 3 grids.

We are interested in bracing the structure to make it rigid. The
grids in Figure 4.53 can be made rigid by adding cross braces to each
square as shown in Figure 4.54. However, considering the high build-
ing costs, we wish to make these structures rigid by adding the fewest
number of crossbeams possible.

Experiment 4.1. Many of the ideas discussed here can be tested by us-
ing a model of a rectangular grid constructed from cardboard strips
and roofing nails. For each beam use a strip of cardboard which is 3
inches by Y2 inch; for each crossbeam, use a strip of cardboard which is

Figure 4.53 Some movements

which can occur in a simple
Q square and 2 by 3 grid.
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Figure 4.54 Bracing a structure
to make it rigid by adding a
crossbeam.

(a) (b)

4 inches by ¥ inch. Punch holes in the cardboard strips with centers
Y, inch in from the ends (see Figure 4.55). The holes should be as near
to the same diameter of the roofing nails as possible. Thirty nails, 49
strips, and 10 long strips are sufficient for the experiments of this sec-
tion. Experimental grids are constructed by placing the nails straight
up, on a smooth surface, and slipping the short strips over them to
form the grid.

1. Construct a simple square. Note that the opposite sides remain par-
allel however you distort the square. Now place one of the long
strips on the diagonal of the square and observe how it becomes
rigid.

2. Construct a 3 by 3 grid. Experimentally find the minimum number
of crossbeams that will make this structure rigid.

To pursue the discussion further, we need to define certain terms.
By a bracing, we mean a collection of crossbeams placed in an n by m
grid. By a rigid bracing, we mean a bracing which makes the grid a
rigid structure, that is, in which the only movement possible for the
grid is as a single unit. We are interested in characterizing the mini-
mum rigid bracings, that is, those which use the smallest possible
number of crossbeams. We call this the bracing problem.

For a minimum rigid bracing, removal of a single crossbeam de-
stroys the rigidity of the structure. Although it is possible that differ-

} din. H

2} in. Yin.

z 1
4 5

3kin. }in,

o--F--
o--}--

Figure 4.55 Cardboard strips for a bracing experiment.
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ent minimum bracings might require different numbers of cross-
beams, this turns out not to be the case.

In Figure 4.56, we compare several bracings of a 3 by 3 grid.
Bracings (a) through (f) are all rigid. The others are not. Distortions of
bracings (g), (h), and () are also included in the figure. Bracings (d),
(e), and (f) are minimum rigid bracings.

Experiment 4.2. Construct all of the bracings that are illustrated in
Figure 4.56 and check the statements that have been made about
them. Can you draw any general conclusions from your experiments?

Consider an n by m grid. (For the purposes of illustration, we will
continue to use a 3 by 3 grid.) The vertical beams along one row of
squares of the grid will be called the elements of the row. Correspond-
ingly, the horizontal beams down one column of squares of the grid
will be called the elements of the column. The following lemma gives a
very simple, but useful, observation about the movement of elements
in any distortion of the grid. Figure 4.57 illustrates this lemma.

Lemma In any distorted grid all the elements of a row (column) are parallel.

Consider the 3 by 3 grid in Figure 4.58(a). By bracing the square in
the second row and first column, the first two elements of row 2 are
perpendicular to the middle elements of column 1. But then, by the

(@) (d) ®

» (e) )

(c) 6 )

Figure 456 Some bracings of a 3 by 3 grid.
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Figure 4.57 In any flexing of a
grid the elements of each row
and each column remain paral-
lel.

Elements of row 2 Elements of column |

(a) (b)

Figure 4.58 By the lemma, the elements of row 2 are perpen-
dicular to the elements of column 1.

lemma, all of the elements of row 2 will be perpendicular to all the
elements of column 1 under any distortion. This is illustrated in Fig-
ure 4.58(b). (Using your model of the 3 by 3 grid, verify these state-
ments.)

A rigid bracing has the properties that the elements in a fixed row
are parallel to the elements in every other row; the elements in any
column are parallel to the elements in every other column; and the
elements of each row are perpendicular to those of each column. This
sounds as though there are very many constraints on the structure,
but let us take the analysis of the lemma one step further. Consider a
3 by 3 grid as braced in Figure 4.59(a), and place a second crossbeam
on the second row and the third column position of our grid [see Fig-
ure 4.59(b)]. As before, the elements of row 2 will always be perpen-
dicular to the elements of column 3. Since the first crossbeam assured
us that the elements of row 2 would be perpendicular to those of col-
umn 1, we can conclude that the elements of columns 1 and 3 will be
parallel no matter how we distort the grid. This is illustrated in Fig-
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(a) (b)

Figure 4.59 By the lemma the elements of row 2 are perpendicular
to the elements of columns 1 and 3.

ure 4.59(b). Thus, we have satisfied three of the constraints using only
two crossbeams. By properly placing additional crossbeams we will be
able to control all of the constraints. But the analysis is delicate. The-
orem 4.8 provides a quick method for knowing where to place the
crossbeams to ensure a rigid bracing and how many crossbeams are
needed for a minimum rigid bracing.

We now have the basis for a theoretical method of dealing with the
bracing problem. Consider an n by m grid. Represent the rows by n
vertices labeled ry,rg,...,r,, and represent the columns by m vertices
labeled ¢;,¢s,...,c,,. If the square which is in row i and column j is
braced, we place an edge between vertices r; and c;. A bracing of the
grid can then be represented by a subgraph of the complete bipartite
graph K, ,,; we call this the bracing subgraph of that bracing of the
grid. The bracing subgraphs of three of the bracings in Figure 4.56 are
pictured in Figure 4.60. A careful study of these subgraphs leads to
the following observations: first, the bracing subgraph for the mini-
mally braced grid, Figure 4.56(d), is a tree; second, the bracing
subgraph for the nonrigid grid, Figure 4.56(%), is not connected; third,
the bracing subgraph for the overbraced grid, Figure 4.56(a), is con-
nected but contains a circuit. These observations, along with observa-
tions from other examples, lead to Theorem 4.8.

ry ry ry ry r, r3 ry r, rs
L]
o ;
[N Cy Cy Cy C, [ cy €y €3
(a) (b} (c)

Figure 4.60 Bracing subgraphs for three bracings in Figure 4.56
illustrating Theorem 4.8: (@) minimally braced grid; (6) nonrigid
grid; (c) overbraced grid.
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Theorem 4.8
1. A bracing of an n by m grid is rigid if and only if the corresponding bracing
subgraph is connected.

2. A bracing of an n by m grid is a minimum rigid bracing if and only if the
bracing subgraph is a tree.

Since we know the relationship between the number of vertices and
edges for a tree graph is given by E = V ~ 1, we see that every rigid
bracing of an n by m grid contains at least n + m — 1 crossbeams. Fur-
thermore, if a rigid bracing contains more than n+m - 1
crossbeams, it is always possible to find a set of beams to delete with-
out affecting the rigidity of the structure.

proof The proof is presented here only in its most general outlines. If the brac-
ing subgraph is connected, there is a connected path leading from any row r to
any column ¢, e.g., r = ry, ¢;, 1, ¢ = ¢. By applying the lemma, it can be shown
that each element of row r,, and r; is perpendicular to each element of column ¢,
and that each element of columns ¢; and ¢, is perpendicular to each element of
row r;. From this we infer that each element of r;, is perpendicular to each ele-
ment of ¢, and in particular the element of the grid in the Ath row and kth col-
umn must be a square. Thus bracing the square in the row r;, and column ¢, does
not alter the rigidity of the grid. By the same argument each square of the grid
can be shown to be effectively braced. Part (2) of the proof follows from the fact
that a tree is a connected graph with the least number of edges.

4.19 Eulerian Paths

It is thought that graph theory had its origin in a paper written by
Euler in 1736. In this paper Euler used graph theory to solve several
popular puzzles of the time, such as the bridges of Koenigsberg [Ore,
1963], [Euler, 1979].

The different parts of the city of Koenigsberg, today known as
Kalingrad, lay on either bank of the river Pregel, between a fork in
the river and on the island of Kneiphof as shown in Figure 4.61(a).
Seven bridges connected the various parts of the city, and people had
always wondered whether it was possible to walk across all seven
bridges without retracing a bridge.

Euler saw that the problem could more easily be studied by reduc-
ing island and banks to points and drawing a graph (or, as we will
sometimes say, a network), in which two points are connected by an
edge whenever there is a bridge connecting the corresponding land
masses, as shown in Figure 4.61(b).

In this way Euler was able to abstract the problem so that only in-
formation essential to solving the problem was highlighted and he
could dispense with all other aspects of the problem. It is for this rea-
son that graphs find great utility as a conceptual tool in many differ-
ent disciplines.
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(a)

(b)

Figure 4.61 The seven bridges of Koenigsberg (a) as originally
drawn by Euler in the Proceedings of the St. Petersburg Acad-
emy of Sciences in 1736; (b) as a graphical representation.

The Koenigsberg bridge problem is an example of a class of similar
problems concerning graphs that can be stated as follows:

Given a connected graph, find a path that traverses each edge of the
graph without retracing an edge.

Such a path is called an eulerian path, or E path as we shall refer to
it. If the beginning and end point of the Euler path are the same,
the eulerian path is called an eulerian circuit. Restating this prob-
lem leads to a famous rainy day recreation: Can you draw a given
graph without taking your pencil off the page and without retracing
edges?

Problem 4.25 Which of the graphs shown in Figure 4.62 can this be done for?
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Figure 4.62 Which of these graphs have Euler paths?

After attempting to find E paths in several graphs, it is natural to
ask whether there is some simple criterion by which you can predict, a
priori, whether a graph contains such a path. Some experimentation
and application of logic should convince you that in order to have an E
path, whenever the path enters a vertex, there must be another path
that leaves it. The only exceptions to this rule occur for the beginning
and ending point of the path, if these points are different. Restating:

A necessary condition for the existence of an eulerian path through a con-
nected graph is that all vertices be even, i.e., have even vertex valence
with the possible exception of two.

What is somewhat surprising is that this simple condition also guaran-
tees that the graph contains an E path. However, we will not prove this.

Problem 4.26 The graph shown in Figure 4.63 represents the hallways of a mu-
seum. Pictures are to be hung on one side of each hall. If possible, design a tour
that will enable a person to see each exhibit exactly once. Indicate where the
entrance and exit should be built. Number the edges and represent the tour as a
sequence of edges.

S

Figure 4.63 A schematic of the
circulation space of a museum.
Does this graph have an Euler
path? If so, find it.
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Figure 4.64 Find a path through each of these
floor plans that goes through each door exactly
once.

Problem 4.27 A floor plan is shown in Figure 4.64 for a five-room house. All
doorways are shown. If possible, design a walk that takes a person through each
doorway once only.

Along with his discovery of graph theory, Euler set forth the gen-

eral properties of networks in a set of four rules [1979]:

1.

The number of odd nodes must be even or zero (handshake lemma
of Section 4.6).

. If a network has no odd nodes, it can be traveled along a path using

all the edges without repeating an edge, beginning and ending at
any node (i.e., there exists an Euler cycle).

. If a network has only two odd nodes, it can be traveled along an E

path that begins at one of them and ends at the other one. Any
route (a path with no repeating edges) that begins at an even node,
however, cannot traverse the network on an E path.

. Any network that has more than two odd nodes can be fully ex-

plored by several disconnected routes without traveling over a
branch more than once. If it has 2n odd nodes, it can be fully ex-
plored in n routes, each traveled on an E path.

Problem 4.28 This is an old puzzle that asks whether you can draw the diagram
in Figure 4.65 with three strokes of the pencil. You are not permitted to go over

any line twice. Use Euler’s rules to analyze this problem.

Jearl Walker [1986] shows how networks can be used to solve

mazes. There are procedures guaranteeing that one can find a path
through a maze, if such a path exists, even when no map is explicitly

Figure 4.65 Can you draw this
with three strokes of your pen?
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given. Other procedures enable people who are lost to retrace their
steps to the beginning of a labyrinth. Also, some of the procedures use-
ful in exploring a maze have applications to problems of computer pro-
cessing, traffic control, electrical engineering, and many other fields,

4.20 Hamiltonian Paths

As simple as it is to find a necessary and sufficient condition for a
graph to have an eulerian path, the problem of finding those condi-
tions that predict when a graph possesses a path containing each ver-
tex of the graph once only has yet to be solved. Such a path is called a
hamiltonian path, or H path, after the mathematician William Rowan
Hamilton, who first studied this problem.

Problem 4.29 Find a hamiltonian path through each of the regular maps shown
in Figure 4.66(a). Which of them does not possess an eulerian path? Show that
the graph in Figure 4.66(5) has no hamiltonian path.

Donald Crowe shows how H paths of two-, three-, and higher-
dimensional cubes can be incorporated into a strategy for solving an
old puzzle known as the Towers of Hanoi [Beck et al., 1969]. For this
puzzle, N circular discs with holes in their centers, each with a differ-
ent radius, are piled on one of three posts in order of decreasing radii
as shown in Figure 4.67. The object of the puzzle is to transfer the
discs to the last post so that they appear, once again, in order of de-
creasing radii. The middle post can be used for intermediate transfers,
but at no time in the transfers can a disc of larger radius sit atop one
of smaller radius. The total number of transfers to transfer N rings is
2" - 1. A legend surrounding this puzzle has the priests at the high
temple of Benares working day and night to transfer 64 rings from one

TETRAHEDRON CUBE £ @

RHOMBIC DODECAHEDRON

DODECAHEDRON OCTAHEDRON ICOSAHEDRON

(a {b)

Figure 4.66 (a) The five regular maps on the plane or sphere. Each of them has a
hamiltonian path. (b) A graph with no hamiltonian path (the correspondence of these
graphs to polyhedra will be explained in Section 7.5).
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\\ Figure 4.67 The Tower of Hanoi.

[ |

diamond needle to another at the center of the world after which
“tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.” However, undue worry is not
called for since it takes 18,446,744,073,709,551,615 moves to carry
this out.

We find that the order of the vertices in the H path of an n-
dimensional cube (hypercube) yields a strategy for carrying out the
transfers of IV rings. For example, a two-dimensional cube, or square,
and its H path is shown in Figure 4.68. If movements to the left or

® F‘.
{a)

{b)

(c)

N |
AN
3 l 4
2
(e)

{d)

Figure 4.68 Hamiltonian paths on a (a) line segment; (b) square; (c) cube;
(d) tesseract (four-dimensional cube); (e) directions of the one-, two-, three-,
four-cubes.
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right are considered as movements in the first dimension, while move-
ments up and down are movements in the second dimension, the se-
quence of moves constituting the H path of the two-dimensional cube,
using the vectors in Figure 4.68(e), is 121 as shown in Figure 4.68(d).
But this is also the strategy for transferring two discs from post 1 to
post. 3, where disc 1 is the smaller of the two discs, i.e., transfer disc 1
to post 2, then disc 2 to post 3, then disc 1 to post 3.

Likewise, the strategy for transferring three rings is 1213121,
which corresponds to the H path of the three-dimensional cube where
3 refers to a movement in the third dimension, as shown in Figure
4.68(c). (Check to see that this strategy succeeds in transferring the
three rings.)

This line of thinking to an H path for a four-dimensional cube yield-
ing the strategy for transferring four rings: 121312141213121. But
what do we mean by a four-dimensional cube? Strictly speaking, we
are unable to represent such a cube in three-dimensional space, but
we can depict its three-dimensional projection by taking each of the
eight vertices of the cube and translating them one unit in a given di-
rection as shown in Figure 4.68(d), similar to the way the three-
dimensional cube was generated from the two-dimensional cube.

Problem 4.30 Another three-dimensional projection of a four-dimensional cube
is shown in Figure 4.69(a). You can see that it divides space into eight compart-
ments, C, counting the exterior of the cube as a compartment. Count edges,
faces, and vertices and show that they satisfy Ludwig Schlifli's generalization
of Euler’s formula:

F-E+V-C=0 (4.16)

() (b) (c)

Figure 4.69 (a) Cube in four-dimensional space; (b) Tetrahedron in four-dimensional
space; (c) octahedron in four-dimensional space.



166 Chapter Four

Verify Schléfli’s equation for the projection of a four-dimensional tet-
rahedron, shown in Figure 4.69(b) and a four-dimensional octrahedron
shown in Figure 4.69(c). Notice that each vertex in the 4-cube and 4-
tetrahedron is 4-valent (¢ = 4); each edge is in common to three cells,
while each face is in common to two cells. Graphs with these valencies
or greater possess the necessary condition of a family of graphs known
as 4-polytopal graphs since they are graphical representations of poly-
hedra in four-dimensional space [Coxeter, 1973]. Such graphs will
play an important role in determining the rigidity of three-
dimensional structures in Section 7.8.

Four-dimensional and higher-dimensional cubes are now being used
as optimal networks for the flow of information in parallel processing
computers [Hillis, 1987]. It should also be mentioned in passing that
the old Chinese rings puzzle [Ball, 1967] is essentially the same as the
Tower of Hanoi. That is, the solution to the Chinese rings—suitably
interpreted—gives the same hamiltonian circuit on the n-cube as the
Tower of Hanoi. We can say that the Tower of Hanoi, the Chinese
rings, and the n-dimensional cube have isomorphic structures. In Sec-
tions 10.13 and 10.14 we shall see that n-dimensional cubes play an
important role in characterizing polyhedra.
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Tilings with Polygons

Pattern is born when one reproduces the
intuitively perceived essence.
Soersu Yanaki, UNKNOWN CRAFTSMAN

5.1 Introduction

Something basic in the human mind has led us to create repeating
patterns of geometric shapes. Such patterns have been woven into fab-
rics or carved and painted on the walls of temples and buildings since
the dawn of civilization. In nature, the surface of the skin or the stalks
of a plant reveal intricate patterns of geometric shapes. Artists and
architects also work at subdividing space in ways that are pleasing to
the eye. From the point of view of design, the possibilities for creating
geometric patterns that cover the entire plane or a limited region of
the plane are endless. In this chapter we will examine several of these
patterns with an eye to understanding their underlying structures.
Once a simple pattern is generated, it can serve as the source of count-
less other patterns which are transformations of it and widen the rep-
ertoire of interesting possibilities.

In Chapter 4 the edges of a graph were shown to be completely
amorphous and to have the function of indicating connections between
pairs of vertices. The faces of a map were shown to be equally mallea-
ble and were defined by cycles of vertices and edges. Now we consider
the edges to be straight and of definite lengths and the cycles of edges
and vertices to define polygons in the usual geometrical sense. The
polygons are arranged to fill up the plane without gaps. Such tilings,
also known as tesselations, pavings, or mosaics, have appeared in hu-
man activities for millennia.

The geometry of tiling played a central role in the art, science, and
culture of Islam. The first mathematical investigations of tilings were
carried out by Kepler three and a half centuries ago. Much of what is
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presently known about this ever-growing subject can be found in B.
Griinbaum and G. C. Shephard’s Tilings and Patterns [1987]. In the
tilings that we will study, two tiles will be disjoint, will share a single
vertex, or will share an entire edge. These, so-called, edge-to-edge
tilings eliminate many possibilities but enable us to consider tilings
as extensions of the maps of Chapter 4. Try the following exercise be-
fore reading further.

Exercise 5.1 Get a piece of triangular graph paper like the kind shown in Fig-
ure 4.44 and draw a few designs. The triangular grid is an extremely versatile
design medium. Many of these designs have the appearance of patterns found in
Islamic art (see Figure 5.1).

Exercise 5.2 Get some marshmallows and toothpicks. Find as many patterns as
you can with the restriction that all marshmallows are surrounded by identical
patterns of polygons.

In this chapter, we first focus on tilings in which the same number
and order of a single kind of polygon surrounds each vertex of the til-
ing. We refer to these as regular tilings. They are regular maps in the
sense of Section 4.15. Generally the polygons we will consider will
have equal angles and edges, although occasionally we will deviate
from this restriction. We will refer to such polygons as regular poly-
gons, which should not be confused with regular tiling.

Next we look for tilings known as semiregular tilings, in which
more than one kind of polygon surrounds each vertex. We then con-
sider several ways in which tilings can be transformed to develop in-
teresting designs based on regular and semiregular tilings including
the parquet deformations of William Huff, the movable tilings of
William Varney, and the shadow-and-light transformations of Janusz

(a} (b) (c)

Figure 5.1 The versatility of the triangular grid. These
are created by shading a portion of the grid enclosed by
the circle.
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Kapusta. Some designs based on a special class of tilings with penta-
gons are presented, as is a unified approach to origami based on
tilings by modular units discovered by Peter Engel. The chapter con-
cludes with a brief discussion of Islamic art. First let's find out a few
things about polygons.

5.2 Polygons
5.2.1 Convex polygons

The sum of the internal angles of a polygon with n sides is

> 6=180(n - 2)
\4
An easy way to see this result is to recognize that any polygon can be
triangulated—that is divided into triangles as shown in Figure 5.2. In
each case the number of triangles is two less than the number of sides.

Figure 5.2 A pentagon divided by diagonals into
three triangles.

The average angle of a polygon is the sum of their angles divided by
the number of angles, which equals n (the number of sides). That is

_180(n - 2)

avg — n

0 (5.1)
For regular polygons (not to be confused with regular tilings) with n
sides, denoted by {n}, the internal angles are all identical (and so are
the edge lengths), and so each interior angle equals the average value.
Some internal angles of regular polygons are listed in Table 5.1. These
are the only polygons which arise in the tilings of this chapter and as
the faces of the polyhedra of Chapters 7 through 10.

5.2.2 Star polygons

If the edges of a triangle are extended, they do not envelop any new
regions of space as shown in Figure 5.3(a). The same goes for a square
[see Figure 5.3(b)]. However, the sides of a pentagon intersect to pro-
duce the star-shaped figure shown in Figure 5.3(c). Star polygons can
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TABLE 5.1

3

0 (degrees)

60

90
108
120
135
144
150

N OO oA W

—

/ \

(a) (b) (¢)

Figure 5.3 Star polygon formed as a convex polygon.

serve both as tiles to tile the plane (see Section 5.9) and as the faces of
polyhedra (see Section 7.14). They are also very interesting objects
from a mathematical point of view.

In general, a star polygon is obtained by drawing a circle with a
compass [Davis and Chinn, 1969]. Readjust the opening of the com-
pass but make sure that it is not greater than the diameter of the cir-
cle, Place the compass point anywhere on the circle, say at point P,
and allow the pencil to intersect the circle at P,. Place the compass
point at P, and intersect the circumference at P;. Proceed in this man-
ner always in one direction either clockwise or counterclockwise. This
yields a sequence of points, Py, Py, P,... and chords P, Py, P,Ps,.... The
question is, will the points ever come back and fall on the first point?
Or, said another way, will the polygons ever close? The answer de-
pends on the ratio of the circumference of the circle to the length of arc
marked out by the compass setting. If this ratio is an integer n, the
points return after one revolution and result in the regular n-gon, {n}.
If the ratio is a rational number, m/n, the points return after m revo-
lutions and result in a star polygon, {rn/m}. If the ratio is irrational, the
points never return but become dense on the circumference of the cir-
cle, as we saw in Section 3.7.2, when laying down stalks around the
periphery of a plant at irrational angles based on the golden mean.

In this way, several species of n-gons can be obtained by placing n
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evenly spaced points on a circle and by connecting every third point on
the circumference or every fourth point, etc. If this is done for a seven-
sided figure, three distinct species of heptagon are obtained, as shown
in Figure 5.4. One is a regular heptagon, {7}. One closes after two
turns, {7/2}. The other closes after three cycles, {7/3}. Contrast this
with the polygons arising from circles with eight points shown in Fig-
ure 5.5. There are only two species, the regular octagon, {8}, and the
star octagon, {8/3}. Instead of {8/2} the octagon breaks into two
squares, and in place of {8/4}, the polygon degenerates to an intersect-
ing set of line segments. In general, a polygon or star polygon {r/m}
with n sides is obtained by connecting every mth point on the circum-
ference of a circle whenever n and m have no common factors, i.e.,
they are relatively prime (see Appendix 1.A).

The preceding relationship between the geometry of star polygons
and the theory of numbers was discovered by Louis Poinsot, a French
mathematician [Davis and Chinn, 1969]. Gauss discovered that poly-
gons with a prime number of sides could be constructed using only a
compass and straightedge if and only if the number of sides was fig-
ured by the formula

N=2"+1
Since n = 0, 1, 2, 3, 4 leads to the primes 3, 5, 17, 257, 65,537, these
polygons can be constructed with compass and straightedge. However,
n = 5 leads to a composite number (not prime) and so it cannot be con-
structed, showing a close relationship between geometry and the the-
ory of numbers.

One note of caution about star polygons. There is sometimes confu-
sion between star polygons and polygons with the shape of stars (see
Section 5.9). For star polygons, the points at which the edges intersect
are not vertices, whereas these points are vertices of the star-shaped
polygons. These latter polygons are examples of nonconvex curves.
Convex curves such as the one shown in Figure 5.6(a) are curves that

(g (b) (¢)
Figure 5.4 Three star heptagons.
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P
(X

(a) (b} {¢) (d)

Figure 55 Four star octagons (one is not connected and another is degenerate).

(a) (b)
Figure 5.6 (a) A convex curve; (b) a nonconvex curve.

have no indentations while nonconvex curves have bulges or depres-
sions such the one in Figure 5.6(5). A closed convex curve is defined to
be one such that any two points placed within it can be connected by a
straight line also lying within the curve as shown in Figure 5.6(a). If
part of the connecting line lies outside of the curve for some pair of
internal points, as shown in Figure 5.6(b), the curve is nonconvex.

Star polygons have also been used as mystical symbols, and they have
been incorporated in mandalas such as the sacred Sri Yantra diagram
shown in Figure 5.7. According to John Michell [1988], the star heptagon
makes a surprise appearance in the New Jerusalem pattern shown in
Figure 1.3. As Figure 5.8. illustrates, four star heptagons fit exactly into
the pattern of 12 spheres, marking off 28 equal intervals of the lunar
month. In this way the solar and lunar cycles are combined in a single
geometric construction. Michell also feels that this unusual coherence of
an irregular 12-gon with a star 7-gon is at the very foundation of the
New Jerusalem as it is described in Revelation 21:

Then one of the seven angels that held the seven bowls full of the seven
plagues came and spoke to me and said, “Come, and I will show you the
bride, the wife of the Lamb.” So in the spirit he carried me away to a high
mountain, and showed me the holy city of Jerusalem coming down out of
heaven from God—It had a great high wall, with twelve gates, at which
were twelve angels; and on the gates were inscribed the twelve tribes of
Israel. There were three gates to the east, three to the north, three to the
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Figure 5.7 The Sri Yantra is drawn from 9 triangles, 4 pointed
downward and 5 pointed upward, thus forming 42 triangular frag-
ments around a central triangle.

south, and three to the west. The city wall had twelve foundation-stones,
and on them were the names of the twelve apostles of the Lamb.

5.3 Regular Tilings of the Plane

Buried in the triangular grid of Figures 4.44 and 5.1 are three regular
tilings of the plane by congruent polygons: a tiling with triangles, six
surrounding each vertex, or {3,6}; parallelograms, four surrounding
each vertex, or {4,4}; and hexagons, three surrounding each vertex, or
{6,3}, pictured in the top row of Figure 5.12, Here we use the Schlafli
notation {p,q} where p is the face valence and g is the vertex valence of
the map.

Each of these tilings is a regular map in the sense of Section 4.7
with the property that each vertex is surrounded identically by con-
gruent faces. If we restrict ourselves to regular tilings with regular
polygons, we can prove one of the oldest results from the theory of
tilings.
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Figure 5.8 References throughout the chapters of Revelation to the geometry
of the New Jerusalem repeatedly demand that the number 12 be combined
with the number 7 to symbolize the union of body and spirit. This union is
achieved through the New Jerusalem ring of 12 lunar circles. Accommo-
dated by this ring is a figure made up of four star heptagrams having 28
horns, the number of phases in the lunar cycle. The regularly spaced horns
fit neatly between the circles, touching their sides, or terminate at their cen-
ters.

Theorem 5.1 The only regular tilings on the plane are {3,6}, {4,4}, and {6,3}.
proof for the case of tilings by regular polygons Consider a p-sided regular poly-
gon, {p}. From Equation (5.1) each internal angle of a regular polygon is

9 = ls-ﬂ-;__z-) degrees

Surround a typical vertex of the tiling by g regular p-sided polygons. The sum
of the internal angles around the vertex is

180 -2
1809k -2) = 360 degrees

After a little algebra we can rewrite this equation as
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P-2g-2=4
This has positive integer solutions: {g,p} = {3,6}, {4,4}, {6,3}.

We shall make several remarks about this result.

Remark 1. Tilings with regular pentagons are impossible, although
Kepler obtained some very interesting tilings with pentagons as a re-
sult of trying to tile the plane regularly with pentagons. More will be
said about such tilings in Section 5.11. For now, try the following ex-
ercise.

Exercise 5.3 Cut a regular pentagon with edges of about % inch out of card-
board and see what kind of tilings you can get by replicating the pentagon on a
sheet of 8 by 10 paper. Try to arrange your pattern so that the leftover space
assumes interesting shapes.

Remark 2. Although it is harder to prove, these are the only regular
edge-to-edge tilings possible with congruent (not necessarily regular)
polygons of any sort. In fact it is easy to see that:

Any triangle can tile the plane as {3,6}. Just rotate the triangle
around the midpoint of one of its sides to form a parallelogram.

Any four-sided polygon tiles the plane as {4,4} [see Figure 5.9(a)].
Here, each quadrilateral is rotated about the midpoint of its side to
form the adjacent quadrilateral. The quadrilaterals need not be con-
vex as Figure 5.9(b) shows.

Any hexagon with opposite sides parallel and equal tiles the plane
as {6,3}.

(a) (b)

Figure 5.9 Tiling the plane with (@) convex quadrilaterals;
(b) nonconvex quadrilaterals.
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Remark 3. We mentioned in Section 4.15 that regular maps on the
torus can be interpreted as tilings on the plane. Since a tiling on the
period rectangle (or parallelogram) diagram of a torus must match at
the opposite edges of the rectangle (or parallelogram), the period rect-
angle (or parallelogram) can be replicated in the directions of its edges
to fill up the plane with a regular tiling. The three regular maps on
the torus derived in Section 4.15 are in fact the three regular tilings of
the plane in a topological sense.

The regular maps on a plane unwrapped from a torus satisfy (p
- 2)(g - 2) = 4, while the five regular maps on a plane derived from
a punctured sphere (see Section 4.7) satisfy (p — 2)(g - 2) < 4. An-
other class of regular maps on what is known as the hyperbolic plane
are discussed in Section 12.10 and Appendix 2.B. They satisfy, (p
- 2)(g - 2) > 4. One such mapping of {7,3} onto the euclidean plane is
shown in Figure 5.10. Such regular tilings of the plane can be elimi-
nated from consideration if we impose the restriction that all tiles of a
tiling enclose circles with diameters no smaller than a preassigned di-

Figure 5.10 Tiling the plane with noncongruent heptagons with three
heptagons surrounding each vertex, ie., {7,3}.



Tilings with Polygons 177

ameter and can be enclosed by circles of diameters no larger than a
preassigned diameter.

5.4 Duality

Each of the regular tilings by regular polygons has another tiling as-
sociated with it. Place a dot at the centroid of each polygon of the til-
ing and connect dots with a straight line if the polygons share an edge.
What emerge are the following dual tilings in the sense of Section 4.9:

{3,6} < {6,3}
4,4} < {4,4}
{6,3} < {3,6}
Thus the dual tilings to the regular tilings with congruent tiles re-

main within the family of regular tilings. The duality of hexagons and
triangles is illustrated in Figure 5.11.

5.5 Semiregular Tilings

Now that we have found the three regular tilings of the plane with
regular polygons, let’s relax the condition that only one kind of poly-
gon be used but still require that each vertex be surrounded identi-
cally (see Exercise 5.2). We will start focusing on triangles grouped
around a single vertex and successively remove polygons from around
this vertex and replace them by regular polygons that fit evenly into

Figure 5.11 The regular tiling
{3,6} is dual to {6,3}.




178 Chapter Five

the gap using Table 5.1 as an aid. For example, if two triangles of {3,6}
are removed, this leaves an angle of 120 degrees, just large enough to
fit a hexagon according to Table 5.1. The resulting sequence of four
triangles and one hexagon surrounding the vertex is referred to by the
Schlafli symbol, 3.3.3.3.6, or 3*.6 for short. If three triangles are re-
moved, this leaves room for two squares. The resulting sequence of
polygons surrounding the vertex now has two distinct possibilities,
3%.4% or 32.4.34.

Problem 5.1 There are 21 ways to arrange regular polygons around a vertex.
See how many of the 18 possible kinds of vertices with more than one kind of
polygon you can find by successively removing regular polygons from the regu-
lar tilings and replacing them with different species of polygons.

Once all 18 possible ways are found to surround a vertex by regular
polygons, the question arises as to whether the tiling near the vertex
can be extended to a tiling of the entire plane. The end result of the
search for tilings with two or more regular polygons surrounding each
vertex leads to the 8 possibilities shown in Figure 5.12 known as
archimedean, or semiregular, tilings. The other 10 tilings cannot be
extended from around the single vertex to a tiling of the entire plane.
The nature of space prevents them from tiling the plane, each for its
owh reason. For example, Figure 5.13 shows that any sequence of
polygons surrounding a vertex of the form 3.x.y can tile the plane only
if x = y. As a result a number of possibilities that fit locally such as
3.9.18, 3.10.15, 3.7.42, and 3.8.24 cannot be continued to tile the en-
tire plane whereas 3.12.12 can.

We should be clear at this point that in each of the semiregular
tilings not only does the same species of regular polygon surround
each vertex, but also all vertices are surrounded by polygons in the
same cyclic order. If order is not a requirement, there are an infinite
number of different ways to tile the plane. For example, in Figure 5.14
a zigzag strip of tiles from the 3%.4.3.4 tiling are shifted to a new rel-
ative position to get a nonregular tiling with two squares and three
triangles around each vertex [Griinbaum and Shephard, 1977]. In a
similar way, an unlimited number of tilings can be gotten by altering
other rows.

Another way to picture the regular and semiregular tilings is shown
in Figure 5.15 where each vertex is replaced by identical circles of ar-
bitrary radius.

5.6 Symmetry

What makes these archimedean tilings so aesthetically pleasing is
their high degree of symmetry. By the symmetry of a pattern, we
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EEREEEE

(b)

Figure 5.12 The three regular tilings and eight semiregular tilings of the plane. The
tiling 3* 6 exists in two mirror-symmetric (enantiomorphic) forms.

Figure 5.13 Tilings of the form 3.x.y require that
x=y.
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Figure 5.14 Many distinct tilings that have only vertices of species
3%.4.3.4 may be obtained by changing the relative positions of horizon-

tal zigzag strips in the tiling at the left.

Figure 5.15 Regular and semiregular tilings drawn with circles.
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mean that the pattern possesses organized repetitions of some motif.
As you progress through this book, this notion will be made more pre-
cise. First of all, with the exception of 3*6, each tiling has lines of
symmetry. By a line of symmetry we mean that the entire tiling is ob-
tained by reflecting half of it in a mirror placed along the line. This
also means that if a tiling has a line of symmetry, it looks the same
when viewed in a mirror. Only 3%6 has a distinct mirror image, or
enantiomorphic form. Each tiling also has centers of symmetry. This
means that to each point of the tiling there corresponds another point
diametrically opposite it with respect to the center (the entire tiling is
reproduced by rotating it by a half-turn about this center). Not only
does each tiling look alike at the local level of a single vertex, but if
the tiling is reproduced on tracing paper, any vertex of the traced til-
ing can be superimposed on an arbitrary vertex of the original tiling
in such a way that the two tilings coincide after a possible mirror re-
flection. Such tilings are called uniform by mathematicians. These
tilings also have the property that if they are translated in suitable
directions a certain distance, they once again match up. Such tilings
are called periodic.

5.7 Duality of Semiregular Tilings

Again, duality offers alternative images of the semiregular tilings.
Place a vertex at the center of symmetry of each of the tiles of a
semiregular tiling and form a dual tiling by connecting two of these
vertices if their corresponding faces share an edge of the original til-
ing. Since all vertices of the original are surrounded identically, all
tiles of this dual must be congruent. An example is shown of 32.4.3.4
and its dual in Figure 5.16. Notice that the dual tiles the plane with
congruent pentagons. However, this does not contradict the impossi-
bility of regular pentagonal tilings since it is apparent that some of
the vertices have three incident edges while others have four.

{a) (b}
Figure 5.16 The archimedean tiling 32.4.3.4 and its dual.
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The concept of a dual tiling is generally problematic except for sym-
metric tilings like the regular and semiregular ones [Griinbaum and
Shephard, 1988]. For graphs, any point on a face can be taken as the
vertex of the corresponding dual, and its dual is truly reciprocal in
that the dual of the dual is isomorphic to the original. On the other
hand, to define a dual tiling we must specify a particular point on each
face of the tiling to serve as a vertex of the dual, for example, the cen-
ter of symmetry. The problem is that, in general, no point distin-
guishes itself. However, the archimedean tilings can be recovered
from their duals by placing a vertex at the meeting point of the angle
bisectors of each tile of the dual.

5.8 The Module of a Semiregular Tiling

A manufacturer wishing to produce a set of tiles that cover the plane
in a semiregular fashion does not have to create all the tiles individ-
ually. Each tiling has a basic module which can be rigidly moved to
stamp out the entire tiling. Let's determine this module for a typical
tiling, 3.6.3.6. Several elements of this tiling are shown in Figure
5.17(a) along with the dual tiling. As you can see, a typical tile of the
dual is made up of ¥ of each of two of the original’s hexagons and ¥5 of
each of two of the original’s triangles. Thus, since all tiles of the dual
are congruent, the tiling must have hexagons and triangles in the
ratio

%hexagon: %triangle or 1 hexagon: 2 triangles

Figure 5.17(b) shows two such modules. You may check to see that
this module can be translated to generate the entire 3.6.3.6 tiling.

(b)
Figure 5,17 (a) A portion of 3.6.3.6 with its dual superimposed; (b) two
modules of the 3.6.3.6 tiling.
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Problem 5.2 Find another module for 3.6.3.6. By similar construction, deter-
mine a module for each of the other semiregular tilings.

5.9 Other Tilings with Regular Polygons

Griinbaum and Shephard have catalogued many interesting classes of
tilings [1987]. For example, more than one kind of vertex may be per-
mitted. O. Krétenheerdt has discovered that there are exactly 135 n-
uniform tilings where n takes values no greater than 7. A 7-uniform
tiling is shown in Figure 5.18. Figure 5.19 shows two of the seven fam-
ilies of semiregular tilings that are not edge to edge while Figure 5.20
shows one of the four semiregular tilings that include star-shaped
polygons.

5.10 Transformations of Regular Tiling

Starting with a tiling of the plane and applying a set of rules of trans-
formation to the tiles, there are several ways in which new tilings can
be generated. Tilings as ordinary as the regular tilings can then serve
as the starting point of tilings that are quite complex and interesting.
In this section and the following ones we consider four kinds of trans-

N/ VAVAN

\
/S NN/ VAV

36534 65 33,42:32.4,3,45 32, 62 3,4%,6: 3,4,6.4.

Figure 5.18 A 7-uniform tiling.
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Flgucrle 5.19 Two of the seven families of uniform tilings that are not edge
to edge.

(6.3%.3:%)

Figure 5.20 One of the four l-uniform tilings of star
polygons.

formations: vertex motion, distortions, augmentation-deletion, and
one-dimensional parquet deformations.

5.10.1 Vertex motion

The regular tilings inherent in the triangular grid shown in Figure
4.44 can be made dynamic by considering the tiling by rhombuses
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{4,4} formed by joining adjacent triangles. A bunch of rhombuses are
cut out of cardboard. Pairs of rhombuses are attached by hinging them
according to the pattern shown in Figure 5.21. This has the effect of
splitting apart the vertices in the tiling and making the tiling mov-
able. If the dual tiling to the triangular grid is drawn on the opposite
side of the rhombuses, movement of the tiling gives rise to a trans-
formable tiling of irregular hexagons which are completed in the open
portion of the tiling.

Varney, an architectural designer, used this idea to create the geo-
metric design of panels for a 68-foot radar dome built by ESSCO, Inc.
of Concord, MA. In addition to regular hexagons, he used three kinds
of irregularly shaped hexagon panels to construct his dome in order to
prevent interference with the incoming signals [Varney, 1988]. The
structural design for this radome was made by William Ahern. The
geometric design for the radome is shown in Figure 5.22. The fact that
12 pentagons appear along with the hexagons is a necessary conse-
quence of the tiling of a sphere by hexagons and pentagons and will be

A

Figure 5.21 The movable triangular grid of William
Varney.
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Figure 5.22 Geometric design for a 68-foot radome.

discussed in Section 9.8. Ron Resch has illustrated the act of creating
movable tilings in his fascinating film, Paper and Sticks [1989].

5.10.2 The K-dron

Kapusta is a Polish architect and designer with an interest in philos-
ophy. He discovered a way to make the regular tilings with squares
{4,4} dynamic by lifting each square into the third dimension as an
11-faced polyhedron which he patented in 1987 and calls the K-dron
(see Figure 5.23) {Kapusta, 1989]. The existence of so many facets

Figure 5.23 The K-dron. (a) Top
view is a tiling with squares;
(b) the squares are lifted from
the plane to form the 11-faced
K-dron.
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causes entirely new patterns to be created by the interplay of light
and shadow as it impinges on the K-dron from different directions. In
Figure 5.24, three entirely different patterns are created as a tiling
with K-drons reflect morning, noon, and late afternoon light.

The K-dron itself has a remarkably simple structure. It is created
by lifting one panel of the square tiling, shown in Figure 5.23(b), into
the third dimension by raising point A to A’ [see Figure 5.23(b)] an
arbitrary perpendicular height % from the base plane and points B, C,
E, F, G, H a distance half this height or #/2 to points B',C', E', F', G',
H'. Point D remains anchored to the base plane. This results in a
sphinx-like structure in which half of a pyramid sits upon a rectangu-
lar parallelopiped base. The top surface of the K-dron is a diamond
with outwardly folding triangles reflected from each quarter of the di-
amond as shown in Figure 5.25(a). The five faces that make up this
diamond configuration are essential to the K-dron since they reflect
the light. The other six faces make up the base and are shown in Fig-
ure 5.25(b). Figure 5.25(c) shows how the faces of a K-dron tile a rect-
angle.

If the half-pyramid is properly hinged along B'C’ [as in Figure
5.23(b)], it collapses into the base to form a parallelopiped of height
h/2. Also two congruent K-drons fit together to form a rectangular
parallelopiped of height h. The dimensions of the diamond depend on
the height 4. When & equals the width of the base, it has its diagonals
in the proportion V/2:1. In this case the two K-drons form a cube. With
small values of h, the resulting shallow K-drons can be used for dy-
namically changing wall decorations or acoustical tiles. For larger
values of h, the resulting polyhedra have a great deal of versatility
and can be used for packaging, modular furniture, artistic sculptures,

Figure 5.24 The effect of light on a tiling with K-drons. (¢) Morning; (b) noon; (¢) after-
noon.
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2 3 Figure 525 Folding-up the K-
dron based on a cube from the
2 1 3 plane. (a) The sectors of a dia-
mond with diagonals V2:1 re-
flect outward; (b) the K-dron

1 5 1 base; (¢) the 11 faces of the K-
/\ dron tile a rectangle.

(b) (c}

or toys. The structure of the K-dron is closely related to the symmetry
of a cube. We will have more to say about this in Section 7.13.4.

5.10.3 Distortions

The distortion operation consists of expanding, contracting, twisting,
flattening, and stretching polygons either in isolation or in aggrega-
tion. One special type of distortion operation involves n-zonogons
[Baracs et al., 1979], [Williams, 1972]. An n-zonogon is a 2n-sided
polygon where pairs of opposite sides are parallel and equal. For ex-
ample, the parallelograms and hexagons that combine to tile the
plane regularly are 2-zonogons and 3-zonogons. Adjacent tiles are re-
lated by being translations of each other.

An n-zonogon can be constructed by specifying a star of n directed
line segments (vectors) representing the direction and length of its
sides all emanating from a common origin. This is referred to as an
n-vector star. The vectors are numbered according to the sequence of
edges in the resulting polygon. For example, a star of three vectors
and the resulting 3-zonogon is shown in the cartesian coordinate sys-
tem in Figure 5.26(a). The vectors are named by the points in the grid
that the tips of the vectors intercept when the vectors are anchored at
the origin, e.g., the three vectors (5,2), (2,5), (-2,2). Figure 5.26(b)
shows a convex zonogon defined by these vectors while Figure 5.26(c)
illustrates another nonconvex zonogon defined by the same vectors in
a different order.
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Figure 5.26 Zonogons. (a) A three-vector star; (b) 3-
zonogon with a sequence of vectors 1-2-3; (c) 3-zonogon
with the sequence 1-3-2,

All zonogons have a center of symmetry. In addition, an n-zonogon
can always be decomposed into n(n - 1)/2 parallelograms (the number
of ways in which two vectors can be chosen from a set of n vectors) in
a number of ways N that increases rapidly with n. For a 3-zonogon,
N = 2, and Figure 5.26(b) shows the 3-zonogon subdivided into two
sets of three parallelograms. An exact formula for N is given in Sec-
tion 10.13 where the notion of zonogon is generalized to three-
dimensional space.

In a practical construction, it is easy to lengthen or contract linear
elements; however, it is difficuli to modify the complex joining mech-
anism where two edges meet. What is important about zonogons is
that they can be contracted or expanded in a direction parallel to any
pair of opposite sides, as shown in Figure 5.27, without altering the
angles between adjacent sides (the internal angles). This is done by
merely lengthening or contracting one of the vectors in the vector star
without changing its direction. In this way, if the angles surrounding
a vertex sum to 360 degrees before a transformation, they continue to
do so after the deformation. Thus any space-filling aggregate of
zonogons will remain space filling after distorting an individual
zonogon in this way and then adjusting adjacent zonogons of the tiling
accordingly as shown in Figure 5.28.

(a) (b) tc)

Figure 5.27 Examples of stretching an individual zonogon.
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Figure 5.28 Examples of stretching aggregated zonogons.

Construction 5.1 Construct an interesting aggregate of 3-zonogons starting
with a 3-vector star of your choosing. Your aggregate should illustrate the ca-
pability of 3-zonogons to fit together in distorted forms.

5.10.4 Augmentation-deletion

We are all familiar with how dramatically the scene changes in the fall
when leaves fall off of the trees or in the spring when nature blossoms
forth again. The augmentation-deletion operation of a tiling can also
result in profound changes in appearances. This method of transfor-
mation involves either the addition or subtraction of vertices, edges,
and faces on existing entities [Williams, 1972]. This may be done ei-
ther symmetrically or randomly. For example, Figure 5.29(a) shows
two transformations of {4,4} with certain edges removed, while Figure
5.29(b) shows 3%.4.3.4 with augmented and deleted edges and vertices.

5.10.5 One-dimensional parquet
deformations

Perhaps the most interesting and versatile family of deformed tilings
is the one-dimensional parquet deformations developed by Huff, a pro-
fessor of architecture at the State University of New York at Buffalo.
I first learned about Huff’s work by reading an article in Scientific
American by Douglas Hofstadter [1983]. This section is, in large part,
excerpted from that article. One-dimensional parquet deformations
produce tilings that deform in a single direction, for example, from left
to right. Thus it produces a visual effect akin to what music does to
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(b)

Figure 5.29 (a) Tesselations derived by deletion of certain edges and vertices in the {4,4}

tiling; (b) the 3%.4.3.4 tiling with augmented and deleted edges and vertices to generate
new tilings.

the ear. While music transforms sound through the single dimension
of time, parquet deformations vary along a single spatial dimension.
The tilings that Professor Huff’s students have made are reminiscent
of M. C. Escher’s famous woodcut, Liberation, shown in Figure 5.30
and of D’Arcy Thompson’s continuous deformations [1966].

In “Consternation,” shown in Figure 5.31, the regular triangular
tiling {3,6} falls apart at first chaotically, then it reforms into a tiling
in which hexagons and cubes vie for perceptual supremacy. Once
again, the triangles group together to form hexagons that maintain
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Figure 5.30 Liberation by M. C. Escher. (© M. C. Escher
Heirs/Cordon Art - Baarn - Holland)
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Figure 5.31 Consternation.

their integrity throughout the transformation. The vertices of these
hexagons maintain their relative positions while three of the six in-
ternal partitions are continuously rearranged in an orderly fashion
and the other three remain fixed.

What are the basic elements of a parquet deformation? First of all
Hulff begins with a single tile. According to Hofstadter,

Typical devices in his repertoire of transformations are lengthening or
shortening a line; rotating a line; introducing a “hinge” somewhere in-
side a line segment so that it can “flex”; introducing a “bump” or “pim-
ple” or “tooth” (a small protrusion or extrusion having a simple shape) in
the middle of a line or at a vertex; shifting, rotating, expanding, or con-
tracting a group of lines that form a natural subunit; and variations on
these themes. To understand these tilings you must realize that a refer-
ence to “a line” or “a vertex” actually refers to a line or a vertex inside
the smallest repeating element, or unit cell (the hexagon unit in “Con-
sternation”), and therefore when one such line or vertex is altered, all the
corresponding lines or vertices that play the same role in the copies of
that cell undergo the same change. Since some of those copies may be at
90 degrees (or some other angle) with respect to the master cell, one lo-
cally innocent-looking change may induce changes at corresponding
spots resulting in unexpected interactions whose visual consequences can
be quite exciting. After a line is deformed and all the other lines so re-
spond, the tiles in the new zone of figures remain congruent with one an-
other. Huff feels that it is this congruence of tiles that makes them ap-
pealing both from the standpoint of «design and mathematics.
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Many unexpected patterns emerge in parquet tilings. It is a useful
intellectual exercise to attempt to read the spatial patterns and try to
understand the intricate and subtle transformations that take place.
It is also fun to try your hand at constructing one of Huff’s tilings.

5.11 Nonperiodic Tilings

Although regular pentagons cannot tile the plane, two geometric fig-
ures called a kite and a dart, which can be formed by dissecting a reg-
ular pentagon and reassembling its parts, can be used to tile the plane
in strikingly beautiful ways [Gardner, 1978%; 1989], [Penrose, 1979].
These so-called nonperiodic tilings provide a simple mathematical
model for describing a new class of quasicrystals (to be discussed in
Section 6.10) whose approximate pentagonal symmetry defy the tra-
ditional tenets of crystallography which require crystals to be periodic
and forbid pentagonal symmetry.

A periodic tiling is one in which the entire configuration can be
translated (without rotation) to a new position which reproduces the
original tiling. We say that such a tiling is invariant under transla-
tion. Both regular and semiregular tilings are periodic. Until recently
it was thought that any set of forms that tile the plane nonperiodically
can tile periodically as well. For example, the polygonal forms called
enneagons shown in Figure 5.32(a) tile the plane both periodically and
nonperiodically. On the one hand, the enneagons stack to fill space; on
the other hand, the spiral form in Figure 5.32(b) cannot be translated
without also moving its center.

Therefore great interest met Robert Berger’s discovery in 1964 that
there is a set of tiles that tiles nonperiodically but for which there is
no way of tiling periodically. To carry out this tiling Berger needed
more than 20,000 kinds of tiles. Sometime later Raphael Robinson re-
duced the required set of tiles to six. This enables us to better appre-
ciate Roger Penrose’s discovery of two tiles, the kite and dart shown in
Figure 5.33, which are guaranteed to tile the plane nonperiodically if
certain rules are followed stating how the pieces are to be combined.
(Note that each tile separately or both together tile periodically if no
other restriction is imposed.) The kite is constructed from two of one
type of golden triangle while the dart is constructed from two of the
other kind of golden triangle (see Section 3.5). During the tiling pro-
cess, the blue curve drawn on the kite and dart is allowed to meet only
the blue curve of another kite or dart to form a continuous curve that
winds through the tiling. The same holds for matching the tiles so as
to ensure a continuous red curve wafting through the tiling. One such
tiling is shown in Figure 5.34.



Spiral Tiling

)

Figure 5.32 (a) A pair of enneagons forming an octagon that tiles
periodically; (b) a nonperidic tiling with congruent shapes: a spiral
tiling by Heinz Voderberg.

Blue line

Blue line
(a) (b) (c)

Figure 5.33 (a) Construction of a kite and a dart; (b), (¢) a coloring of kite and dart to
force periodicity.
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Figure 5.3 A cartwheel pattern
with kites and darts.

Most noteworthy about these tilings is their either exact or approx-
imate pentagonal symmetry. As a matter of fact, regular decagons ap-
pear throughout the tilings. This is not so surprising once we realize
that the tiles were constructed by dissecting a regular pentagon and
reassembling its parts. Try to find a kite and dart in the star pentagon
shown in Figure 3.18(a). The relation of these tiles to a pentagon also
accounts for their golden mean measurements (see Section 3.6).
Penrose first came upon his discovery by attempting to tile the plane
with regular pentagons, an impossible task as we saw in Exercise 5.3.
However, in the process he discovered that when certain arrange-
ments of the tiles are disallowed, the gaps left over from the pentagon
tilings coalesced into four tiles which could be further reduced to two
by using rules of combination. Penrose also constructed other tiles
that were equivalent to the kites and darts, including a pair of chick-
ens. In Section 6.10, we will show how a pair of Penrose rhombuses
lead to nonperiodic tilings and suggest a model for the phenomenon of
quasicrystals. All Penrose tilings can be obtained by specific markings
on the pair of Penrose rhombuses [Penrose, 1979]. These markings de-
fine a special grid. In Section 12.18 a similar concept will be illus-
trated for generating Islamic patterns.

Although these tilings have no region that replicates itself by trans-
lation, they always seem to be striving to do so but never quite suc-
ceeding. Wherever we look, we see a configuration that looks familiar
in the sense that we have seen something just like it at one or another
point of the tilings. We can make this statement more precise by stat-
ing a remarkable theorem developed by Conway. In colloquial lan-
guage, the theorem can be described as follows: Let’s say that you are
residing in a finite region of a Penrose tiling (or universe) of diameter
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d. Call this region your town. If you are suddenly transported to an-
other universe (a different tiling) and there are as many of such
tilings as there are real numbers in the number system, how far must
you wander to find an exact replica of your town? Conway proved that
you need not wander more than a distance of 2d from your new posi-
tion, although the exact distance is unpredictable.

Many of the interesting properties of Penrose tilings come about
from the property that any one of the tilings can be reconfigured so
that a new tiling is obtained with kites and darts scaled up in size, or
inflated. This is done by splitting each of the darts along their lines of
symmetry and attaching all short edges of the original tiling to each
other, leaving the long edges as the boundaries of the new tiling as
shown in Figure 5.35.

Construction 5.2 [Gardner, 1978b] Construct a pattern of at least 60 kites and
100 darts. In any nonperiodic tiling, you will need exactly 1.618... times as
many kites as darts. A Penrose tiling can be made by starting with darts and
kites and expanding around one vertex. Each time that you add a piece to an
edge, you must choose between a kite and a dart. Sometimes the move is forced;
sometimes it is not. Sometimes either piece fits, but later you may encounter a
contradiction and you will have to go back and make the other choice. The more
that you play with the pieces, the more you will become aware of the forcing
rules. The discussion by Martin Gardner goes into more details about the prac-
tical aspects of construction.

Figure 5.35 A new tiling is obtained by inflating the tiles
of the old one.
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5.12 Origami Patterns

The Chinese invented the paper folding art of origami over 1000 years
ago, and they endowed it with the aesthetic principles that are at the
heart of their culture. As Peter Engel, an American master of the art,
says, “the success of a completed figure depends on the creator’s eye for
form—is it a mere likeness of the original, or does it delve deeper into
the form’s essential character? [Engel, 1988]” Engel points out that
origami has been taken up in this country by mathematicians rather
than artists. He says: “To the mathematician, the beauty of origami is
its simple geometry. Latent in every pristine piece of paper are undis-
closed geometric patterns, combinations of angles, and ratios that per-
mit the paper to assume interesting and symmetrical shapes.”

An origami figure always begins with a single square piece of paper.
Only folding, with no cutting or pasting, is permitted. Traditional
origami uses four basic folded bases: the kite, fish, bird, and frog
shown in Figure 5.36(a). Engel’s contribution to this craft has been to
show that when these bases are unfolded, as they are in Figure
5.36(b), they reveal a sequence of geometric patterns based on a single
module. The basic module is represented in the kite pattern by the
shaded region. It is reflected about the diagonal of the square to pro-
duce the entire pattern. When the same pattern is replicated four
times, it results in the fish base. Eight replicas makes the bird base
while 16 repeats give rise to the frog base.

The kite base is constructed by folding the square on its diagonal to
form a right triangle. Two additional folds produce the kite pattern. On
the other hand, the fish base is constructed by folding the right triangle
in half to form two right triangles. If each of these right triangles is
folded into a kite base, the fish base pattern appears when the paper is
opened up. Repeating this procedure by folding the triangle into four and

(b}

Kite base

Figure 5.36 (a) The fundamental bases of traditional origami: kite; fish; bird; frog; (b)
patterns formed by unfolding the bases.
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Figure 537 Grafting four frog bases onto four bird bases produces the folding pattern
for an octopus.

eight right triangles produces the bird and frog base patterns. Once the
patterns are obtained, the base easily folds up into itself.

Engel looks at the basic module as being a self-similar component,
or fractal, of the entire pattern. He was able to break out of the re-
strictive four-base mold of Japanese origami by extending these fun-
damental patterns to additional stages of development and by grafting
one base upon another. For example, Figure 5.37 shows that grafting
four frog bases onto four bird bases produces a complex folding pattern
which the author used to make the octopus shown in Figure 5.38.

One word of caution. Production of the underlying pattern is only
the first step in creating the final work of art, which requires much
work, ingenuity, and patience. I refer the reader to Engel’s book on
origami [1989].

Figure 5.38 An origami octopus by Engel.
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5.13 Islamic Art

5.13.1 The Temple of Ka’ba and the Dome
of the Rock

Islamic culture succeeded in creating art, architecture, science, and
mathematics entirely integrated within a spiritual realm. Although
we have only a sketchy record of the nature of the traditional Islamic
consciousness, we can piece together some idea of how and why this
integration was achieved by studying modern commentators. Most no-
table of these is Titus Burckhardt, a well-known scholar of the art and
culture of Islam, but we must be aware that much of Burckhardt’s dis-
cussion of Islamic art is based on his own understanding of its culture
and history and not on commentary by the Islamic artisans or artists
themselves. Burckhardt [1976, 1987] and other authors [Chorbachi,
1988] disagree about the spiritual interpretations.

Burckhardt feels that in the structure of the sacred Ka'ba in Mecca
lie the philosophical underpinnings of Islamic religion and art. This
temple, which claims its origin to the time of Abraham, is approxi-
mately cubic (actually 10 by 12 by 16 meters). The four corners of the
base point approximately to the four cardinal directions of the earth,
with the vertical axis of the zenith defined by the top and bottom
faces. The Ka'ba itself is considered the “navel” of the earth, toward
which all Muslims must direct their prayers.

By nature, the Islamic religion is both static and dynamic. The
static is symbolized by the fact that all locations of prayer are consid-
ered equivalent with respect to the unity of the center (at Ka'ba) while
the dynamic is manifested by the requirement that all Muslims carry
out a pilgrimage once in their lifetimes to the Ka’ba where they must
circumambulate the temple in a symbolic circle. The cube or square
symbolizes the earthly with its dualities of hot and cold, moist and dry,
and axes of spatial orientation. The circle symbolizes the realm of the
celestial surrounding the source of all being and dominated by the el-
ement of time in the form of the zodiac (see Section 1.2).

One of the oldest surviving Muslim monuments is the Dome of the
Rock in Jerusalem which encloses the rock forming the summit of Mt.
Moriah. This mountain is the supposed location of the Great Temple of
Solomon, the site at which Abraham is said to have performed the sac-
rifice of his son and the place where Mohammed is said to have as-
cended into heaven. This structure was built in 688 by Abn Al Malik
to serve as a substitute for the Ka’ba at a time when Mecca had fallen
into the hands of a rival caliph. The Dome of the Rock is designed to
shelter this sacred site beneath a central cupola and an octagonal
deambulatory [shown in Figure 5.39(a)] in a style that can be traced
back to the architecture of Byzantine times and is found in many of
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Figure 5.39 The Dome of the Rock. (a) Perspective view; (b) plan view;
(c) geometric scheme.

the sanctuaries of that period. The dome is supported by 12 columns
and 4 pillars shown by the central area of Figure 5.39(). The 12 col-
umns are arranged with 3 each to the north, south, east, and west as
in the New Jerusalem diagram (see Figure 1.3). Surrounding this cir-
cle is a second series of 8 pillars and 16 columns arranged octagonally.
The columns of the second set are spaced with relation to the inner
ones in such a way that they radiate into the center through the in-
tersection points of two squares inscribed in the inner circle that form
the star octagon {8/2} shown in Figure 5.39(c). The octagonal columns
themselves form another star octagon {8/3}. The complete set of 12 col-
umns connects to form a grid of rectangles and squares. The circular
cupola again represents the celestial domain contrasted with the
earthly crystal of the octagon. Burckhardt explains that the 40 sup-
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porting columns and pillars correspond to the number of saints who,
according to Mohammed, constitute the spiritual pillars of the world
in every age.

5.13.2 Islamic tiling

Unlike Christian sacred art, the art of Islam contains no graven im-
ages. Islamic art is best known for its arabesque and polygonal forms
bordered by undulating woven strips as shown in Figure 5.1. Here is
how Burckhardt [1976] describes the spirit behind Islamic art:

A sacred art is not necessarily made of images...it may be no more than
the quite silent exteriorization of a contemplative state.... It reflects no
ideas but transforms the surroundings by having them share an equilib-
rium whose center of gravity is unseen.... Ornamentation with abstract
forms enhances contemplation through its unbroken rhythm and endless
interweaving.... Continuity of interlacement invites the eye to follow it,
and vision is transformed into rhythmic experience accompanied by the
intellectual satisfaction given by the geometric regularity of the
whole.... Study of Islamic art, or any other sacred art, can lead to a pro-
found understanding of the spiritual realities that lie at the root of a
whole cosmic and human world.

J. Bourgoin published an extensive collection of Islamic patterns in
1879 [1973]. Underlying each pattern, Bourgoin shows a grid from
which the pattern is developed. Many of these grids, such as the one
shown in Figure 5.40, are regular tilings by triangles; others are devel-
oped from regular tilings by squares (not shown). Unlike Burckhardt,
Bourgoin lists his tilings with no commentary. Keith Critchlow feels
that the triangular tilings were used because of their platonic symbol-
ism through the form of the tetraktys (see Section 1.2), and tilings
based on square patterns may have been suggested by hidden symme-
tries in the number relations of magic squares (see Section 4.13). Fig-
ure 5.41, from Critchlow’s book, Islamic Patterns [1976], shows the in-
terest of Islamic artists in pentagonal tilings, which Critchlow feels
can be traced to the sacred properties exhibited by the golden mean.
There may even be some foreshadowing of the nonperiodic Penrose
tilings, discussed in Section 5.11, in ancient Islamic tilings
[Chorbachi, 1988). In Section 12.18, we will describe these patterns by
a more refined method developed by H. Lalvani based on their sym-
metry [1982], [1990].

A. K. Dewdney recently described a practical method of creating
homemade Islamic tilings [1988]. A set of intersecting and self-
intersecting lines weave through the tilings, as shown in Figure 5.42.
These lines are unrestricted except for the fact that each must origi-
nate and end at the boundary. If each crossing is alternately desig-
nated as either an overpass or an underpass, whenever one arrives at
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Figure 5.40 An Islamic pattern by J. Bourgoin with underlying
triangular grid.

a previously designated crossing, it has the required structure. Why is
this? This series of crossing lines is exactly the class of lines that we
encountered in the two-colored map of Figure 4.41. That the assign-
ments are always correctly made follows from a two-coloring of the re-
gions in Figure 5.42 (see Section 4.14). Say one travels along the road
bordered on the right by a region of some color. After the crossing, the
color on the right changes. Thus one can say that an overpass always
leads to, say, the color red (on the right) while an underpass leads to,
say, blue. It follows that the road crossings must be assigned correctly
after a cycle.

5.13.3 lIslamic art and mathematics

Although one can read spiritual meanings into the art of Islam, we are
still left with a profound silence on the matter by the artisans and art-
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Figure 5.41 An Islamic pattern with tenfold symmetry.

A O

Figure 542 Dewdney's “over-under” rule for the construction of Islamic
tilings.
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ists themselves. Wasma Chorbachi, a specialist in Islamic art, states
in a recent article that not once in the hundreds of manuscripts and
folios she has examined in libraries throughout the world is there a
practitioner's comment on the spiritual meaning behind the art
[1988]. In fact, quite to the contrary, she has unearthed volumes from
the thirteenth and fourteenth centuries that are totally preoccupied
with practical and geometrical concerns, as exemplified by one book
with the title What the Artisan Needs of Geometric Problems.

Figure 5.43(a) shows one panel that Chorbachi has studied (disre-
gard the dotted lines and surrounding dodecagon). If the kite shapes
are divided into right triangles with sides a, b, ¢ as in Figure 5.43(3),
an ancient proof of the pythagorean theorem attributed to Bhaskara

al

(b) (c)

Figure 5.43 An Islamic design based on Bhaskara’s proof of the pythagoren the-
%ritlam. (a) The design as given by Critchlow; (b), (c) Bhaskara’s proof as given by
orbachi.
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follows from the fact that the inner square has side b ~ ¢ and the area
of the square made up of the inner square and triangles 1, 2, 3, 4 is

cz=(b—a)2+4a?b=b2+a2

Also, as Figure 5.43(c) shows, the very outer square has sidea + b and
illustrates the relation

2 . 2 2 ab

@+bf=a’+b*+45

Another object of Chorbachi’s research is the tiling shown in Figure

5.44. The square is divided into four congruent sectors by two perpen-

dicular lines and each sector is divided, in turn, into polygons of three

kinds including a symmetric kite shape as shown in Figure 5.44(a).

3+/7
A

{b) (c)

Figure 5.44 Chorbachi’s analysis of an Islamic pattern with fourfold symmetry
based on a geometric problem.
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The entire tiling has a fourfold symmetry, which means that a quarter
turn about the center brings all the tiles of one sector onto the tiles of
another. The key to understanding this tiling is an asymmetric quad-
rilateral ABDG with proportions 1:2:2:V7 inscribed in a circle as
shown in Figure 5.44(b). The sector of the square is obtained by add-
ing two gnomons of unit widths to two sides of the quadrilateral as
shown in Figure 5.44(a). Figure 5.44(c) shows that similar kites at
three different scales can also be found within the tiling. Just as we
saw in the last section for origami, in Section 5.11 for Penrose tilings,
in Section 1.7 for the Modulor, and in Section 2.12 for fractals, this
gives another example of how good design is the result of the repeti-
tion of a limited number of congruent modules along with the repro-
duction of these elements at varying scales. In her article, Chorbachi
has generated many of her own tilings based on this asymmetric
quadrilateral and its geometric properties.

Exercise 5.4 Subdivide a square into four congruent sectors as in Figure
5.44(a). It makes a good puzzle, for persons not aware of the origin of the sectors,
to put the pieces together to re-form the square. It makes an even better puzzle
to put the pieces together to form two squares such as in Figure 5.43(a). This can
always be done.

It is interesting that the same panel that Chorbachi sees in strictly
geometric terms, Critchlow prefers to think of in spiritual terms. For
example, the solid dodecagon and dotted square in Figure 5.43(a) is
Critchlow’s doing. His interpretation is

The coincidence of twelve and four suggests the zodiacal symbolism con-
trolling or embracing the fourfold axial kite shapes which can be taken to
symbolize the four seasons, the four elements, and the four qualities of
hot and cold, moist and dry.

So we have been thrown back to the sacred architecture of the Ka’ba
and the Dome of the Rock. Perhaps future research will be able to
show these two visions of Islamic art to be of one cloth.
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Chapter

Two-Dimensional Networks
and Lattices

Everything that we can see, everything that
we can understand is related to
structure—perception is in patterns not
fragments. Cyrir S. Smrta

6.1 Introduction

Tilings of the plane arise naturally in both the artificial and natural
worlds. Whether we observe the structure of soap films, the structure
of cellular elements of living organisms, the growth of plants, the
structure of crystals, the organization of rural markets, the optimal
layout of cities, the equilibrium of forces within frameworks of cables,
or the geometrical possibilities in a design, we find that a simple ge-
ometry of networks and lattices lies beneath the surface. Beyond the
physical, biological, and sociological mechanisms involved in these
complex systems, much can be learned about them from studying
their geometry. In this chapter we shall study some of the geometric
constraints that underlie some of these phenomena.

6.2 Planar Soap Films

Have you ever watched a drop form on the faucet over your sink? Look
at it more carefully. Notice how the drop forms, grows slowly, and sud-
denly falls. Every time this happens the drop is always the same size
and shape at the time of its plunge [Boys, 1959]. Why does the drop
remain clinging to the faucet instead of immediately falling under the
force of gravity?

From these observations it is reasonable to conjecture that water de-
velops a surface skin that responds to the weight contained within by
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stretching. The tensile force developed by this skin is known as sur-
face tension. The surface tension comes about from forces between the
molecules of liquid. The forces on the molecules within the interior are
balanced by those on their neighbors. Those molecules at the surface,
however, have unbalanced forces acting on them. In response to the
forces exerted by the molecules below the surface, the surface mole-
cules are continually pulled under the surface. In this way the surface
tends to be a shape with minimal area. If there were no competing
nonmolecular forces such as gravity, the surface area would be the ex-
act minimum possible within its geometric constraints. This is borne
out by the shape of the water surface in very narrow capillary tubes or
in small droplets of mist and also in minute organisms or small cellu-
lar elements of larger organisms [Thompson, 1966].

In Sections 8.9 and 10.11 we will examine some geometric con-
straints imposed on three-dimensional soap films by the requirement
of minimal surface area. Here, we consider the simpler case of soap
films constrained to grow along minimal networks in the plane.

Exercise 6.1 Place three thumbtacks between two sheets of glass as shown in
Figure 6.1. Submerge this sandwich of glass and thumbtacks in a soap solution
and observe the soap films that cling to the tacks. Can you predict how the films
will lie across the tacks, without carrying out the experiment? Problem 6.1,
posed by Jakob Steiner [Courant and Robbins, 1941], [Bern and Graham, 1989],
[Stevens, 1974], answers this question. Try to solve it before reading on.

Problem 6.1 (Steiner’s Problem) Three villages, A, B, and C are to be joined by
a system of roads of minimal total length. Mathematically, three points A, B, C
are given in the plane and a fourth point P in the plane is sought so that
AP + BP + CP is a minimum. In other words, connect points A, B, C with the
shortest set of line segments.

Two possible solutions to Problem 6.1 are shown in Figure 6.2:

1. Measure the sum of the network of lengths in Figure 6.2(a) and
compare it with the result of Figure 6.2(b) where P is taken to be

Figure 6.1 A soap film solution
to Steiner’s problem.
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B C B C
(a) (b)

Figure 6.2 Minimal networks for three points.
(@)Minimal network; (b) a nonminimal network.

point B. Steiner proved that the configuration of Figure 6.2(a) is
the shortest possible linkage of points A, B, C if these points form a
triangle with no angle greater than 120 degrees. The three angles
surrounding P are 120 degrees.

2. For three arbitrary points A, B, C forming a triangle with no angle
greater than 120 degrees, locate point P with compass and straight-
edge. Hint: Construct an equilateral triangle on each edge of trian-
gle ABC. Construct a circle circumscribing each of these equilat-
eral triangles (a method for doing this is described in Section 6.5)
and use Theorem 1.3 (that the central angle of a circle is twice the
inscribed angle that intercepts the same arc) to construct angles of
120 degrees, at the point of intersection of these three circles.

3. Where is point P if the triangle has an angle greater than or equal
to 120 degrees? Hint: Note in Figure 6.3 how the films transform as
4 ABC is moved along the line between its original position and the
junction point, P when X ABC = 120 degrees.

It is clear from Steiner’s problem that if the thumbtacks are placed
at A, B, C, three soap films will join at point P. The angle between the
planar faces of the films, known as the dihedral angle (see Section
7.10), or angle at which the planar surfaces intersect in edge view, is
120 degrees. If an angle of triangle ABC is greater than or equal to
120 degrees, point P must coincide with the vertex incident to that an-
gle. Soap films have the property that the tensile forces they exert
within the surface of the film are the same in all directions and at all
points. For this reason a soap bubble never has regions of concen-
trated stress, but rather distributes stress evenly across its entire sur-
face. Move the tack to a new position and the whole configuration ad-
justs itself almost instantaneously so that once again the tension in
the bubble is the same at every point. This supplies another justifica-
tion for the configuration of films given by Steiner’s problem since, as
shown in Figure 6.4, three forces of the same magnitude are in equi-
librium if they are symmetrically placed around a point. In three di-
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Figure 6.3 Arrangement of
films when one vertex is 120 de-
grees.

F

Figure 6.4 A soap film exerts equal tensions in
three symmetric directions around the center of
a soap film.

mensions, as we will see in Section 10.11, four edges meet at each ver-
tex, each pulling with equal force symmetrically around the vertex.

What happens if we add a fourth thumbtack? How does the config-
uration of Steiner’s problem generalize? First consider four points lo-
cated as in Figure 6.5. Notice that Figure 6.5(c) and (d) yields line seg-
ments whose total lengths are less than those in Figure 6.5(a) and (b).
Again, we find that soap films spanning four thumbtacks assume the
positions of either Figure 6.5(c) or (d) but cannot remain for long in
the configuration of Figure 6.5(a) or (b).

How can we connect the four points of Figure 6.5 to form a stable
network of soap bubbles? We find that the films drawn in Figure 6.5(c)
and (d) are the only stable configurations. However, the configuration
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(b) {c) (d)

Figure 6.5 Possible networks formed by four points. Networks (a) and
(b) are unstable while networks (c) and (d) are stable.

in Figure 6.5 (d) is shorter than the one in Figure 6.5( ¢). Doesn’t this
contradict our restriction to minimal surfaces? Why do soap bubbles
sometimes make the “mistake” of choosing a nonminimal arrange-
ment? This error in judgment can be explained by considering the
analogy of a ball rolling down a mountain (shown in Figure 6.6) seek-
ing the lowest position A at which to come to rest. However, it may
come to rest in a mountain valley located still up in the mountains at
point B. Points A and B are both local minima of potential energy and
stable resting positions for the ball. However, if the ball is displaced
from position B by rolling it uphill a bit, it may move down to position
A. In the same way, the soap film in Figure 6.5(c) may be transformed
to the arrangement shown in Figure 6.5(d) by gently blowing on it.

Thus we see how Steiner’s problem generalizes. N points are, in
general, connected by a tree graph (see Section 4.5) in which three
soap films surround each junction point with angles of 120 degrees.
Furthermore, a theorem of topology developed by Leonhard Euler
states that there are at most N - 2 vertices with three incident edges
(g = 3) in any polygonal linking up of N points. For example, three
different ways to connect the six points lying at the vertices of the reg-
ular hexagon are shown in Figure 6.7 where one of the incident edges
degenerates in Figure 6.7(c).

Although this problem is easy to state and it is easy to construct so-
lutions for small N, there is no practical algorithm to solve the prob-
lem for large N, say N = 100. All known algorithms require an expo-
nential number of operations as N grows large, or, as it is said, they

A

Figure 6.6 Point B is a metastable point; it is a
local minimum of potential energy. Point A is a
stable point; it is an absolute minimum.
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(¢)

Figure 6.7 Three stable networks with six vertices.

can be solved only in exponential time. Problems of the Steiner type
have been used to construct telephone, pipeline, and roadway net-
works and, most recently, to design electronic integrated circuits in
which the networks are rectilinear. An unusual application, developed
by David Sankoff, uses Steiner trees to determine plausible
phylogenetic trees in which edges correspond to a relation between or-
ganism and ancestor that assumes the fewest mutations [Bern and
Graham, 1989].

6.3 Random Cellular Networks

Random soap bubble froths are representative of cellular patterns of
all kinds in two- and three-dimensional space. The random soap bub-
ble pattern of cells with three edges incident to each vertex occurs in
many diverse contexts: the granular patterns on the surface of metals
[Rivier and Weaire, 1984], [Smith, 1965], the structure of biological
tissues [Dormer, 1980], the cracking patterns of dried mud (see Figure
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4.2); and the organization of rural market patterns of agricultural so-
cieties discussed in the next section.

The irregular shapes of the disordered boundaries of these froths re-
veal nothing of the inner order of the structure within. The shape of
the boundaries results from the vicissitudes of time, but the internal
order is immutable. This situation arises in crystalline materials
where nucleation of a crystal occurs at some local inhomogeneity of
the medium. Thereafter, the crystal grows in strict accordance with
the geometry of lattice structures (see Section 6.7). Grain boundaries
are produced when regions of crystal growth of different origins im-
pinge upon each other. As Cyril S. Smith, a metallurgist, says
[1965],

In the space-filling aggregate, the individuals limit each other, They may
be arranged randomly or regularly, but however undetermined the shape
of an individual, the conditions of joining at the points where three or
more meet are defined. Structure on one level, by its imperfections or
variations, always gives rise to a new kind of structure on a larger scale.
A local configuration will always have some connection to neighboring
ones. In ever-decreasing degree, every part is dependent on the whole
and vice versa.

In the frontispiece of his book (not shown), Fundamental Tissue Ge-
ometry for Biologists, K. J. Dormer illustrates the geometrical similar-
ity of the inner tissue from the shaft of a bird feather and the fruit
flesh of a crab apple. Although these cells differ both biologically and
chemically, considered as geometric patterns they are almost inter-
changeable. How is it that physical and bioclogical systems that are in-
fluenced by such different external forces, nevertheless end up with
similar patterns? Smith feels that at the scale of these phenomena, it
is the geometric constraints on space that are the controlling factor
rather than external forces that determines form [1954], [Dormer,
1980]. One such geometric constraint is given by Theorem 6.1.

Theorem 6.1 For an infinite tiling in which vertex valence ¢ = 8 at each vertex
and each face of the tiling contains or is surrounded by a sphere no smaller or
larger than some preset diameter, () = 6, where (p) is the average number of
edges per face, i.e.,

(p) = ; I% 6.1)

where summation is over all the faces.

proof For tilings on the infinite plane,

F+V-E=2 (6.2)
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3V = 2E (6.3

SpFi=28 or FYl-9E 6.4)
F F F

Replacing Equations (6.1), (6.3), and (6.4) in (6.2) yields

2 1
(5 75)7 =
It follows that (p) = 6 when E — «.

Dormer has studied the geometry of cellular structures in very gen-
eral terms [1980]. He has isolated three primary transformations that
cell structures can undergo. They are shown in Figure 6.8. In T'; the
edges are merely rearranged as we saw in Figure 6.5 for soap bubbles.
In T, a three-sided cell disappears eliminating one face and six edges
from itself and the surrounding cells. In T a cell undergoes mitosis in
which one cell splits in two. Notice that an n-gon parent cell gives rise
to two daughter cells having a total of n + 4 edges. This enables us to
deduce that the dividing cells must be 7-gons in order for all the cells
of the network to have an average of six edges per cell. The calculation
goes like this: if the parent cells have an average of m edges per cell,
the average of parents and daughters must be six edges per cell, or

Vafm + (m + 4)] = 6 or m =17

X ><
>\ >\
Figure6.8 Elementarycelltrans-
formations. (@) T, or neighbor
— exchange; (b) T, or cell disap-
pearance; (c) T3 or mitosis.
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Figure 6.8(c) shows that each dividing cell releases two edges into
the nondividing population. Unless there is some mechanism to elim-
inate the excess edges, these edges will build up, destroying the hex-
agonal equilibrium. In fact Dormer shows how this results in an elab-
orate bookkeeping system that enables the ensemble of cells to
maintain its equilibrium. A hexagon borrows an edge from another
cell, depleting its edges; the division of the new 7-gon releases two
edges to the surrounding cells; one of these edges is used to repay the
donor while the other is loaned to yet another cell in order to prepare
it for mitosis. Dormer extends this analysis to cells in bounded do-
mains and to three-dimensional froths of cells (see Section 10.11).

6.4 Rural Market Networks

If one views the patterns of random soap froths described in the last
two subsections anthropomorphically, they betray a kind of social
ethos. As Smith says,

The freedom of a structural unit inflicts and suffers constraints whenever
its closer interaction with some neighbors makes cooperation with others
less easy. Social order intensifies the interfacial tension against a differ-
ently ordered group.

It is this tension between marketing requirements of population set-
tlements which results in the patterns observed in rural market net-
works of agricultural societies [Plattner, 1975].

Central-place theory was developed in the 1930s by the German ge-
ographer Walter Cristaller and elaborated by another German eco-
nomic geographer August Losch to describe the organization of rural
markets. Although this theory is highly idealized, it has been ex-
tremely successful in describing the dynamics of the marketing prac-
tices of these societies.

Christaller’s model is predicated on the existence of a featureless
landscape with population settlements spread equidistantly from each
other and interconnected by a grid of pathways that can be traveled
with equal ease. Population settlements are represented by a triangu-
lar grid, as shown in Figure 6.9(a). Markets for high-value goods, e.g.,
clothing or medical or legal services, called A markets are established
at another triangular grid, a subset of the first, marked with open
dots, as shown in Figure 6.9(b). Surrounding these grid points are cir-
cular boundaries demarcating the maximum distance an individual
must travel to purchase an A market product. Overlap between circles
is replaced by a line segment in Figure 6.9(c) to obtain hexagonal A
market domains.

Markets for low-valued products, e.g., fresh vegetables or incidental
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e. (From “Rural Market Networks” by Stuart Plattner. Copyright © 1975 by Sci-
All rights reserved.)

9 Christaller’s model for the placement of rural markets based on a featureless

entific American, Inc.
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household items, called B markets, are established at each A market
grid point. These are indicated in Figure 6.9(d) by solid dots. The re-
gions of demand for these products also lie within circles surrounding
the grid points, but these circles are naturally of smaller radius than
the A market circles since a person will travel a smaller distance to
obtain a commonplace item than for something of great value. But, as
you can see from Figure 6.9(d), this leaves large regions of unmet de-
mand on the part of most of the settlements for the lower-valued prod-
ucts. This demand is met by establishing B markets at the six settle-
ments surrounding the A markets as shown in Figure 6.9(e). Points of
tangency between adjacent B markets are replaced by line segments
to form hexagonal B market domains.

The entire pattern is illustrated in Figure 6.9(f) in which each B
market lies at a vertex of one of the space-filling A market hexagonal
domains and equidistant from three A markets. An A market hexagon
is composed of one entire B market and six ¥ sectors of the surround-
ing B market hinterlands, or the equivalent of three B market re-
gions. In the same spirit, a series of different-valued markets sets up
an elaborated market hierarchy with self-similar structure, so that a
single A market gives rise to 3 B markets, 9 C markets, 81 D markets,
etc. Figure 6.10 shows how this elaborated hierarchy works for three
different-valued markets. The highest order A markets are repre-
sented by large open dots, the B markets by smaller open dots at the
vertices of the A market hexagons in addition to the A market sites,
while C markets are established at the vertices of the B market hexa-
gons in addition to all the A and B market sites represented by solid
dots.

The actual networks have highly irregular market domains with
boundaries more like the irregular shapes of random soap froths since
these domains are determined by many social and geographical
idiosyncracies in both time and space. Nevertheless, as Stuart
Plattner reports, the anthropologist G. William Skinner has found
that the dynamics of the market systems of the Chinese province of
Szechwan are governed quite well by Christaller’s model. The model
can also be modified to take into consideration other geometrical and
social circumstances such as a nonhomogeneous landscape in which
communication in certain directions is hampered by such constraints
as a mountain range while in other directions it is enhanced by such
advantages as a navigable river.

Another example of the interaction between the geometry of cellu-
lar patterns and social context is Bill Hillier’s analysis of the arrange-
ments of building clusters and roads within towns and villages by a
geometrical language that he calls space syntax [Hillier and Hanson,
1984]. He has developed this geometrical language to study the way in
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Figure 6.10 Elaborated market hierarchy. (Copyright © 1975 by Sci-
entific American, Inc. All rights reserved.)

which the plan of a community addresses the tensions between the needs
of neighborhood residents for security and social intercourse and the
need to allow outsiders to obtain access to portions of the community.
Hillier has been able to use his geometry to study why some communi-
ties have been successful in their planning while others have not.

6.5 Dirichlet Domains

A map of Cambridge, MA, school districts is shown in Figure 6.11. The
black markers represent the schools. The map is drawn so that each
point of a school district is nearer to the school in that district than to
any other school. Check to see that this criterion holds. The school dis-
tricts are called the Dirichlet domains of the set of points represented
by the schools, where a Dirichlet domain of a point from a set of points
is defined to be the points of space nearer to that point than to any of
the other points of the set [Loeb, 1976]. The points whose Dirichlet do-
mains border the Dirichlet domain of another point are said to be its
neighbors. You will notice that all but one vertex of the map is the
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Figure 6.11 D domains of Cambridge, MA, schools.

meeting point of three districts (Dirichlet domains). Thus each of the
three schools from these districts is equidistant from a common vertex.
Why does it usually occur that a vertex of the map is surrounded by ex-
actly three Dirichlet domains? The one exception to this rule is the ver-
tex surrounded by four domains. We shall see why in a moment.

We would like to find a way to construct the Dirichlet domains, or D
domains as we will call them, of any set of points, and thus be able to
draw a map similar to Figure 6.11. Let’s first consider the D domains
corresponding to two points A and B shown in Figure 6.12. The bound-
ary of the D domains is clearly the perpendicular bisector of line seg-
ment AB.

Now let's consider three points A, B, and C shown in Figure 6.13.
Clearly points on the perpendicular bisectors of BC, CA, and AB are

Figure 6.12 D domains for two points.
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Figure 6.13 D domains for three points.

equidistant from B and C, C and A, and A and B, respectively. Also, it
is well-known that the perpendicular bisector of the sides of any tri-
angle meet at a common point O. In fact, this point O is the center of
the unique circle, the circumscribed circle, that passes through A, B,
and C. (Prove this!) Therefore A, B, and C each lies in a region formed
by the perpendicular bisectors of the line segments incident to that
point from the other two points as indicated in Figure 6.13 by domains
Dy, Dg, and Dg.

Also, since three points uniquely determine a circle, the points of a
complicated situation such as that of the Cambridge school districts
can be expected to form groups of three points on a circle about a com-
mon boundary point of the D domains. Four or more points can also be
found around a common boundary point, but this is an exception since
three points determine the circle while the fourth point is unlikely to
lie on that circle. In a physical manifestation of D domains, boundary
points with four incident edges are not structurally stable. A small
perturbation causes the domains to lapse into a pattern with trivalent
edges just as for the soap bubble patterns in Section 6.2.

Problem 6.2 Although the triangle is one of the simplest of geometric shapes, it
is a rich source of mathematical ideas. In fact, any triangle determines many
unique points, including the following five, all of which can be constructed with
compass and straightedge: (1) the meeting points of the perpendicular bisectors
of the sides—the center of the circumscribed circle, (2) the meeting point of the
angle bisectors—the center of the inscribed circle, (3) the meeting point of the
medians (lines drawn from a vertex to the midpoint of the opposite side)—the
centroid or balance point of the triangle, (4) the meeting point of the altitudes
drawn to each side from the opposite vertex, and (5) the center of a remarkable
circle known as the nine-point circle. On the circumference of this circle lie nine
special points; they are the three intersection points of the altitudes with the
opposite sides, the midpoints of each side, and three additional points which are
identified in [Coxeter, 1961]. Choose a triangle, and construct these five points
with compass and straightedge.

Problem 6.3 Prove that any point lying in one of the D domains defined above
for the case of three points is nearer to its corresponding point than to the other
two points.
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If we can extend the method of constructing Dirichlet domains
from two and three points to the case of four points, we can use the
same procedure to find the D domains of any number of points, e.g.,
the Cambridge school districts. Consider four points A, B, C, and D
in Figure 6.14. If the D domain of A borders on the D domains of
either B, C, or D, the boundary of D, must include a segment of the
perpendicular bisector of AB, AC, or AD. However, the perpendic-
ular bisector of AD lies outside of the domain defined by the per-
pendicular bisectors of AB and AC. Thus, the D domains of A and D
do not border on each other. The D domain of A is then seen to be
the innermost envelope formed by the perpendicular bisectors of the
line segments joining A to each of the other points. The D domains
of B, C, and D are determined in the same manner and are illus-
trated in Figure 6.14. This procedure can just as well be applied to
find the D domains of any number of points.

Given a regular tiling of the plane by congruent polygons, we can
ask whether the tiles are D domains of some set of points, one of
which lies within each tile. Although this question has no simple
answer, we can show that regular tilings with triangular faces,
such as the one in Figure 6.15, are also D domains if all angles are
less than 90 degrees. The restriction on the angles ensures that the
meeting point of the perpendicular bisectors lies within each trian-
gle. However, if the triangles have angles greater than 90 degrees,
they may also be D domains [Griinbaum, 1989]. Furthermore, the
centers of the triangular D domains in Figure 6.15 are the vertices
of a dual tiling to the triangular domains, i.e., a tiling with hexa-
gons. These hexagons can be observed to have opposite edges equal
and parallel, i.e., they are zonogons, with vertices that lie on a com-
mon circle whose center is the center of the domain. These partic-

Figure 6.14 D domains for four
points.
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Figure 6.15 The D domains of a tiling with triangles constitute
another tiling with hexagons.

ular hexagons are themselves D domains of the set of points at the
vertices of the triangles.

Problem 6.4 Prove that the tiles of an infinite tiling by directly congruent
quadrilaterals are D domains if the vertices of each quadrilateral lie on a circle.

6.6 Spider Webs, Dirichlet Domains, and Rigidity

A group of architects and mathematicians including Janos Baracs,
Henry Crapo, Ethan Bolker, Walter Whiteley, and others based at the
University of Montreal have revived work done by nineteenth-century
mathematicians and engineers to determine the conditions under
which frameworks built of iron bars and pins are rigid [Crapo, 1978].
Their studies led them to the work of James Clerk Maxwell, a physi-
cist who, in 1864, discovered a geometric tool for studying the static
equilibrium of forces on a plane framework: a planar graph called the
reciprocal figure. As stated in Ash et al. [1988]:

This figure was a kind of dual graph to the original framework with the
dual edges perpendicular to the original edges and forces. Maxwell built
his reciprocal by piecing together the polygons of forces expressing the
vector equilibrium at each joint. He then observed that this construction
yields a polyhedron in space which prajects onto the framework. These
results belong to the field of graphical statics, which withered around the
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turn of the century, along with much of projective geometry. [See Appen-
dix 6.A for a brief discussion of projective geometry.]

Recent work on the statics of frameworks grows from these roots.
Perhaps the best way to understand these ideas is to examine a struc-
ture known as a spider web: a framework with no crossing edges and
some edges going to infinity which has an internal static equilibrium
formed entirely with tension in the members (an internal equilibrium
of forces in a framework is a set of tensions and compressions in its
members in the absence of external loads). Figure 6.16(a) shows such
a spider web. Those edges not attached to other members are taken to
be the ones going to infinity, and these are considered to be pinned to
the ground. Figure 6.16(b) shows the reciprocal diagram of this spider
web, which will be explained below. Figure 6.17(a) shows another sim-
ple spider web. According to Ash et al. [1988]:

A tiling of the plane is called a spider web if it supports a spider web
stress: a set of nonzero tensions which leads to mechanical equilibrium at
each vertex. More specifically, a spider web stress is a nonzero force Fyp
in each edge E at a vertex V, directed from V along the edge, such that:

1. For a finite edge E joining V and V', the forces at the two ends are
equal in size and in opposite directions: Fyp = —Fyg.

9. For each vertex V, the vector sum of forces on the edges leaving V' is
zero.

Spider webs are interesting and important. If they are built with cables,
and pinned to the ground on the infinite edges [as in Figure 6.16(a)], they
are rigid in the plane. At the other extreme, if a plane bar-and-joint
framework has the minimum number of bars needed to restrain V joints

(a) (b)

Figure 6.16 A plane spider web (a) has an internal static equilibrium with tension
in all members and (b) a convex reciprocal figure derived from this equilibrium.
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(a)

(b} (c)

Figure 6.17 The arrows in (@) show the tensions of a
spider web stress on a cell decomposition. The poly-
gons of forces for the equilibria at the vertices () are
pieced together and rotated 90 degrees to form a con-
vex reciprocal figure (c).

[we will show this to be £ = 2V ~ 3 in Section 7.8], the appearance of a
spider web signals that it is shaky.

The three cycles of vectors in Figure 6.17(b) represent an equilib-
rium of forces at the three vertices of Figure 6.17(a). In Figure 6.17(c)
these cycles are joined together and rotated by 90 degrees to form the
reciprocal diagram of the spider web.

In general, any edge-to-edge tiling, or cell decomposition as [Ash et
al., 1988] refers to it, of the plane has a reciprocal diagram associated
with it. To each edge of the cell decomposition, for example, the light
lines in Figure 6.18, there is an edge of the reciprocal diagram at right
angles to it, for example, the dark lines in this figure. The reciprocal
diagram will also have as many vertices as the cell decomposition has
faces. It is a kind of “dual tiling”; however, unlike an actual dual, the
edges of the reciprocal need not intersect the corresponding edges of
the parent tiling, and vertices of the reciprocal need not lie within the
faces of the original. If the reciprocal has only convex cells as in Fig-
ure 6.18(a) and (¢), it is called a convex reciprocal. However, a decom-
position may also have a reciprocal with nonconvex cells as in Figure
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{b)

Figure 6.18 Some cell decompositions (light lines) with recipro-
cal figures (heavy lines). The cell decomposition in (a) has only
convex reciprocals, that in (b) has only noncovex reciprocals. A
single cell decomposition may have both convex (¢) and
nonconvex (d) reciprocals.

6.18(d) or with cells that are not well defined as in Figure 6.18(b). The
D domains of a set of points form a cell decomposition, and the set of
interconnections between the centers of the D domains always forms a
reciprocal as shown in Figure 6.19. However, we must be careful here
since not every cell decomposition comprises the D domains of some
set of points.

We make three important remarks about the relationship of recip-
rocals to spider webs:

1. Spider webs always have convex reciprocals because of their
polygons of force, and conversely, any cell decomposition with a con-
vex reciprocal can be realized as a spider web.

2. Reciprocals are, in general, not unique since the tension in the
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Figure 6.19 Some cell decompo-
sitions are the D domains of the
vertices that make up its recip-
rocals,

cables of a spider web is not uniquely determined. When reciprocals
are not unique, the structure is said by structural engineers to be stat-
ically indeterminate.

3. It was discovered by Whiteley, Ash, and Bolker [Ash et al., 1988]
that any spider web is the plane section of the D domains of a set of
points in three-dimensional space (three-dimensional D domains,
which are natural generalizations of two-dimensional ones, will be
discussed in Section 10.6). The reciprocal diagram is also obtained by
orthogonally projecting the centers of the D domains cut by the plane
onto the cutting plane (see Appendix 6.A). (An orthogonal projection is
one in which an object is projected by parallel lines perpendicular to
an image plane from a point at infinity, e.g., like the projection of an
object to its shadow on the ground by the sun shining directly over-
head.) It is a little difficult to draw a picture of this for three dimen-
sions, so we illustrate it for the case of two-dimensional D domains
sectioned by a line (see Figure 6.20). The black dots represent the
boundaries of the sectioned D domains while the open circles repre-
sent the vertices of the reciprocal.

Figure 6.20 Any section of a
plane Dirichlet tessellation cre-
ates a sectional Dirichlet tessel-
lation on the line (the black dots
on the heavy line), with a con-
vex reciprocal (the circles) given
by the orthogonal projection of
the plane centers.
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Some of the most interesting work of the Montreal group has to do
with the relation between the rigidity of two- and three-dimensional
frameworks and the projection of polyhedra. Although we are antici-
pating a bit by talking about polyhedra at this point (see Chapter 7),
nevertheless, the connection of spider webs and reciprocal diagrams to
projected polyhedra is easy to see. Consider a set of connected plane
faces in the form of a bowl with no top, called a polyhedral bow!l. Two
adjacent faces of this bowl always join at an edge (see Figure 6.21). A
cell decomposition is obtained by orthogonally projecting the edges
onto a plane. The reciprocal tiling is obtained by piercing the plane by
normal lines to the plane faces of the bowl from a point within the
bowl. The piercing points are the vertices of the reciprocal tiling,
while the lines connecting the points corresponding to two adjacent
faces of the bowl, which intersect the projection of their common edge
at right angles, must be an edge of the reciprocal.

The point of projection of both the edges and the normals can be
taken to be on the top face to the bowl (or, for that matter, on any face
of a convex polyhedron parallel to the plane of projection). This is il-
lustrated in Figure 6.22 for the case of a two-dimensional polygonal
bowl. The polygonal bowl projects to a cell decomposition of a line
(given by the black dots), and the normals to the edges produce a con-
vex reciprocal represented by the open circles.

It has also been proven by K. Q. Brown that each finite Dirichlet

A'¥+B'y-z-C'=0

Figure 6.21 A cell decomposition is obtained by orthogonally project-
ing a polygonal bowl and its normals onto a plane.
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(0,2)
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Figure 6.22 The cell decomposition is the projection of a
closed polygon from a point on the edge.

(0,-2)

Figure 6.23 Each Dirichlet tessellation on the line is the projection of
a convex polygon with an inscribed circle, from the point of contact of
one edge. The centers are the projections of the other points of contact.

tiling of the plane is the projection of a polyhedron all of whose faces
touch a common sphere from a point on one of its faces onto a plane
parallel to this face. This is illustrated in Figure 6.23 for the case of
the Dirichlet tesselation of a line projected from a convex polygon with
an inscribed circle touching each edge. Some of these ideas will be dis-
cussed further in Section 7.8 with regard to the rigidity of polyhedral
frameworks (also see Appendix 6.A).

6.7 Lattices

If the lines of the triangular graph paper in Figure 4.44 are removed,
leaving only the vertices of the triangles, an orderly set of points
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called a triangular lattice remains. Lattices provide models for under-
standing the structure of crystals where atoms of the crystal lie at
points of the lattice. In general, lattices, and therefore crystals, pos-
sess two kinds of long-range order: orientational and translational
[Nelson, 1987]. These can be seen in the triangular lattice where the
lattice points assume the configuration of billiard balls when they are
racked up at the start of the game.

In this two-dimensional lattice, the atoms sit in hexagonal cages,
the D domains of the lattice points. Neighbors of a lattice point are
defined as the centers of the bordering D domains to that point. Thus,
each lattice point of the triangular lattice has six neighbors. The crys-
tal can be broken down into a repeating pattern of hexagons, as shown
in Figure 6.24. Because all the hexagons have the same orientation—
that is, because the sides of each hexagon are parallel to the sides of
all the others—the crystal is said to exhibit long-range orientational

O
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Figure 6.24 A periodic lattice illustrates two kinds of order that are inherent in
conventional crystals. Long-range translational order is demonstrated by the two
families of parallel lines. Long-range orientational order is demonstrated by the
two kinds of unit cells, hexagons and parallelograms, that tile the lattice without
change in orientation.
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order. The hexagons are called unit cells, where a unit cell of a lattice
is the smallest unit of the lattice that replicates the whole by transla-
tion.

The other kind of long-range order present in a lattice or crystal can
be demonstrated by drawing a family of parallel lines on the lattice, as
shown in Figure 6.24. When the lines are drawn so that every atom
lies on one line or another and every line contains more than one
point, the lines will be spaced exactly evenly across the crystal. If the
lattice points and the family of parallel lines are drawn on an overlay
and this overlay is moved by translation without rotation in a direc-
tion perpendicular to the lines, there is some new location, shown by
the arrow in Figure 6.24, at which the lattice points and lines of the
overlay coincide; the lattice is invariant under translation.

In a lattice or a conventional crystal there are many families of par-
allel lines (another set is shown across the top of Figure 6.24); thus
there are many different directions in which the lattice is invariant
under translation. However, it can be shown that any two nonparallel
directions, such as the ones specified by the two vectors in Figure 6.24,
are sufficient to translate the lattice to a new position so that any
point is made to coincide with any other point. Thus the environment
of any one point of a lattice or crystal is identical to any other point.

Everything that has been said for the triangular lattice continues to
hold for more general so-called skew lattices, as is shown in Figure
6.25. They have translational invariance in two nonparallel directions
perpendicular to parallel sets of lattice lines. The unit cells are 3-
zonogons (hexagons with opposite sides parallel and equal), which are
also D domains of each lattice point. Thus, each lattice point can be
said to have six neighbors corresponding to the points of the bordering
domains. For the special case where two of the directions of transla-
tion are at right angles, the two points A and B coincide, and the hex-
agonal cells degenerate to rectangles having only four neighbors.

Figure 6.25 D domains of a lat-
tice.




Two-Dimensional Networks and Lattices 233

The unit cell of a lattice can also be defined as the parallelogram
formed by two nonparallel line segments with lattice points at the ver-
tices but with no lattice point within it, as shown in Figure 6.24.
These two nonparallel line segments define two vectors that charac-
terize the lattice. The entire lattice is obtained by making a rubber
stamp in the form of a unit cell and stamping it out successively in
each of the two nonparallel directions.

Problem 6.5 Find areas of the polygons shown in Figure 6.26 by counting unit
squares. Check your results against the general formula given by Pick’s law
[Coxeter, 1961],

a=S41-1

where C denotes the number of lattice points lying on the boundary and I refers
to the number of lattice points inside the boundary.

Three-dimensional lattices serve as models for three-dimensional
crystals. The family of parallel lines for two-dimensional lattices be-
come planes known as lattice planes in the three-dimensional case.
When beams of x-rays are directed at a crystal, they are reflected and
scattered by the lattice planes. By studying the directions in which
the beams are scattered and the intensity of each scattered beam, in-

o (] o o ] ] ] o o] o

Figure 6.26 Use Pick’s law to find the areas of these lattice polygons. Note
that parallelograms with no lattice points within them are unit cells.
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vestigators can determine which families of lattice planes must exist
in the crystal; often they can deduce the location of the atoms.

We will discuss three-dimensional crystals in a little more detail
in Chapter 10. In the last section of this chapter, we introduce a
new class of quasicrystals that appear to have fivefold symmetry.
The inability of conventional crystals to have fivefold symmetry is
related to the fact that unit cells or D domains of lattices cannot be
pentagons, i.e., there are no regular tilings of the plane with regu-
lar pentagons.

6.8 Pattern Generation with Lattices

Patterns that tile the plane by translation in two nonparallel direc-
tions are said to have the symmetry of a lattice. Of the regular
tilings of the plane, only the hexagon and parallelogram, both
zonogons, can tile with lattice symmetry. The tiling by a triangle or
a general quadrilateral requires the tile to be rotated by 180 de-
grees about the midpoint of its edges in the case of directly congru-
ent tiles or by some other combination of rotation or reflection when
the tiles are not all directly congruent (see Figure 5.9) to obtain an
adjacent tile. In Section 10.13, we shall see that the only tilings of
three-dimensional space with lattice symmetry are by polyhedra,
which are generalizations of the zonogon. Can we generate more in-
teresting two-dimensional patterns with lattice symmetry than
these regular ones?

Consider the tile shown in Figure 6.27. It tiles the plane since it is
merely a rectangle that has been transformed by adding a triangle
and a semicircle to it while removing an identical triangle and semi-
circle from it. The new tile has the same area as the original rectangle
from which it was derived, and its tiling of the plane is simply a real-
location of space from the old tiling with rectangles. This transformed
tile is called the fundamental pattern, or motif, of its tiling. The fun-
damental pattern is the smallest element of the total pattern that,

Figure 6.27 This modification of
a rectangle is a space filler.
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when acted upon by all of the symmetries of the tiling (in this case
lattice symmetry), succeeds in tiling the plane. Any tiling with lattice
symmetry can be transformed in this way to give new tilings. Escher
has used variations on this theme to produce many fanciful tilings
such as the one shown in Figure 6.28.

Mathematician William J. Gilbert from the University of Waterloo
has come up with an easy way to create attractive tilings of the plane
with lattice symmetry (1983]. His procedure is described as follows:

1. Place the origin of a cartesian coordinate system at a point of the
lattice, and let neighboring points of the lattice be displaced from the
origin at the points (,0) and (A,l) for integer values of k, &, and [ as
shown in Figure 6.29. In other words the two nonparallel directions
that characterize the lattice are the vectors (2,0) and (h,l). Also, the
unit cell of the lattice is the parallelogram formed by these two vectors
and has area kl. Unless h = 0, the lattice is said to be skew, i.e., the
lattice points are not arranged in a rectangular pattern. All the points
of the lattice lie at the grid points (ak + bh, bl) for all integer values of
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Figure 6.28 Black and White Knights by M. C. Escher.
(© M. C. Escher Heirs/Cordon Art-Baarn-Holland.)
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Figure 6.29 Two vectors determine the size and shape of the lat-
tice.

a and b. The location of these points is determined from a linear com-
bination of the lattice vectors in the sense that

a(k,0) + b(h,l) = (ak + bh, bl)

2. The rectangles of area kI = n which are k units long and [/ units
wide, and whose lower left-hand corner lies at one of the lattice points,
fill the plane as shown in Figure 6.30. Each of these rectangular
bricks encloses n grid squares which are numbered from 1 to n.

3. A fundamental pattern is formed by selecting the numbers from
1 to n with no repeats from one or more bricks. Of course if all num-
bers are chosen from the same brick, the resulting pattern will be the
bricks themselves. However, more interesting patterns can be formed
by allocating the numbers to several bricks as is done in Figure
6.31(a) for a 4 by 3 rectangle. This pattern must have the same sym-
metry as the skew lattice from which it was derived, i.e., it is invari-
ant in the two nonparallel directions of specified vectors. To distin-
guish one pattern in a tiling from another you can add color or
shading or use some other distinguishing design idea. One such pat-
tern is shown in Figure 6.31(b) and a more interesting design is shown
in Figure 6.33(a).

Figure 6.30 The lattice is
“squared off” and all squares are
labeled.
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Figure 6.31 (a) The shape of the fundamental pattern is determined; (b) the funda-
mental pattern is replicated.
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Figure 6.32 A tiling of the plane with fourfold rota-
tional symmetry.

4. The method can be extended to include 90-degree rotations as
well as translations. Here, the unit cell of the lattice is a square which
is subdivided into four subsquares each containing n* grid squares as
shown in Figure 6.32. The subsquare is called the fundamental do-
main of the tiling since it is the smallest element of the plane in which
we are permitted to create a pattern. The grid squares in one of these
fundamental domains are numbered from 1 to 9. These numbers are
then recopied in the other rotated squares in the appropriate rotated
positions. We are then free to choose any pattern made up of the num-
bers from 1 to 9, with no repeats from one or more subsquares, to form
a fundamental pattern. The entire pattern can be formed by rotating
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the fundamental pattern to the other subsquares and, once again,
stamping out the unit cell successively in the two nonparallel direc-
tions of the lattice.

If we place a pin at the center of the unit cell, perpendicular to its
plane, rotation of the pattern through 90 degrees around the pin rep-
licates the entire pattern. Four successive rotations around the pin re-
produce the same pattern four times; the pin is therefore called an
axis of fourfold rotational symmetry. An example is shown in Figure
6.33(b). Notice that the midpoints of the edges of the large square that
make up the unit cell are the sites of twofold rotations (i.e., the pat-
tern matches up after a half turn). The constraints on space that force
these additional symmetries will be discussed in Section 12.14.

Problem 6.6 Create a lattice design with mirror symmetry by subdividing a
square into two half-squares by perpendicular mirror lines, or lines of symmetry
as they are called. Grid squares in the right half-square (the fundamental do-
main) are reflected in the mirror to the left half-square. The fundamental pat-
tern is formed as above. Gilbert’s method can also be used to create lattice de-
signs in three dimensions [1983].

6.9 Dirichlet Domains of Lattices and Their
Relation to Plant Growth

In Section 3.7 we showed how the stalks of a plant are placed succes-
sively around its periphery beginning with some initial stalk. We can
follow the lead of the geometer H. Coxeter [1953] and model the pro-
cess of laying down stalks by picturing it to take place on the surface
of a semiinfinite cylinder with a 1-unit radius that has been cut open
along a line on the surface parallel to its axis as shown in Figure 6.34
for the case of a pineapple. Thus the cylinder now looks like a rectan-
gular strip 27 units wide pictured on an x,y cartesian coordinate sys-
tem stretching from x = 0 to x = 2w. In this figure, the first stalk is
laid down at the origin of the coordinate system. Successive stalks are
displaced from their predecessors by the divergence angle, 2w/d? radi-
ans, or 137.6 degrees, in the example shown in Figure 6.34. In addi-
tion, the stalks rise along the surface of the cylinder by h units for
each new stalk laid down. This rise is called the pitch. The stalks are
represented by the hexagonal D domains of the lattice points.
Sunflower-like plants can be represented by tiling a polar coordinate
system with D domains.

Notice in Figure 6.34 that the numbers of the F series alternate on
opposite sides of the y axis. For example, stalk 5 occurs to the right
after two turns around the cylinder, 8 occurs to the left after three
turns about the cylinder, while 18 occurs to the right again after five
turns. Marzec and Kappraff [1983] showed that this is related to the
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Figure 6.33 Two patterns illustrating Gilbert’s method.
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(b)
Figure 6.33 (Continued)

Figure 6.34 Relation of pineapple phyllotaxis to a period lattice.

fact that the continued fraction expansion (see Section 1.6.3) of the di-
vergence angle mod 2, or 1/¢2, has convergents
%5, ¥8, ¥13,...

In this model of a pineapple, the initial stalk is adjacent to the fifth,
eighth, and thirteenth stalks, and these stalks line up with the initial
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stalk along a series of 5, 8, and 13 diagonal lines of hexagons which
represent the numbers of clockwise and counterclockwise spirals evi-
dent on the surface of the plant, i.e., 5, 8, 13 phyllotaxis. However, if
the pitch 7 were a smaller value, later stalks—for example, the thir-
teenth and twenty-first stalks—would be nearest neighbors of the ini-
tial one and would correspond to higher phyllotaxis numbers. Also;
there is some transition value of i at which the pattern of growth
changes from 8,13 to 13,21 phyllotaxis, and at this transition point the
D domains become rectangles.

Other models lead to roughly similar conclusions. For example,
R. O. Erickson presents a model in which the stalks are circles which
pack together to fill the lattice. A careful analysis shows how the
phyllotaxis number, pitch, and divergence angles are related {1983].

N. Rivier et al. [1984] have also developed a crystallography on a
circular disc. They define the stalks as the D domains of a sequence of
computer-generated growth centers given by the algorithm

r€) = aVe

8(€) = 2m\E

where r and 6§ are the polar coordinates of the disc, ! labels individual
cells, \ is the divergence angle, and a is the typical cell’s linear dimen-
sion. By representing stalks on the computer as D domains and study-
ing the constraints on space imposed by Euler’s theorem, they have
simulated the growth of plants and shown that golden mean growth (A
related to ¢) results in a homogeneous and self-similar pattern of
nearly isotropic (identical) cells. For example, when \ = 1/¢, the
daisy-like structure shown in Figure 6.35 results, whereas when
N\ = 1%, the result is a rational approximation to 1/d—the spider web
with highly nonisotropic cells shown in Figure 6.36.

The D domains for the golden mean growth patterns are regular
tilings with hexagons except for a few pentagonal and heptagonal
cells which are defects in the regular tilings (see Section 6.3). In a reg-
ular tiling with hexagons all cells have the same orientation; the pen-
tagons and heptagons are sources of positive and negative curvature,
respectively, in the growth pattern. Their geometry is based on the
following consequence of Euler’s theorem for the tiling of a disc (F + V
- E = 1) in which each vertex has exactly three incident edges (any

other vertex valence is structurally unstable for reasons mentioned in
Section 6.5):

> F,(6-n)=6 (6.5)

n=1
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Figure 6.35 Daisy structures. Notice the self-similarity and the glide circles.

where F,, is the number of cells with n sides. Thus it is consistent with
this equation that any finite set of cells that tile a finite domain are
hexagonal except for an unlimited number of pairs of pentagonal and
heptagonal cells in addition to six isolated cells of positive curvature
(pentagons) as shown in Figure 6.37. This is also consistent with the
description of the cell structure of the infinite random soap bubble
patterns given by Theorem 6.1. Of course, Equation 6.5 does not forbid
octagonal or other shaped tiles.

In Rivier’s model of plant growth, pentagon-heptagon pairs of dislo-
cations in an otherwise homogeneous pattern of hexagonal cells are
located on concentric fault circles, and they screen the strain energy
caused by the isolated pentagonal faults which are forced by the geo-
metric constraints. The dislocations also prevent the hexagonal cells
from gliding over themselves because of shearing forces. It turns out
that concentric circles of dislocations, forming boundaries between
defect-free (hexagonal) grains which can glide on each other, are seen
in large daisies and sunflowers as shown in Figure 6.35. What is even
more interesting about Rivier’s simulation is that it appears to model
the growth of cellular patterns that occur in Benard-Marangoni con-
vection (see Figure 6.37), whereby a fluid heated from below exhibits
convective motion above a certain temperature threshhold. It is be-



In 1984 investigators working at the National Bureau of Standards found
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Figure 6.37 Computer-generated reconstruction of the cellular
structure in a standard Benard-Marangoni experiment.
o = pentagon, + = heptagon, x = octagon, o + = dislocation.

sixfold symmetry can occur in crystals. (The reasons for this will be
made clear in Section 12.13.)

Further investigations into the microstructure of this material have
shown that it embodies a new kind of order, neither crystalline nor
completely amorphous. Materials structured around this new kind of
order seem to forge a link between conventional crystals and the ma-
terials called metallic glasses, which are solids formed when molten
metals are frozen so rapidly that their constituent atoms have no time
to form a crystalline lattice. The new materials have therefore been
called quasicrystals.

The nonperiodic Penrose tilings with kites and darts introduced in
Section 5.11 provide an excellent two-dimensional model of how pen-
tagonal symmetry can arise in x-ray patterns. Actually, quasicrystal
structure is illustrated more clearly by an alternative to the kites-
and-darts tiling. This new tiling employs the two rhombic shapes
shown in Figure 6.38 [Penrose, 1979], and the tiles are combined by
matching the arrows on their edges. Although Penrose tilings are not
crystalline in a conventional sense, they do have many crystalline
properties. For example, in a Penrose tiling it is possible to pick out
many regular 10-sided polygons (decagons), several of which are evi-
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Figure 6.38 Two Penrose rhombuses. They are fitted together so that the arrows
superposed on their edges match.

dent in Figure 6.39. Like hexagons, which are the unit cells of a two-
dimensional lattice (see Section 6.7), all the decagons have precisely
the same orientation. Like Schechtmanite, the Penrose tiling has the
long-range orientational order that is usually associated with conven-
tional crystal lattices.

In a subtler way Penrose tilings also have a kind of translational
order as well. One way to see this is to shade all the rhombuses that
have sides parallel to a given direction. The shaded rhombuses form a
series of jagged irregular lines each of which, on the average, approx-
imates a straight line as shown in Figure 6.40. All the lines are par-
allel and, approximately, evenly spaced. Therefore, in a statistical

Figure 6.39 Decagons are found throughout the pattern;
all have the same orientation demonstrating long-range
orientational order.
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Figure 6.40 One of the five families of parallel and evenly spaced lat-
tice planes formed by jagged lines demonstrating the long-range
translational order of the lattice.

sense, a Penrose tiling has long-range translational order as well as
orientational order. We also note that the line in Figure 6.40 is tilted
at the same angle, 72 degrees, as the ladder in Diirer's Melancholia
(see Figure 3.17).

Penrose tilings also have a kind of fivefold symmetry. In a Penrose
tiling, the shaded rhombuses fall into five families of parallel lines,
one of which is shown in Figure 6.40. The lines run in directions that
are parallel to the edges of a regular pentagon. They intersect at an-
gles that are multiples of 72 degrees, or one-fifth of a full circle. It can
be shown that the lines, like the lattice planes of an ordinary crystal,
will scatter beams of x-ray radiation. Beams reflected from a Penrose
tiling would have fivefold rotational symmetry no matter where in the
pattern they were aimed. The disorderly appearance of the lattice
planes is similar to that found in a conventional crystal at tempera-
tures above absolute zero, when the atoms are disordered because of
thermal vibrations. In Penrose tilings, of course, the disorder would be
present even at a temperature of absolute zero.

H. Lalvani has shown how the two Penrose rhombuses that result in
either exact or approximate pentagonal symmetry can be generalized
to a wider class of nonperiodic tiles (although nonperiodicity has not
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yet been proven) [1990]. The rhombuses in Figure 6.38 are derived
from the central angle A of a 10-gon, {10}, or A = =/5 radian. The two
rhombuses are the only ones possible with angles that are integral
multiples of A; one has angles 1 and 4 times A while the other has
angles 2 and 3 times A. Lalvani has discovered that patterns with ap-
proximate or exact sevenfold symmetry can be derived from the three
rhombuses shown in Figure 6.41. These are the only rhombuses whose
angles are integral multiples of the central angle of a 14-gon, {14}, i.e.,
1 and 6 times A, 2 and 5 times A, and 3 and 4 times A, where A = «w/7
radian. Notice that the numbers 1 and 6, 2 and 5, and 3 and 4 are the
only distinct pairs of integers whose sum is 7, just as the pairs 1 and 4,
and 2 and 3 are the only ones whose sum is 5, the condition for
Penrose tilings. The patterns derived from these three rhombuses look
like standard Penrose tilings (see Figure 6.39) except that {14}-gons,
instead of decagons, appear throughout, and their edges are oriented
in the seven different directions of the edges of a {14}-gon instead of a
pentagon. Figure 6.42 illustrates a distorted image of a standard
Penrose tiling that is derived from the tiles of a {14}-gon. Notice that
the edges are oriented in the direction of only six of the seven possible
directions. Of course, Penrose tilings with eightfold, ninefold, and

Figure 6.41 The three Penrose rhombuses of the {14}-gon.
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Figure 6.42 Detail from a distorted image of a standard Penrose tiling
using tiles derived from a {14}-gon.

higher-fold symmetries can also be created in a similar fashion. In
Section 10.14, we will describe a pair of three-dimensional rhom-
bohedrons that are a three-dimensional analogue of the Penrose tiles
and serve as an even better model for Shechtmanite.

Lalvani has also noticed that the Penrose tiling with fivefold sym-
metry shown in Figure 6.43. can be viewed as an increasing sequence
of whirling golden triangles (see Section 3.5) where the line segments
of the whirling triangles serve as local mirror lines [1989]. Notice how
each line segment reflects a portion of the Penrose tiling and that each
of these mirror lines is oriented along one of the five families of scat-
tering lines described above. Escher, in his print Reptiles, shown in
Figure 6.44, also chose a golden triangle as a platform upon which his
frogs ascend from a hexagonal tiling of the plane to a polyhedral struc-
ture (pentagonal dodecahedron) in three-dimensional space. This
brings us to our own study of polyhedra in the next four chapters.

Appendix 6.A. Projective Geometry

The Renaissance artists were the best practicing mathematicians of
the fifteenth century. Through the system of perspectivity, they not
only developed a more realistic way to represent physical space but
also provided the basis for a new area of mathematics, projective ge-
ometry, which was developed later. Renaissance artists, such as
Alberti, considered themselves to be the most learned and theoretical
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mathematicians of their time. Alberti, in the first written account of
the system of perspectivity, which he published in 1435, stated that it
was the first requirement of the painter to study geometry [Slawsky,

1977], [Cole, 1976].

The subject of perspective was developed by the fifteenth century
artists Alberti, Leonardo da Vinci, and Albrecht Diirer. The system
they devised for representing space was fairly simple. The artist imag-
ined that the canvas was a glass screen to be painted as if he were
looking through a window at a scene outside. From one eye, which is
held fixed, lines of light are imagined to go to each point of the scene.
Where each of these lines intersects the glass screen, a point is
marked on the screen. The set of lines of light is called a projection,
and the corresponding set of points is called a section. If carried out
correctly and when viewed from an appropriate point, the section
should create the same impression on the eye as the scene itself does.
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Figure 6.44 Reptiles by M. C. Escher. (© M. C. Escher Heirs/Cordon Art-Baarn-
Holland.)

For example, in Figure 6.A.1, a road on the ground plane is trans-
formed to a canvas from a projection point O located at the artist’s eye
to render a scene as the artist sees it. The road, which recedes in par-
allel lines / to infinity, converges on the artist’s canvas to a single
point on the horizon line A. It is also clear from this figure that all
paths leading toward the infinite distance on the flat landscape plane
will map on the artist’s canvas to a “vanishing point” on the horizon
line.

What the Greeks were unable to accomplish through rigor, the Re-
naissance artists accomplished through the imagination. The artists
adhered to the following rules in their system of perspective:

1. All horizontal lines in the scene perpendicular to the plane of the
canvas must be drawn to meet at the principal vanishing point.
This is the way our eyes see parallel lines receding in the distance.

2. Any set of parallel horizontal lines that are not perpendicular to
the plane of the canvas but meet it at some angle must be drawn to



Two-Dimensional Networks and Lattices 251

Pana ,

Flgure 6.A.1 Projection of a scene onto a viewing
plane.

converge at a point that lies somewhere on the horizon, depending
on the angle these lines make with the plane of the canvas. Parallel
lines that rise or fall as they recede from the viewer must also meet
at one point. This point would be the one at which a line from the
viewer's eye parallel to the lines described above intersects the can-
vas.

3. Parallel horizontal lines of the scene are drawn as horizontal and par-
allel lines. Vertical lines are drawn as vertical and parallel lines.

Figure 6.A.2 is an example of the work of Vredeman de Vries, who very
clearly used this technique of having all the vanishing points be collinear
on the horizon line. It also shows the effect of exaggerated perspective.

6.A.1 An example of a projected
three-dimensional framework

We shall not attempt to give a thorough discussion of projective geom-
etry in this brief space, particularly since there are several books and

Figure 6.A.2 A work of Vredeman deVries illustrating vanishing points.
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Figure 6.A.3 A framework formed
by truncating a tetradedron.

references that can provide such a background [Edwards, 1985],
[Kappraff, 1990], [Young, 1930]. Instead we leave the reader with the
intuitive notion of a perspective transformation presented above and
present an example of the projection of a three-dimensional frame-
work onto a plane.

Consider the framework that is embedded in a tetrahedron shown in
Figure 6.A.3. This is a diagram of a tetrahedron PVSU truncated by
seven planes (QRT, abj, cdk, efl, hmg, jkl, and mjl). After a series of
projections (not shown), the framework is projected in Figure 6.A.4

__‘A_:l},,g

Figure 6.A.4 A nonrigid frame-
, work obtained as the end result
S of a series of projections of the
! framework in Figure 6.A.3.
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onto the base plane of the tetrahedron in such a way that T and U
coincide and V is mapped to infinity. This projection is uniquely de-
termined. In Section 7.8 it will be shown that as a consequence of this
projection, the projected framework shown in Figure 6.A.4 must not be
rigid [Baracs, 1989].
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Chapter

Polyhedra:
Platonic Solids

On the Platonic solids: We must assume that
the God duly adjusted proportions between
their numbers, their movements, and other
qualities and brought them to the exactest
perfection. Praro
Timaeus

7.1 introduction

Beneath the outer covering of a three-dimensional structure lies a
skeletal frame that absorbs or transmits the external forces that act
upon it. The inner structure of a bridge is evident for all to behold.
Strip away the brick and mortar from a building and what remains
are posts and beams. The metal shell around an airplane masks the
delicate arches which are designed to distribute the dynamic loads ex-
perienced in flight just as our own skin is a membrane that surrounds
a structure made up of muscles, tendons, and bones.

On a microscopic level, chemical and biological structures of all
sorts are made up of chains of atoms and molecules linked together in
complex spatially oriented frameworks. In this chapter and the next
two we will study structures that have their basis in complexes of
points linked together by line segments. In this chapter and the next,
the emphasis is on closed structures known as polyhedra. Chapter 10
studies open structures consisting of lattices and more general com-
plexes of points.

By defining a polyhedron, we necessarily limit the discourse about
them. Although what we mean by a polyhedron has changed through
the years [Senechal and Fleck, 1988], most authors use a definition
that would have been familiar to Plato. A polyhedron is considered to
be a surface made up of a set of plane polygons, called its faces, that
bounds a region of space. The cube and pyramid are the most familiar
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examples of polyhedra. The Csaszar and Szilassi polyhedra described
in Section 4.16 are two other examples. Since, in this definition, a
polyhedron is thought of as a surface, its polygonal faces are spanned
by membranes.

The region of space enclosed by a polyhedron can be either convex or
nonconvex, in which case the polyhedron is called convex or nonconvex.
Convex surfaces are natural generalizations of the convex curves in-
troduced in Section 5.2.2. A closed convex surface is defined to be one
such that any two points placed within the region bounded by it can be
connected by a straight line also lying within that region. If part of
the connecting line lies outside of the region bounded by the surface
for some pair of internal points, the surface is nonconvex. By this def-
inition, the sphere is convex but the torus (or doughnut) is nonconvex.

This definition of a polyhedron, however, is problematic in that it
excludes some important structures that are generally thought of as
polyhedra. In fact, experience in constructing models of polyhedra
leads us to conclude that the membranes spanning the faces are not
only superfluous but actually hide the rich set of inner relationships
between the framework of edges and vertices that surround the faces.
Nevertheless, this approach applies well to most of the polyhedra dis-
cussed in this chapter.

A more modern approach to polyhedra dispenses with the need to
consider polyhedra as surfaces and focuses instead on their skeletal
structures [Grunbaum, 1977]. A polyhedron is defined as a three-
dimensional map consisting of edges, faces, and vertices. The faces are
cycles of edges and vertices called polygons, and they no longer have
to be planar. Each edge links together exactly two faces in a connected
way so that any two edges can be joined by a sequence of faces. For
example, two pyramids joined together only at their apexes are not
polyhedra by this definition. By contrast with the graphs in Chapter
4, edges are considered to be straight lines of definite length, and two
edges meet at vertices with prescribed angles. This definition is more
general than the first one, and some of the things that we say about
polyhedra will refer to this definition rather than the first.

Let’s first become acquainted with polyhedra by building some out
of miniature marshmallows, which serve as the vertices, and tooth-
picks, which play the role of edges of equal length. This activity brings
up some sticky problems. We have found Kraft brand marshmallows
to be of superior quality at least for constructing polyhedra. Try the
following exercises.

Exercise 7.1 Create two equilateral triangles from six marshmallows and six
toothpicks. Now rearrange the six toothpicks to form four triangles each the
same size as the original.
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Exercise 7.2 Construct a square and test it to see that it is not rigid, i.e., the
vertices can be moved relative to each other. By adding additional toothpicks
and marshmallows, surround the square by the least number of toothpicks and
marshmallows to make it rigid.

Exercise 7.3 Construct a cube and notice how it droops, being unable to hold up
even its own weight. Now brace each of its faces with a toothpick, letting the
squares deform to rhombuses, and notice how the resulting distorted box is quite
rigid.

Exercise 7.4 Surround a vertex with six equilateral triangles and notice how
the triangles lie in a plane. Now surround a vertex with five equilateral trian-
gles and notice how the central vertex is forced out of the plane to form a cap.
Next form triangles on each of the outer edges of the original triangles and con-
nect the unattached vertices of these triangles to form a belt of triangles as

shown in Figure 7.1. Finally, complete this figure to a dome with another cap
identical to the original.

Exercise 7.5 Construct as many polyhedra as you can that satisfy the following
constaints:

1. All faces are identical ordinary planar polygons, e.g., equilateral triangles,
rhombuses, hexagons, etc.

2. Each vertex has the same number of incident edges as any other.

3. If the edges were flexible, they could be deformed to a map on a sphere.

For each polyhedron, record in a table the number of faces F, vertices V, edges

E, edges incident to each vertex g, edges incident to each face p, the Euler num-

ber F' + V - E, and whether or not the structure is rigid (stands tall or droops

after you build it).

7.2 The Platonic Solids

There are five kinds of polyhedra that satisfy the conditions of Exer-
cise 7.5 (including the constraint imposed by the use of toothpicks that

Icosahedron

Figure 7.1 Pattern for constructing an icosahedron dome with marshmal-
lows and toothpicks.
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all edges have the same length): the tetrahedron (constructed in Exer-
cise 7.1) with 4 triangular faces and 4 vertices, the hexahedron (or
cube if the faces are squares) with 6 parallelogram faces and 8 verti-
ces, the octahedron (the solution to Exercise 7.2) with 8 triangular
faces and 6 vertices, the pentagonal dodecahedron with 12 pentagonal
faces and 20 vertices, and the icosahedron (constructed in Exercise
7.4) with 20 triangular faces and 12 vertices. Some of the properties of
these polyhedra are listed in Table 7.1.

The three polyhedra with equilateral triangle faces {3}, the tetrahe-
dron, the octahedron, and the icosahedron, are rigid. Once they are
constructed, their vertices cannot move relative to each other; there-
fore, they can assume only one form. The other two kinds of polyhedra,
the hexahedron and the dodecahedron, are not rigid; once they are
constructed they collapse into a continuum of deformed shapes. Some
of these shapes do not have planar faces. However, if the faces of the
hexahedron are squares {4} and the faces of the dodecahedron are reg-
ular pentagons {5} (see Figure 7.2), we get a unique family of five poly-
hedra known as the platonic solids in honor of Plato who commemo-
rated them in Timaeus [1977]. The platonic polyhedra are shown in
Figure 7.2 along with their net diagrams which show how to fold them
up from the plane.

Platonic polyhedra have been studied since the age of ancient
Greece [Malkevitch, 1988]. They have sparked the imaginations of
creative individuals from Euclid to Kepler to Buckminster Fuller.
These polyhedra are rich in connections to the worlds of art, architec-
ture, chemistry, biology, and mathematics. In Timaeus four of the sol-
ids were related to the four elements: earth, air, fire, and water. The
fifth solid, the dodecahedron, represented the cosmos [see Figure
7.3(a)]. In the natural world, the platonic solids present themselves in
the form of microscopic organisms known as radiolaria [see Figure
7.3(b)]. In this chapter and the next two we will study some of the con-
nections between platonic solids and the natural world along with ex-

TABLE 7.1
No. of No. of g edges  p edges
No. of ver- edges per per
Polyhedron faces F tices V E vertice face Rigid

Tetrahedron 4 4 6 3 3 Yes
Cube 6 8 12 3 4 No
Octahedron 8 6 12 4 3 Yes
Dodecahedron 12 20 30 3 5 No
Icosahedron 20 12 30 5 3 Yes
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Tetrahedron
Cube
2NN
3
Dodecahedron
Octahedron

N 5

Icosahedron VAV’A‘
Q) N\

Figure 7.2 (a) The five platonic solids; (b) net dia-
grams to fold them up from the plane along with in-
dications of the angular deficit, .

amples of how the platonic polyhedra lead to interesting three-
dimensional designs.

It is difficult to understand the nature of three-dimensional objects
through verbal descriptions of them or even by looking at two-
dimensional images of them. What is needed is an actual model which
can be manipulated and viewed from different angles. We strongly
recommend that you construct a set of platonic polyhedra as an aid to
understanding the material of this chapter. They can be constructed
out of sticks and connectors or stiff paper, and methods of construction
can be found in Shapes, Space, and Symmetry by Alan Holden [1971],
Polyhedra: A Visual Approach by Anthony Pugh [1976], Mathematical
Models by H. M. Cundy and A. P. Rollett [1961], and Polyhedron Mod-
els by M. J. Wenninger [1971].

7.3 The Piatonic Solids as Regular Polyhedra

The platonic solids can be considered to be polyhedra at the limit of
perfection. Throughout this chapter we will see a good deal of evi-



Qctahedron
Air

Dodecahedron Kosghedron
the Universe Woter

{a}

Figure 7.3 (e} The platonic solids depicted by Johannes Kepler in
Harmonices Mundi, Book II (1619); (b) the platonic solids in the form of
radiolaria.
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dence of this perfection. By their very construction, they possess the
same kind of perfect symmetry exhibited in Section 4.7 by the reg-
ular maps. In fact, the first two conditions of Exercise 7.5 are pre-
cisely the defining properties of the regular maps on the sphere (or
plane): all faces and vertices are surrounded by an identical num-
ber of edges. Any convex polyhedron that can be constructed from
regular polygons with these two properties is called a regular poly-
hedron [Coxeter, 1973].

The five regular maps on a sphere listed in Table 4.1 are isomorphic
to the five kinds of regular polyhedra constructed in Exercise 7.5 and
listed in Table 7.1. For example, the cube has three squares surround-
ing each vertex, denoted by the Schléfli symbol {4,3}, in which the first
number refers to the face valence p (number of edges per face) while
the second number refers to the vertex valence g (number of edges per
vertex). Likewise, the tetrahedron surrounds each vertex by three tri-
angles {3,3}, the octahedron surrounds each vertex by four triangles,
{3,4}, and the dodecahedron and icosahedron are {5,3} and {3,5}, re-
spectively.

There can be no more than five kinds of regular polyhedra that sat-
isfy condition 3 of Exercise 7.5 that the edges be deformable to a map
on the sphere. If there were another one, there would be another reg-
ular map, in violation of Theorem 4.3.

7.4 Maps of Regular Polyhedra on a
Circumscribed Sphere

Besides possessing perfect symmetry in a graphical sense, the platonic
solids also have a kind of perfect geometric symmetry in the sense that
the vertices of each solid are equidistant from a common center and
evenly distributed around this center. Thus, they lie upon an imagi-
nary sphere called the circumscribed sphere, or circumsphere. This
prompts us to ask the following question: Can you slice an orange into
four congruent (identical) pieces in a way other than the breakfast
way? This can be done by circumscribing a sphere about the vertices of
a tetrahedron as shown in Figure 7.4(a). A source of light is placed at
the center of the sphere and the edges are projected onto the sphere
where they form a tiling of the sphere by a set of congruent tiles. The
congruent slices are represented by the four solid angles obtained by
cutting the sphere with planes that include an edge of the tetrahedron
and the center of the sphere. Of course, the circumscribing spheres of
the other platonic polyhedra divide the sphere into 6, 8, 12, and 20
congruent segments as shown in Figure 7.4 for three of the platonic
solids. Spherical stone sculptures of the platonic solids constructed a
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4 O &2
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(a) (b) {e)

Figure 7.4 Three platonic polyhedra projected onto a sphere as arcs
of geodesic circles.

millennium before Plato have been found in the British Isles
[Critchlow, 1982].

In this projection, the edges of the platonic polyhedra project onto
arcs of great circles (circles on the sphere whose plane includes the
center of the sphere, e.g., longitude lines). An arc of a great circle is
the path of shortest distance that a bug crawling on the surface would
take to get from one point on the sphere to another. It is also the path
of airline pilots going from point to point on the globe by the great
circle route. In general, curves of minimum distance on any surface
are called the geodesics of that surface, i.e., the geodesics of a sphere
are great circles.

Problem 7.1 A rectangular box of given dimensions is shown in Figure 7.5. A
bug is to crawl on the surface of the box from a point A, 1 inch below the center
of the top edge, to point B, 1 inch above the center of the bottom edge on the
opposite side of the box. Find the shortest distance from A to B. (Hint: Cut open
the box up in a suitable way and draw the shortest straight line.) [Blake, 1985]

12

/x Figure 7.5 Rectangular box of

< 30 Problem 7.1.
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7.5 Maps of the Regular Polyhedra on the
Plane—Schlegel Diagrams

In the last section, the platonic polyhedra were projected onto regular
maps on the sphere with congruent faces. The platonic solids can also
be projected onto the plane. In fact, the five regular maps on the plane,
shown in Figure 7.6(d), are just such projections. These Schlegel dia-
grams [Loeb, 1976], as they are called, are obtained by projecting the
edges of a platonic polyhedron onto the plane from a point directly
above the center of one of its faces as shown in Figure 7.6(a) for a cube.
Visually, this amounts to holding one face of a polyhedron quite close
to one's eyes, looking at the structure through that face, and drawing
the projection of the structure as seen in this exaggerated perspective,
Notice that one of the faces of the polyhedron frames all the others,
and this face must be included when counting faces.

Although the projected map has lost its congruent faces, the
Schlegel diagram enables us to see a realistic two-dimensional repre-

Tetrghedron

Cube

Dodecahedron

Point of projection

Octahedron

Plane of
projection

(a)

Icosahedron

d<{aa>

(b)

Figure 7.6 (a) A cube projected onto the plane of one of its faces as a
Schlegel diagram; (b) Schlegel diagrams of the platonic polyhedra.
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sentation of a three-dimensional object that preserves such important
characteristics of the original as its connectivity of edges and vertices
and some of its symmetry. In Section 9.9 we will see that the Schlegel
diagram provides an excellent tool to help visualize the result of
transforming the platonic solids by truncating vertices or edges.

7.6 Duality

7.6.1 The inscribed sphere

At first glance, the platonic polyhedra appear quite different from
each other. However, they are related in many ways and form a
tightly woven family. In this section we look at perhaps the most basic
of relationships between these polyhedra, namely duality.

An important observation about the platonic polyhedra can be made
by inspecting Table 7.1. There is a natural pairing of the cube with
the octahedron, the dodecahedron with the icosahedron, and the tet-
rahedron with itself. For each face of one of these pairs, there corre-
sponds a vertex of the other reminiscent of the duality of maps de-
scribed in Section 4.9. In fact, by placing pairs of platonic polyhedra
one within the other (you can use marshmallow and toothpick models)
you can see that if a vertex of one polyhedron of the pair is placed at
the centroid of a face of the other and vertices are connected if their cor-
responding faces share an edge, the other member of the pair results.

For dual pairs of platonic polyhedra, certain statements that can be
made about a polyhedron can also be made about its dual if the fol-
lowing replacements are made:

face « vertex
edge < edge
p<q
For example, if the Schlifli symbol of a polyhedron is {p,q}, its dual
has the symbol {g,p}.

Since the face centroids of each of the platonic polyhedra are also
vertex points for their duals, they must lie equidistant from a common
center. Thus another sphere, the inscribed sphere or insphere, can be
placed within a platonic polyhedron tangent to each of its faces. The
inscribed sphere of a platonic solid is then the circumscribed sphere of
its dual scaled appropriately in size. Duality for the platonic polyhedra
depends on their symmetry. Appendix 7.A is devoted to showing how the
concept of duality can be defined for convex polyhedra in general.

At first Kepler believed that the physical structure of the universe was
closely connected with geometry. He alternately inscribed and circum-
scribed spheres about dual pairs of the platonic solids and hypothesized



Polyhedra: Platonic Solids 265

that these spheres represented the orbits of the five planets known in his
time, Mercury, Venus, Mars, Jupiter, and Saturn as shown in Figure 7.7
but could not fit his observations precisely to this scheme.

Escher also used inscribed and circumscribed spheres to create the
set of nested models of the platonic solids shown in Figure 7.8. He was
so fascinated by his creation that when he moved from his home, he
gave away most of his belongings, but he took his beloved model of the
five solids to his new studio [1971].

@ SPHERE OF SATURN B CUBE Y SPHERE OF JUPITER
8 TETRAHEDRON € SPHERE OF MARS { DODECAHEDRON

N ORBIT OF EARTH 0 ICOSAHEDRON t SPHERE OF VENUS
X OCTAHEDRON A SPHERE OF MERCURY MoSUN

Figure 7.7 The planetary system of Johannes Kepler.



266 Chapter Seven

Figure 7.8 M. C. Escher contem-
plating a nested set of platonic
polyhedra.

Wenninger has shown how beautiful models of the duals may be
constructed, embedded in each other by paper folding [1983]. Lalvani
has created many beautiful transpolyhedra which demonstrate a con-
tinuous transformation from a polyhedron to its dual [1989], [Crapo,
1978].

7.6.2 Interpenetrating duals and the intersphere

The dual pairs of platonic polyhedra can be visualized as interpene-
trating each other so that the set of edges of one perpendicularly bisect
the corresponding edges of the other. They will be discussed further in
the next chapter and if you look ahead to Figure 8.9, you can see pic-
tures of them. We recommend that you construct a set of them.

Construction 7.1 Construct a set of the three interpenetrating pairs of dual pla-
tonic polyhedra. This construction can be carried out by placing appropriately
sized pyramids on each face of one polyhedron of the pair as shown in Figure 7.9
for the case of interpenetrating tetrahedra. The vertices at the base of the pyr-
amids lie at the midpoints of the sides of the platonic polyhedron. The lateral
faces of the pyramids are equilateral triangles and each pyramid may be con-
structed by folding the triangles up from the plane.

These interpenetrating duals help to define a third sphere that is
related to the platonic solids, the intermediate sphere or intersphere.
This sphere intercepts the midpoint of each edge of a platonic polyhe-
dron. An example is shown in Figure 7.10 of the intersphere of the
cube and the octahedron combination.
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Figure 7.9 Two interpenetrating
tetrahedra.

Figure 7.10 Interpenetrating cube and octahedron framing their common intersphere.

Escher was intrigued by the dramatic possibilities that interpene-
trating duals offered to design, and he created many designs based on
them, one of which is shown in Figure 7.11.

7.6.3 Duals on a Schlegel diagram

A polyhedron and its dual can be represented on the same Schlegel
diagram, although this is a little tricky [Loeb, 1976]. We place a ver-
tex inside each face and connect vertices by an edge if two faces of the
original Schlegel diagram share an edge. The problem arises in plac-
ing a vertex within the framing face. One way around this problem is
to imagine that the framing face is the exterior of the Schlegel dia-
gram and that the vertex of the dual on this face is located at infinity.
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Figure 7.11  Stars, woodcut, 1948, Escher’s fantasy based on the platonic
solids and their duals. (© M. C. Escher Heirs/Cordon Art-Baarn-
Holland.)

Then all vertices corresponding to faces bordering on the outside face
are connected to the infinite vertex by drawing an edge crossing the
boundary of the Schlegel diagram at right angles. This is illustrated
in Figure 7.12 for the tetrahedron.

This approach can be justified by imagining the Schlegel diagram
drawn on a sphere. The framing face is the remainder of the sphere.
The vertices of the dual are placed on each face and connected by the
appropriate edges. The vertex in the outer face is punctured, reminis-
cent of Section 4.4, and stretched to infinity.

7.7 Combinatorial Properties

Since the platonic polyhedra can be thought of as maps on a sphere,
the combinatorial results discussed in Sections 4.6 and 4.7 continue to
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Flgure 7.12 Schlegel diagram of
a tetrahedron dual.

Y
|
!
v

be valid. In fact, the vertices and edges of every 3-polytope (convex
three-dimensional polyhedron) P determines a graph G(P), the graph
of P. 1t is relatively easy to prove that G(P) is planar and 3-connected
(see Section 4.5) for each 3-polytope P. The converse statement was
first proved by Ernst Stenitz, the most important early twentieth cen-
tury contributor to the theory of polyhedra, and it constitutes the
nontrivial part of the result.

Theorem 7.1 (Steinitz’s theorem) A graph C is isomorphic to the graph G(P) of
some 3-polytope P if and only if C is planar and 3-connected. (C is also referred
to as a polyhedral graph.)

The proof is not presented here, but we refer the interested reader to
[Barnette and Griinbaum, 1969].

The combinatoric formulas of graphs continue to hold for polyhedra,
ie.,

> q=2E (7.1)
\4
> p=2E (7.2)
F
and
F+V-E=2 (7.8)

where summation is taken over all vertices in the first formula and
over all faces in the second, and p and g are the face and vertex va-
lences, respectively. Table 7.1 shows that Euler’s formula for the
sphere (or plane) holds for the platonic solids. For regular polyhedra
the first two formulas can be written as

qV = 2E (7.4)
pF = 2E (1.5)

These simple formulas place severe restrictions on the plastic forms
that are possible for two- and three-dimensional maps even before the
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additional constraints of straight edges and face angles of polyhedra
are taken into account. These formulas weave a kind of analytic
thread through the subject of two- and three-dimensional design, and
they lead to some interesting consequences that are worth exploring.
For example, Equation (4.13) can be carried over from regular graphs
to platonic polyhedra, i.e.,

=1 =L -
F=3 E=35 V= (7.6)

12

q

where ¢ = 4pq/(2p + 2q - pq)

That is, the icosahedron {3,5}, has ¢ = 5, p = 3, t = 60 Thus,

60 60 60

F—3—20 E-2—30 —5—12
and the number of faces, vertices, and edges have been determined
from knowledge of p and ¢ only. No metric properties (length and an-
gle) are needed. In the next three sections, we will see the effect of
introducing length and angle. In the next section we shall see how to
interconnect a set of nodes or vertices of a structure by straight rods or
edges in order to make it rigid.

Problem 7.2 Apply Equation (7.6) to computing F, V, and E for the other pla-
tonic solids.

7.8 Rigidity

When you built the platonic solids out of marshmallows and tooth-
picks, you noticed that the tetrahedron, octahedron, and icosahedron
stood up firmly and rigidly and were even able to support additional
weight after their construction. On the other hand, the cube and the
dodecahedron drooped over, unable to support even their own weight.
How can one explain this behavior? What factors determine the rigid-
ity of a three-dimensional structure? How can a polyhedron that is not
rigid be stabilized?

By a rigid framework, we mean a structure of vertices and edges
whose vertices are not capable of moving relative to each other when
its edges are connected to the vertices by swivel joints permitting ro-
tation about the vertex in any direction. We have considered the ri-
gidity of two-dimensional frameworks in Sections 4.18 and 6.6. Now
we wish to determine the least number of edges required to make the
structure rigid. A. L. Loeb explains that V disconnected vertices need
3V coordinates to fix them in three-dimensional space, i.e., three co-
ordinates x, y, z for each vertex [1976]. As a result, we say that V ver-
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tices have 3V degrees of freedom. Each time we add an edge, we con-
strain the structure so that there is one less degree of freedom. Since a
rigid ohject has no degrees of freedom, we might think that 3V edges
would be needed to make V vertices rigid. Actually, only 3V — 6 edges
are required, although certain qualifications are mentioned below.
For example, the tetrahedron with four vertices is rigid with E = 3(4)
- 6 = 6 edges.

Why does a rigid body have six fewer degrees of freedom than we
would expect? Since a rigid body can be translated to a new location or
rotated as a whole in space and still be rigid, all its vertices need not
be fixed. Consider three vertices on the rigid structure not all on the
same line, as in Figure 7.13. The three coordinates of point 1 account
for the freedom of translation. Point 2 is free to rotate on a sphere
about point 1, in which case two coordinates are needed to specify its
location on this sphere. Finally, point 3 is free to rotate in a circle
about the axis through points 1 and 2, and its location on this circle is
specified by one more coordinate. Thus, six coordinates need not be
fixed on the configuration for it to remain rigid, three for translation
and three more for rotation. In general, the formula

E=3V-6 (7.7)

is a good predictor of rigidity, although this formula has its limita-
tions as we shall see.

While Equation (7.7) puts a lower bound on the number of edges
needed to make a structure with V vertices rigid, no information is
given about where these edges should be placed. If there are fewer
edges, the structure is not rigid according to this argument. Once the
3V — 6 degrees of freedom are removed, additional edges are redun-
dant since they do not further constrain the structure. For example, if
V =12, 3V - 6, or 30, edges are needed for rigidity. This is certainly
true for the icosahedron. However, a cube with 8 vertices requires 18
edges to be rigid, six more than it has. A little experimentation shows
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Figure 7.13 Three noncollinear
points on a rigid body.
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that if an additional edge is added along one of the diagonals to each of
the cube’s six faces, the new structure is rigid, as Exercise 7.3 shows.

Exercise 7.6 Equation (7.7) is a reliable predictor of rigidity of three-
dimensional structures. However, it does not guarantee rigidity, and a structure
may be rigid even when it is violated. Construct several rigid and nonrigid poly-
hedra out of marshmallows and toothpicks to test this formula. Try to find
nonrigid structures that, nevertheless, satisfy the formula and rigid structures
that violate it.

The problem with Equation (7.7) as a predictor of rigidity is that it
can be violated, and yet the structure may still be rigid as shown in
Figure 7.14 for an octahedron with a vertex and two edges connecting
opposite vertices. Surely this structure is rigid since the octahedron is
and segments that make up the diagonal cannot move without chang-
ing length. A calculation shows that 3V - 6 = 15, but this rigid struc-
ture has only 14 bars. Nevertheless, the violation of the rigidity con-
dition does underscore a dangerous condition. Although this structure
is rigid, it is infinitesimally nonrigid, which means that under stress
certain vertices slightly alter their positions, and it is of cardinal im-
portance for structural engineers to avoid such circumstances.

In two dimensions, E = 2V - 3 is a predictor of rigidity provided the
edges are properly placed. Figure 7.15(a) shows a portion of the
32.4.3.4 tiling (see Section 5.5) built out of marshmallows and tooth-
picks that is not rigid even though E = 2V - 3. If certain edges are
removed and reinserted at the positions represented by the dotted
lines, the same configuration of vertices is rigid. Figure 7.15(5) shows
how such a stable configuration can be constructed from marshmal-
lows and toothpicks [Loeb, 1988].

In Section 6.6 we presented another approach to predicting the ri-
gidity of structures based on the projective properties of polyhedra.
Henry Crapo and others have delved deeper into the subject of rigidity
and have come up with the following general condition for the rigidity
of a two-dimensional framework:

Figure 7.14 An octahedron with
two edges along a diagonal. It
forms a rigid but noninfinites-
mally rigid structure.
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Figure 7.15 (a) A nonrigid two-dimensional framework that, never-
theless, satisfies E = 2V - 3; (b) it can be made rigid by changing the
locations of the indicated edges to the those of the dotted lines while
maintaining the positions of the vertices.

Theorem 7.2 A two-dimensional framework with the configuration of a polyhe-
dral graph (3-connected and planar) is not rigid if and only if it is the projected
image of a polyhedron and satisfies £ = 2V - 3.

For example, a slightly modified version (but still nonrigid) form of the
nonrigid configuration in Figure 7.15(a) is shown in Figure 6.A.3. The
polyhedron from which it was projected is shown in Figure 6.A.4. Theo-
rem 7.2 implies that if the lengths of the toothpicks were slightly altered
in Figure 7.15(a), the structure would be rigid since it is unlikely to be
the projection of a polyhedron. Figures 6.A.3 and 6.A 4 illustrate that the
end result of a series of projections of a polyhedral framework embedded
in a truncated tetrahedron yields a nonrigid two-dimensional framework
according to Theorem 7.2. If this two-dimensional framework is not rigid,
it is easy to see that the closely related framework in Figure 7.15(a) is
also not rigid. It is a little more difficult to predict the nonrigidity of
three-dimensional structures, but Janos Baracs and Crapo have ex-
tended Theorem 7.2 to partially cover this case [1989].

Theorem 7.3 A three-dimensional framework with the configuration of a
polytopal graph is not rigid if it is the projection of a 4-polytope (four-
dimensional convex polyhedron; see Section 4.20) and satisfies E = 3V - 6.

Theorems 7.2 and 7.3 place the study of the rigidity of structures
squarely within projective geometry, a place that this study enjoyed a
century ago. Further discussion in great depth can be found in Struc-
tural Topology, a journal edited by Henry Crapo [1978].

Finally, it can be proven that any convex polyhedron is rigid if and
only if each of its faces is a triangle.

7.9 The Angular Deficit

A total angle of 360 degrees surrounds a point in the plane. This is
also true around a point on a sphere since the locality of any point on
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a sphere can be approximated as closely as you wish by a tangent
plane. How does the sum of angles around a vertex of a polyhedron
compare with the 360-degree angle around a point on the plane or
sphere? The angular deficit, or spherical deviation, at a vertex of a
polyhedron is defined as the difference between the sum of the angles
of the polygons surrounding the vertex and 360 degrees and given the
symbol 8, i.e.,

d = 360 - sum of angles around a vertex

In other words, it is the gap which results if the vertex is opened out
flat as in the net diagrams of Figure 7.2. The angular deficits of typ-
ical vertices of the platonic polyhedra are shown on these net dia-
grams. The smaller the angular deficit, the more sphere-like the poly-
hedron. Of course, if the polyhedron degenerates to a plane or a
sphere, the angular deficit at each vertex is zero. The summation of
the angular deficits over all the vertices of a polyhedron is the total
angular deficit.

René Descartes made some important contributions to geometry in
a treatise entitled De Solidorum Elementis [Frederico, 1982]. An im-
portant formula is stated in this manuscript known as Descartes’ for-
mula. It states that the total angular deficit, or the sum of all the an-
gular deficits, taken over each vertex of a convex polyhedron equals
720 degrees, i.e.,

>8=720 or 8V =720 for regular polyhedra  (7.8)
v

where summation is over all the vertices of the polyhedron.

Descartes’ formula is a remarkable constraint on space. Only when
it is satisfied can a set of vertex patterns close up to form a convex
polyhedron. This formula deserves a proof, which is given in Appendix
7.B where we show that it is equivalent to Euler’s formula.

The fact that the sum of the face angles around any vertex of a poly-
hedron is less than 360 degrees leads to another proof that there are
only five platonic polyhedra.

proof For any regular polyhedron {p,q}, its faces are regular polygons of p
sides. From Equation (5.1), the internal angle of a regular polygon is

9 = 180 (%2) degrees (7.9

Since g such regular polygons surround each vertex, and the sum of the face
angles meeting at a vertex is less than 360 degrees,

1809 - 2) _ 44
)
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Using algebra, it follows that
p-2g-2)<4

The only values of p and ¢ (which must be integers) satisfying this inequality
are

{3,3}, {3,4}, {4,3}, {3,5}, and {5,3}

where the bracketed numbers represent the Schlifli symbols for the platonic
polyhedra.

Descartes’ formula can also be used to determine the number of
faces, edges, and vertices of a polyhedron if the pattern of polygons
surrounding each vertex is the same, as it is for regular polyhedra.
Thus, for an icosahedron, it follows from Equations (7.3), (7.4), and
(7.8) that:

8 = 360 — (5)(60) = 60 degrees

720 _

V=8

12

E=g—2‘£=30sinceq=5

F=2+E-V=20

which agrees with our expectations.

7.10 From Maps to Polyhedra—The
Dihedral Angle

Most of what we have said about polyhedra in the last two sections
takes into account only the connections of vertices by edges, i.e., its
qualitative, not quantitative, properties such as length and angle. To
determine whether or not a structure is rigid we must connect vertices
by just the right number of rods of the appropriate length, but nothing
has been said about what those lengths are. Even Descartes’ formula
holds equally well for all the drooping shapes of a nonrigid polyhedron
and says more about the ability of the polyhedron to form a closed fig-
ure than about the angles between its edges and faces.

In an actual polyhedron with planar faces, each face is oriented in
a particular direction. The direction of a line in space that is per-
pendicular to every line in a given plane is called a normal vector to
the plane (see Figure 7.16). All planes perpendicular to the direc-
tion specified by a normal vector are said to have the same orien-
tation.
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Figure 7.16 The normal vector to a plane.

The orientation in space of the plane faces of a polyhedron can be de-
termined from information about the angle between pairs of its faces, the
dihedral angle, 6;,. The angle between the pages of the open book shown
in Figure 7.17(a) shows what we mean by the dihedral angle. The dihe-
dral angle between two planes is the apparent angle between them when
they are viewed in such a way that their line of intersection appears as a
point (edge view or plane view) as shown in Figure 7.17(b). In other
words, the dihedral angle is the angle between the traces of the planes on
a cutting plane normal to their line of intersection. It is also the angle
between the normal vectors to the planes if the vectors are threaded in
the direction of the angle as Figure 7.17(c) shows.

The symmetry of the platonic solids makes the dihedral angle between
any pair of bordering faces the same. We would like to compute the di-
hedral angles for the platonic solids. But first we will show that there is
arelation between the dihedral angle, the angular deficit, and the vertex
figure. The vertex figure of a given vertex is the polygon formed by all the
vertices that are connected by an edge to the given vertex (see Figure
7.10). All the vertex figures of a platonic polyhedron are identical. In
fact, the vertex figures of a platonic polyhedron are the faces of its dual.

A pattern of six equilateral triangles surrounds a vertex and lies
flat in the plane. However, if we connect five equilateral triangles
around a vertex, the pattern bulges out of the plane to form a three-
dimensional cap as shown in Exercise 7.4. In the first case, the angu-
lar deficit of the vertex and the dihedral angle between the triangular
faces are both zero. In the second case, the angular deficit equals 60
degrees, but the dihedral angle is not fixed since the cap is not rigid

Figure 7.17 (a) The dihedral angle between two planes; (b), (c) edge view of the
planes showing the dihedral angle.
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(the vertices can be moved relative to each other). However, if we
insist that the vertex figure be a planar regular pentagon, the cap is
uniquely defined and is a typical segment of an icosahedron.

More generally, let the vertex figure be a regular n-gon where
n may be fractional in the case of star polygons. For example {5/2}
represents a regular pentagram. Peter Messer [2000] has shown that,

sin 9—” =08 @secg (7.10a)
2 n 2

where o is the angle of each face incident to the vertex measured
in degrees. Given the regular polyhedron {p,q}, then n=¢q and
o=180(1 - 5), and the regular case simplifies to,

. O, 180 180
sin — = ¢SC ——C0S —— (7.10b)
2 p q

The dihedral equations for the Platonic polyhedra are computed using
Equation (7.1056), and they are listed in Table 7.2.

TABLE 7.2 Dihedral Angles of the Platonic Polyhedra

Polyhedron {p,q} P q Op
Tetrahedron 3 3 70.53
Octahedron 3 4 109.47
Cube 4 3 90
Icosahedron 3 5 138.19
Dodecahedron 5 3 116.57

7.11 Space-Filling Properties

A polyhedron is more useful for creating models of biological, chemi-
cal, or architectural forms if it can be combined with others to form a
larger aggregate. For example, cubes stack to completely fill space.
This explains why cubes or their close relatives, parallelopipeds, are
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ideal structures with which to subdivide the space inside or outside of
a building.

Can other platonic polyhedra stack to fill space? Try as we may,
only the cube among the platonic polyhedra can fill space by itself. In
a space-filling array of polyhedra no gaps can remain and the edges
and vertices of any polyhedron from the array must coincide with the
edges and vertices of adjacent polyhedra, i.e., no vertex lies within an
edge or face. Whether or not a set of polyhedra can fill space is deter-
mined by the following self-evident necessary condition:

The sum of the dihedral angles between all faces meeting at a com-
mon edge is 360 degrees, i.e.,

>'6p = 360 (7.11)
E

where summation is over the set of edges.

Problem 7.3 Check the dihedral angles in Table 7.2 to see that, of all the pla-
tonic polyhedra, only an integral number of cubes are able to surround an edge
to satisfy the criteria for space filling.

Although tetrahedra cannot fill space by themselves, they can com-
bine with octahedra in a ratio of two tetrahedra for each octahedron to
fill space. In fact, as we saw in Exercise 7.3, bracing each face of a
cube with an edge deforms the cube into a parallelopiped shown in
Figure 7.18 made up of two tetrahedra and one octahedron, which can
stack as well as cubes. From Table 7.2 we see that the dihedral angles
for the tetrahedron and octahedron are 70.54 and 109.46 degrees, re-
spectively. Thus, Equation (7.11) requires two tetrahedra and two oc-
tahedra to surround each edge in a space-filling array.

In Chapter 10 we will see how tetrahedral and octahedral arrange-
ments form the underlying structure of metallic crystals. Buckminster
Fuller used the stackability of tetrahedra and octahedra to create a
structural module called the octet truss, which is the basis of very rigid
structures known as spaceframes shown in Figure 7.19 and discussed
further in Chapter 10 [1975], [Edmondson, 1987].

Figure 7.18 Two tetrahedra and one octahedron form
a parallelopiped that fills space.
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Figure 7.19 An octet truss.

7.12 Juxtapositions

There are three ways polyhedra can be joined one to another: vertex fo
vertex, edge to edge, and face to face (see Figure 7.20). If one polyhe-
dron is held fixed in space, in the vertex-to-vertex arrangement the
other is free to move in a sphere about the first; in the edge-to-edge
juxtaposition the second polyhedron can move in a circle about the
edge as axis; while in the face-to-face configuration no relative move-
ment is possible. Fuller likened the freedom of the vertex-to-vertex
configuration to the vapor state of molecules, edge to edge to the liquid
state, and the most constrained face-to-face arrangement to the solid
state. Although this analogy is metaphorical, many of the properties
of actual molecules can be explained by these different kinds of bond-
ing of molecules [Wells, 1956}, [Pauling and Hayward, 1964].

Figure 7.21 shows a model of a compound with chemical formula of
the type ABX3, known as a perovskite, a compound capable of storing

/V

L
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Figure 7.20 Three juxtapositions of polyhedra. (@) Vertex to vertex; (b) edge to edge;
(c) face to face.
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Figure 7.21 The basic structural
unit of perovskites is a cube.
One metallic atom A lies at the
center, 8 smaller metallic atoms
B occupy the corners, and 12
nonmetallic atoms X are the
midpoints of the edges; the 6 X
anions that surround each B
cation form an octahedron; the
basic structural model becomes
A a group of 8 corner-linked octa-
hedra around an A cation.

electric energy and possessing other remarkable electrical properties
such as high-temperature superconductivity. The three species of
perovskite ions are arranged in one cell of a cubic lattice in Figure
7.21 with a large A ion at the cube centers, a smaller B ion at the ver-
tices, and X ions in the center of the edges. It would appear at first
that the formula for this compound should be ABgX,,. However, since
each vertex is shared by eight adjacent cubes and each edge is shared
by four adjacent cubes, the actual formula must be ABX;. Each B ion
at the corners of the cube is surrounded by an octahedral configura-
tion of six X ions at the midpoints of the edges incident to each of
these vertices. This collection of octahedra can be connected vertex to
vertex and is responsible for many of the remarkable electrical prop-
erties of perovskites [Hazen, 1988]. For example, if the A ion is
slightly undersized, the octahedra respond to mechanical pressure by
displacing themselves from their equilibrium positions, thus setting
up an electric field capable of storing electric energy. Robert M. Hazen
and his group at the Geophysical Laboratory of the Carnegie Institu-
tion of Washington has shown that a class of high-temperature super-
conducting materials is made up of structurally flawed perovskites.
The structure of perovskite crystals will be discussed further in Sec-
tion 10.7.3.

Construction 7.2 [Pugh, 1976] The opposite edges of a regular tetrahedron are
at right angles to each other. A ring of tetrahedra can be formed by joining the
opposite edges of eight tetrahedra as shown in Figure 7.22. If the joints between
the figures are flexible enough to allow each tetrahedron to rotate about its
neighbors, the whole ring of tetrahedra can rotate as a smoke ring rotates in the
air. A similar ring can be constructed from 16 octahedra joined edge to edge.
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Figure 7.22 [Edge-to-edge linked
tetrahedra.

Construction 7.3 [Pugh, 1976] Tetrahedra can also be joined face to face to cre-
ate a form which can be likened to a twisted column with triangular faces as
shown in Figure 7.23(a). The edges of this arrangement follow helical lines, so
the figure is referred to as a tetrahelix.

Besides the tetrahelix, elongated structures called masts can be built
out of octahedra or icosahedra as shown in Figure 7.23(b) and (c). A
seven-frequency octetmast is shown in Figure 7.23(d). The frequency is
the number of units that combine to form the length. If each rod of the
octet truss in Figure 7.19 is replaced by an octetmast, a truss of lower
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Figure 7.23 (a) Tetrahelix; (b) octamast; (¢) icosamast; (d) octet-
mast.
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Figure 7.24 A design for a space platform constructed from octetmasts.

mass-to-volume ratio is produced. If each rod of the new truss is again
replaced by an octetmast, the density can be reduced even further.
Russell Chu [1986] has proposed that this octet truss expansion system
be used as the structure of a large lightweight space station in the form
of an octahedron (see Figure 7.24). Although each rod of the structure
measures only 5 feet in length and 3 inches in diameter, a 14-frequency
expansion followed by a 12-frequency expansion produces an expanded
mast that is 840 feet in length by 70 feet in diameter.

7.13 Symmetry

Up to now we have vaguely referred to the “perfect symmetry” of the
platonic solids. Now we become a little more precise. When we look at
a model of a polyhedron, what we are most likely to notice at first are
physical aspects of the model such as the positions of its vertices, the
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connectivity of its edges, and the shapes and orientations of its faces.
But if we continue to examine the model for a while, turning it every
which way, we note other more subtle attributes of the polyhedron
known as its symmetries. When the model is oriented in special direc-
tions, the jumble of edges and vertices coalesces into a highly ordered
pattern.

7.13.1 Rotational symmetry

Most people have an intuitive notion of symmetry; generally we rec-
ognize when a geometric pattern is or is not symmetric. However, we
can formalize this concept to make it a little more precise. An object is
said to have rotational symmetry if a rotation of the object about some
axis results in precisely the same overall configuration of points, al-
though these points may be in new positions. The polyhedron is said to
be invariant under this rotation.

The cube is invariant under rotation about an axis through the cen-
ter of two opposite faces under four rotations of 90, 180, 270, and 360
degrees. This is called a fourfold rotational symmetry of the cube and
the axis is known as a fourfold axis of rotational symmetry and corre-
sponds to a face-on view of the cube. Figure 7.25(a) shows the three
fourfold axes of the cube which are responsible for a total of nine ro-
tations in addition to the identity transformation which leaves the
cube unchanged (or rotates it 360 degrees). The cube also has four
threefold axes (responsible for eight rotations) through opposite verti-
ces which result in a vertex-on view of the cube [see Figure 7.25(b)],
and six twofold axes (responsible for six rotations) through the centers
of opposite edges, as shown in Figure 7.25(c), resulting in an edge-on
view. When all 13 rotational axes are placed in cube [see Figure 7.25
(d)], the cube has a total of 24 rotations (including the identity trans-
formation) that leave its configuration invariant.

Because the cube possesses four-, three-, and twofold axes, it is said
to have 4.3.2 symmetry. It turns out that all the platonic solids fall
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Figure 7.25 (a) The three fourfold axes of rotational symmetry for a cube; (b) the four
threefold axes; (c) the six twofold axes; (d) the combined 13 axes of rotational symmetry.
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into three symmetry families 4.3.2, 5.3.2, and 3.3.2. Dual platonic
polyhedra possess identical symmetries: the cube and octahedron
are 4.3.2, the icosahedron and the dodecahedron are 5.3.2, and the tet-
rahedron shares the twofold and threefold axes of the other two sys-
tems. Table 7.3 lists all the rotational symmetries of the platonic poly-
hedra.

If a polyhedron has rotational symmetry with respect to some axis,
its plane projection in the direction of this axis must have the same
symmetry. Thus, by turning the polyhedron about and observing its
planar profiles, rotational symmetries can be detected. For example,
Figure 7.26 shows the profiles of a cube projected in the directions of
its four-, three-, and twofold axes, i.e., the face, vertex, and edge views.

Problem 7.4 Locate the axes of symmetry of all the platonic polyhedra in this
way and draw their planar profiles. You will see that this amounts to drawing
face-on, vertex-on, and edge-on views of the platonic solids.

7.13.2 The principal directions of the cube
and 4.3.2 symmetry

The system of 4.3.2 rotational symmetry is characterized by the three
principal directions of the cube, namely, the edge direction E, face di-
agonal direction FD, and the body diagonal direction BD, shown in

TABLE 7.3
Rotational axes Planes of
Polyhedron Twofold Threefold Fourfold Fivefold reflection
Tetrahedron 3 4 6
Cube 6 4 3 9
Octahedron 6 4 3 9
Dodecahedron 15 10 6 15
Icosahedron 15 10 6 15
[ ]
(a) (b) (©)

Figure 7.26 Projection of a cube onto the plane perpendicular
to its axes of rotation. (a) Fourfold axis; (b) threefold axis; (¢)
twofold axis.
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Figure 7.27 The principal directions of a cube.

Figure 7.27. Thus, the fourfold axes of a cube are in the E direction,
the threefold axes are in the BD direction, and the twofold axes are in
the FD directions. If the cube is placed into a cartesian coordinate sys-
tem, the principal directions can be abbreviated by the points that
their tips intercept when they are anchored to the origin. Thus,
according to Figure 7.27, E « [1,0,0], FD « [1,1,0], and BD <
[1,1,1].

Peter Pearce [1978] has designed a set of sticks and connectors,
which he calls the universal node system, to exploit the relation-
ship of 4.3.2 symmetry to the principal directions of a cube. In
Pearce’s system, edges are color- and shape-coded to match the 26
protrusions on the connectors in the directions of the 13 axes of ro-
tational symmetry. With the universal node system any polyhedron
from the 4.3.2 system can be built quickly yielding a graphic dem-
onstration of its structure. Thus, the cube uses only E directions,
whereas the tetrahedron and octahedron are constructed from FD
directions. The system is of particular importance to crystallogra-
phers and architects since all space-filling polyhedra with equal
edge lengths, as we shall see in Chapters 8 and 9, are members of
the 4.3.2 symmetry class.

Steven Baer has designed a set of sticks and connectors to build
polyhedra from the 5.3.2 system [1970]). The connectors in Baer’s sys-
tem are spheres punctured by the 31 axes of rotational symmetry of
the 5.3.2 system. This system is turning out to be useful for studying
quasicrystals (see Sections 6.10, 10.13, and 10.14).

Problem 7.5 Use the pythagorean theorem and trigonometry to find the angle
between the following directions incident to a vertex of the cube: E and BD, E
and FD, BD and FD, FD and FD, and BD and BD meeting at the center of the
cube and called the Miraldi angle (see Section 8.9).

7.13.3 Reflection symmetry

An object is said to have reflection, or mirror, symmetry if half of the
object reflects to the other half in a mirror which lies on the plane of
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reflection. Likewise, if a two-way mirror is placed on a plane of reflec-
tion symmetry, the points of the object on one side of the mirror reflect
to the points on the other side, leaving the original configuration in-
variant, although points are interchanged across the mirror.

The cube has three planes of reflection symmetry each parallel to a
pair of faces. In addition, six planes of reflection symmetry slice
through opposite edges and are perpendicular to the two faces that do
not contain these two edges. Find and determine the number of planes
of reflection for the other platonic polyhedra (see Table 7.3).

We saw that axes of rotational symmetry of an object can be found
by physically manipulating the object. On the other hand, it is diffi-
cult to detect planes of reflection symmetry physically since it is not
easy to insert mirrors into an object and physically observe the reflec-
tions; therefore reflection symmetry is sometimes called a nonper-
formable symmetry. However, the existence of at least one plane of re-
flection symmetry can be detected by placing the object before a
mirror so that its suspected mirror plane is perpendicular to the mir-
ror. If the object could be physically moved behind the mirror and
imagined to match up point for point with its image, the suspected
plane is indeed a plane of reflection symmetry. For example, humans
and other land animals have an approximate plane of mirror symme-
try, on the exterior of their bodies, separating left from right (but not
up from down).

Problem 7.6 Place the following objects before a mirror and detect mirror sym-
metry if it exists: a cube, cone, tetrahedron, spiral, and glove.

Conversely, if an object does not possess reflection symmetry, its
mirror image is distinctly different from the object and the two cannot
be matched up through a movement of the object in three-dimensional
space. We generally distinguish such objects as being left or right
handed. For example, we talk of a left and right hand or a left- and
right-handed spiral or molecular arrangement. The assignment of left
and right, while arbitrary since it depends on the viewer’'s perspective,
is generally established to everyone's agreement according to some
convention. However, the arbitrariness of the convention means that
there is no way to convey our meaning of left and right to someone
located in a remote corner of the universe. More will be said about this
in Section 11.9.

7.13.4 Orthoschemes and the dihedral kaleidoscope

Although rotation and reflection symmetry of platonic polyhedra ap-
pear to be entirely different, there is a profound connection between
them. This is demonstrated for a cube.

Circumscribe a sphere around a cube and cut the sphere and cube by



Polyhedra: Platonic Solids 287

Figure 7.28 Great circles related
to the symmetry group 4.3.2.
Drawn by Patrick Du Val for his
book Homographies, Quarter-
nions and Rotations.

the nine planes of reflection symmetry of the cube [Coxeter, 1988].
This divides the surface of the sphere into 24 spherical triangles and
their mirror images. Half of these triangles are colored grey in Figure
7.28 to distinguish them from their mirror images which are colored
white. Each of these triangles has one right angle. All the vertices at
point P are 45 degrees, and P along with its antipode comprise a four-
fold axis of rotation. The angles at @ are 60 degrees, and @ is one of
the axes of threefold rotation. The twofold axes are at the position of
the right angles and their antipodes. The six points equivalent to P
comprise the vertices of an octahedron while the eight points equiva-
lent to @ are the vertices of a cube. Each of the 24 rotational symme-
tries of the cube transforms a grey triangle into one of the other 23
grey triangles or to itself in the case of the identity. The same goes for
the white triangles. A grey triangle can be transformed to a white tri-
angle by either a single reflection or a rotation followed by a reflection
and there are 24 of these transformations. We will return to this
sphere in Section 9.9 to see how it can be used to generate other poly-
hedra with cubic symmetry.

A similar construction can be carried out for the other platonic poly-
hedra {p,q}. The planes of reflection decompose these polyhedra into
oppositely congruent tetrahedra called orthoschemes, first conceived of
by Ludwig Schléfli [Williams, 1972]. In this decomposition, the four
faces of these tetrahedra are right triangles, and the lengths of the
three edges meeting at the polyhedron center are radii of the
circumsphere, insphere, and intersphere as illustrated for the cube in
Figure 7.29.

Schléfli showed that the angles and radii of this orthoscheme shown
in Figure 7.29(b) can be expressed in terms of p and g as follows:

cos(l)——~——cos£cscE R=e sinzcsc1t
0,0, R p q ’ q h
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Figure 7.29 The orthoscheme for the cube.
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where (R represents the radius of the circumsphere, ,R is the radius
of the insphere, and R is the radius of the intersphere, e is the
semiedge length of the Platonic polyhedron, and 2 is the number
of lengths into which a great circle is divided by edges of the
interpenetrating dual polyhedra (see Section 7.6.2) when projected
onto a sphere from their common center in a manner to be discussed
in Section 8.3. It will be shown that A =4 for the tetrahedron, =6
for the octahedron and cube, while A =10 for the icosahedron and
dodecahedron.

In this decomposition, an orthoscheme and its mirror image border
each edge of the polyhedron. Thus, the cube is decomposed into 24
right- and 24 left-handed orthoschemes. A relationship between the
central angle ¢ subtending the semi-edge and the dihedral angle 8 of
the corresponding dual is given in Appendix 7C.

Construction 7.4 Construct a large tetrahedron of the same shape as the
orthoscheme of a cube out of reflecting surfaces. Only the three faces of the
orthoscheme that meet at the center of the Platonic polyhedron are needed; one
side is open. In Figure 7.30 a small cardboard model of an orthoscheme has been
placed into this tetrahedral chamber of mirrors called a dihedral kaleidoscope.

Observe that the missing 47 orthoschemes appear in the mirror and reassemble

the cube.

The orthoscheme can also be used as a unit of structure. For
example, Kapusta’s K-dron (see Section 5.10.2) can be constructed
from 12 left- and right-handed pairs of orthoschemes of a cube. This
may account for the striking optical properties that the K-dron
possesses and explain why K-dron structures exhibit such a strong
relationship between form and function.

7.14 Star Polyhedra

In Section 5.2.2, the edges of a regular polygon were extended, and for
a polygon with five or more sides, this extension enclosed additional
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Figure 7.30 Dihedral kaleido-
scope based on the symmetry of
the cube.

regions of the plane forming a star polygon. If we now try extending
the face planes of a platonic solid, no new regions are defined for the
tetrahedron and cube; however, the face planes of the octahedron en-
close eight additional tetrahedra as we can see by looking again at
Figure 7.9. The faces of this star polyhedron are the large equilateral
triangles of the interpenetrating tetrahedra, one of which is labeled
ABC. The vertices of this star polyhedron are the eight apexes of the
tetrahedra. The points at which the eight large equilateral triangle
faces self-intersect are not considered to be vertices of the star polyhe-
dron.

Extending the face planes of the dodecahedron leads to three dis-
tinct types of cells inside the intersecting planes and three stellated
forms, two of which were discovered by Kepler (1619) and the other by
Poinsot (1809). These thr