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Abstract— It was recently demonstrated that the Harmonic
Control Array (HCA) method is a successful control strat-
egy for systems with periodic references or disturbances. To
construct the required control signal to achieve zero steady-
state error, the HCA appropriately modifies the complex levels
of the harmonic components of the system input. In a real-
time application, a discrete-time implementation is required
for the method to be applied through a digital device since
the signals and parameters involved are complex-valued. An
efficient MATLAB/Simulink modeling of HCAs is explained
step-by-step in this paper with an implementation on a typical
test system. Then, the HCA performance is compared with an
internal model control application on a hot rolling mill process.

I. INTRODUCTION

The Harmonic Control Array (HCA) method has been
developed for control systems with periodic reference or
disturbance signals. The HCA framework provides flawless
periodic reference tracking and disturbance rejection by
automatically constructing the compensating periodic control
signal. The HCA uses the running Fourier series integral
in its complex nature to efficiently retrieve the harmonic
components of the real-time error signal in a unitary feed-
back system structure. Then these complex signals for each
harmonic frequency are controlled separately by a controller
working in the complex domain and in real-time. Here many
alternative control techniques can be employed to build the
internal structure of the HCA. For the current work, we use
a variety of PI controllers with complex gain coefficients.
This relatively simple structure is generally efficient for
periodic harmonic distortion correction or periodic tracking.
Like the famous PID controller mostly preferred for constant
reference regulation problems, the HCA with internal PI con-
trollers can achieve similar success with a simple structure
for the control problems with periodic references or distur-
bances. After the complex control signals are constructed
for each harmonic frequency, they are assembled using the
Fourier synthesis operation to obtain the real-time control
signal to be applied to the controlled plant.

Initial concepts of the Harmonic Control Array method
were introduced in [1] and [2]. This innovative technique was
introduced in [3] with a real-time application on periodic po-
sition control. Then as applications on power electronics, the
HCA is applied to single-phase stand-alone inverters [4] and
active power filters [5]. A microprocessor implementation
procedure of the HCA method is provided in [6] to show its
effectiveness and feasibility in real-time applications. Further
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information may be found in the above references about the
description of the HCA method with simulations and real-
time applications.

In this paper, a MATLAB/Simulink model is constructed
for HCAs in an efficient way. All the internal blocks of an
HCA are explained and built using the existing blocks used
in the current Simulink model library. A typical test system is
considered as an example in this setup, and various complex
and real signals produced by the HCA are provided in the
figures.

The Internal Model Control (IMC) framework provides
a control solution for systems by integrating the dynamical
system model of the given signal in the feedback structure.
Compensating controllers can be designed under the condi-
tion that the closed loop system is stable. The early works on
this method were given in [7] and [8]. Repetitive controllers
use this principle to track or reject periodic signals with a
specific period [9]. Compensation of periodic disturbances
on the first order systems with time delay was studied in
[10].

A repetitive control solution for the hot rolling mill
process is studied in [11]. The attenuation of eccentric roll
disturbance is an essential problem in steel manufacturing.
Modeling the process as a first order time-delay system,
an IMC-based solution has been suggested in [12] recently.
Furthermore, [13] studies a similar system considering multi-
harmonic periodic disturbance. Here, we consider the same
system and compare our results with [12].

II. HARMONIC CONTROL ARRAYS

Consider a typical unitary feedback system where e(t)
is the difference between the reference input r(t) and the
system output y(t), and u(t) is the system input produced
by the controller. When an HCA is chosen as the controller,
a certain signal period, T , needs to be specified as the
fundamental period. The angular frequency is defined as
ω = 2π/T . The highest harmonic number considered is H .
The internal blocks of an HCA are as follows.

Disperser: Using a running Fourier series integral, har-
monic components can be obtained from a time domain
signal. Here, at any time instant, we consider the last time
period of the incoming signal. Therefore we continuously
track the changes in the complex levels of the harmonic
signals as fast as possible. The dispersed signal of the error
for the hth harmonic is obtained as

⟨e⟩h(t) =
1

T

∫ t

t−T

e(τ)e−jhωτdτ. (1)
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Fig. 1. A unitary feedback system with an HCA controller.

We combine these dispersed signals in the vector form to
obtain the dispersion of e as

⟨e⟩ =


⟨e⟩0
⟨e⟩1

...
⟨e⟩H

 . (2)

It is assumed that e(t) is a real-valued signal, therefore,
there is no need to calculate the negative harmonics here. If
the signal e(t) is periodic with T , ⟨e⟩ will have a complex
constant vector value in time.

The discrete-time version of (1) can be given as

⟨e⟩h[n] =
1

N

n∑
k=n−N+1

e[k]e−j2πhk/N (3)

where N = T/Ts is the number of samples in the funda-
mental period, which should be an integer number, and Ts is
the sampling time. N/H should be high enough so that the
highest harmonic signal is represented well. When especially
N is high, the computational burden of (3) may be too much.
In this case, we can use the following equivalent calculation
for the discrete-time disperser

⟨e⟩h[n] = ⟨e⟩h[n− 1] + (e[n]− e[n−N ]) e−j2πhn/N/N.
(4)

Once the exponential terms are pre-calculated, (4) only needs
one complex multiplication and a memory buffer of N real
numbers.

HCA PI Controller: The HCA internal controller treats
each harmonic signal obtained from the disperser separately,
and tries to construct the control signal harmonics so that
the steady state-error asymptotically approaches zero as fast
as possible. Normally, to be able to achieve this, integral
controllers are needed for each harmonic signal so that even
when the error reaches zero, the integral outputs still produce
the appropriate complex values to be injected into the system
input. To make the transient state shorter, on the other hand,
proportional controllers can be employed. Therefore we have
the following for the calculation of the dispersion of the
system input

⟨u⟩(t) = KP ⟨e⟩(t) +KI

∫ t

0

⟨e⟩(t)dt. (5)

Here, KP and KI are complex-valued proportional and
integral gain matrices. The off-diagonal or cross terms in
these matrices may be useful for nonlinear systems; however,
if not used, these matrices could be chosen as diagonal
matrices, in which case, every error harmonic signal only
modifies the corresponding control harmonic signal. The
term Harmonic Control Array was coined because an array
of controllers for each harmonic is acting to construct the
control signal.

The discrete-time version of (5) can be used as

⟨u⟩[n] = KP ⟨e⟩[n] +KITs

n∑
0

⟨e⟩[n]. (6)

Assembler: The harmonic assembler recombines harmonic
components obtained from the HCA internal controller to
construct the real-time control signal. Assuming e(t) and
u(t) are real valued signals, we can use the Fourier series
synthesis to construct the control signal as

u(t) = ⟨u⟩0(t) + 2Re

{
H∑

h=1

⟨u⟩h(t)e
jhωt

}
(7)

where the discrete version can be obtained similarly as

u[n] = ⟨u⟩0[n] + 2Re

{
H∑

h=1

⟨u⟩h[n]e
j2πhn/N

}
. (8)

III. MODELING USING MATLAB/SIMULINK

A unitary feedback system is considered as in Fig. 1.
MATLAB version 9.13 and Simulink version 10.6 are used.
Each block is explained in the following subsections.

A. HCA Block

The HCA block consists of the disperser, the HCA PI
controller, and the assembler, as shown in Fig. 2, and as
described in the previous section.

<	>
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>	<
Assembler

HCA
PIe u

E U

E Ue u

Fig. 2. Blocks in the HCA structure.



Here, the capital letters E and U represent the dispersions
of the real-time signals e and u. The HCA block parameters
are set in the dialog box as shown in Fig. 3.

Fig. 3. HCA Block Parameters.

B. Disperser
The disperser process (4) is modeled as shown in Fig.

4. Here, normally, the discrete integrator would be the last
block, but for that kind of construction, the numerical errors
may be continuously accumulated, diverting the system per-
formance. We use the integral block before so that even if
there are errors accumulated in the integral sum, they will be
eliminated by the delay and difference block at the end. The
Disperser Exponential Sequence block consists of the blocks
shown in Fig. 5 where the Direct lookup Table contains the
matrix

Wd = exp(−1j ∗ 2 ∗ pi ∗ [0 : H]′ ∗ [0 : N− 1]/N)/N (9)

which produces the necessary exponential sequence as a
complex vector corresponding the current sample number.
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Fig. 4. Construction of the disperser.
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Fig. 5. Construction of the exponential sequence generator.

The Counter Limited recursively produces the current
sample number counting from 0 to N − 1.

C. PI Controllers

The HCA internal controller can be constructed using
many different control techniques. Here, we consider PI
controllers as shown in Fig. 6. KP and KI can be used as
square matrices as described in (6). However, if off-diagonal
values are not used, KP and KI can also be chosen as
vectors. In this case, the gain blocks in Fig. 6 should be
implemented as element-wise multiplication.

11 ++

Discrete
Integrator

Fig. 6. Construction of the HCA PI controller.

D. Assembler

The assembler block recombines the harmonic vector to
construct the control signal as described in (8) and as shown
in Fig. 7. Here, the Assembler Exponential Sequence block
consists of the blocks shown in Fig. 5 where the Direct
Lookup Table contains the matrix

Wa = exp(1j ∗ 2 ∗ pi ∗ [0 : H]′ ∗ [0 : N− 1]/N)/N. (10)

Here, the gain in the gain block is chosen as [1 2*ones(1,H)]
so that (8) is properly calculated.

xAssembler
Exponential
Sequence

1

1

Fig. 7. Construction of the assembler.

E. Plant and Feedback

In this work, the plant block is an LTI system consisting of
a transfer function block and a time delay block, as shown in
Fig. 8. A disturbance input is added to the input side of the
plant for this design. The reference and disturbance signals
are obtained from their constant dispersion vectors through
assembler blocks, as shown in Fig. 1.
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Fig. 8. A typical LTI plant model.
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Fig. 9. The reference, system output, error, and disturbance signals.

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5

1
Real Parts of U(t)

0
1
2
3
4

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.5

0

0.5
Imaginary Parts of U(t)

0
1
2
3
4

0 0.5 1 1.5 2 2.5 3 3.5 4

t (s)

-2

0

2

Control Signal u(t)

Fig. 10. Construction of the control signal from the frequency domain to
the time domain.
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Fig. 11. Dispersions of the system output (real and imaginary parts) and
the error (magnitude).

As a test system, the plant is considered to be the zero-
order-hold discrete-time equivalent of

G(s) =
10

s+ 10
e−0.1s (11)

with a sampling time of 1 ms. The reference and disturbance
dispersion vectors are set to be R=[0.5; -0.4; -0.3j; 0.2; -0.1j]
and D=[-0.35; -0.28; 0.22j; -0.33j; 0.61j] with H = 4. HCA
PI gains are selected as

KP =
[
0.5 0 0 0 0

]T
,

KI =
[
1.2 0.8e1.2j 1.1e2.2j 1.5e3j 2.1e−2.6j

]T
.

The simulation results for the system output, together with
the reference, error, and disturbance signals, are shown in
Fig. 9. As we see, despite the disturbance and the delay, the
steady state error approaches to zero in about two periods. In
Fig. 10, the construction of the compensating control signal is
depicted as the real and imaginary parts of its dispersion. The
integrators working for each harmonic with proper complex
gains gradually find the necessary harmonic control levels
to make the error dispersion zero. The assembler block then
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Fig. 12. Internal model control and harmonic control array structures for periodic disturbance compensation.

combines those harmonics to produce the real-time control
signal to be injected into the plan input.

Fig. 11 shows the dispersion of the output and error sig-
nals. Note that the real and imaginary parts of the dispersion
of the output are gradually settled at the same levels of
the dispersion of the reference so that the magnitude of the
dispersion of the error vanishes to zero, as shown in the
figure.

IV. CONTROL OF A HOT ROLLING MILL PROCESS
A hot rolling mill process is considered in [12]. An IMC

controller is systematically constructed following the design
proposed in [10]. The standard IMC scheme is modified to
handle a sinusoidal disturbance. The proposed IMC scheme
[12] together with the HCA feedback structure is constructed
as shown in Fig. 12 for the purpose of performance compres-
sion. The system transfer function is considered as

Gid(s) =
K

Ts+ 1
e−sτ . (12)

Gmd is the nominal model for the system transfer function.
The nominal parameters are Tm = 0.8s and Km = 0.5
with the delay amount τ = 3.8s . The output disturbance is
considered as

d(t) = 0.011 sin(5.32t)(mm), (13)

and, the reference level is chosen to be 0.05 mm.
An IMC controller with a third-order filter is proposed in

[12] as

Cd(s) =
14.28s2 + 29.75s+ 14.88

s3 + 1.92s2 + 30.17s+ 7.44
e−0.634s. (14)

An HCA structure is designed using the correspond-
ing disturbance period T = 1.18s. The disturbance and
reference are produced with assembler blocks using the
constant dispersions D =

[
0 −0.0055j

]T
and R =

[
0.05 0

]T
with H = 1. The proportional and integral

gains are chosen as Kp =
[
0.28 −0.4 + 0.45j

]T
and

Ki =
[
0.22 −0.9 + 0.43j

]T
.

The simulation results are shown in Fig. 13 for the nominal
model parameters and perturbed parameters. As expected,
the controllers can not compensate the output for the first
3.8s due to the system delay. In Fig. 13 (a), the nominal
system is simulated for both controllers. As we see, the IMC
controller suppresses the oscillation disturbance faster than
the HCA controller after the delay period (between 3.8 to 18
seconds). This is due to the advantage of the exact system
model integrated in the IMC structure, which helps predict
the system output before the added disturbance and manages
the compensation process through Cd accordingly. Therefore,
the oscillation errors due to the sinusoidal disturbance could
be eliminated faster. On the other hand, for this setup, the
HCA structure does not use or depend on any internal model
of the original system, it just uses the standard PI controller
for the harmonic oscillation frequency. Anyhow, we observe
that both controllers have almost identical 2% settling time
(∼ 18 seconds).

When the system parameters are perturbed, the simulated
responses are shown in Fig. 13(b,c,d). For (b), T = 0.64s
and K = 0.7, again, the controllers have similar perfor-
mances, but the HCA controller compensates the sinusoidal
disturbance better after the 20th second. For (c), T =
0.5s and K = 0.7, the IMC controller does not show an
acceptable performance and it is at its stability limit. For
(d), T = 0.5s and K = 0.8, on the other hand, the IMC
controller makes the feedback system unstable, whereas the
HCA controller still compensates for the disturbance at an
acceptable performance. Therefore, it is clearly seen that
better robustness is achieved with the HCA controller for
this example.
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Fig. 13. Compensation of the periodic disturbance by the IMC controller
and HCA controller for the nominal model parameters and perturbed
parameters. (a) (nominal model) T = Tm = 0.8s and K = Km = 0.5,
(b) T = 0.64s and K = 0.7, (c) T = 0.5s and K = 0.7, (d) T = 0.5s
and K = 0.8.

V. CONCLUSIONS

This paper presents the harmonic control array method
with some examples. A MATLAB/Simulink modeling of
HCAs is constructed using the current model library. The
dispersion process continuously produces the harmonic com-
ponents of a real-time signal in a vector form, the error signal
in this case. The HCA internal controller block, implemented
as PI controllers in this work, constructs the harmonic vector
components of the control signal. Then the assembler block
combines the harmonic signals into a real-time control signal.
The reference and disturbance signals produced by assembler
blocks from the corresponding dispersion values. The closed
loop structure is completed in the simulation environment
with the plant model. Various signals obtained are presented
in the figures to show how the HCA constructs the neces-
sary compensating controls. Furthermore, a hot rolling mill
process example in the literature is considered. It is shown
that the HCA performance is more robust than the internal
model controller in this case.

Many physical systems are affected by periodic distur-
bances, and periodic reference tracking is necessary for some
applications. Mechanical vibration suppression and noise

cancellation are important control problems. Numerous in-
dustrial electronics applications, including power converters
and motor drives, need to track or reject periodic signals.
For these applications and more, harmonic control arrays
could be a relatively simple but effective control strategy.
Even for nonlinear systems, a compensating control action
as a combination of many harmonic components can be
automatically constructed. The PI complex gains can be
obtained using various optimization algorithms available.
An adaptive control strategy may also be used to reduce
the transient response time. An analytic method is to be
suggested to select the HCAs’ complex PI control parameters
so that the closed loop’s stability is guaranteed.

A digital system is needed to implement the HCA method
since the parameters and the signals are complex-valued.
Microcontrollers and DSP devices can be readily used for
this purpose. For systems with high-frequency signals or
a high number of harmonics, like some power electronics
or audio applications, an FPGA-based implementation may
be needed. The HCA structure perfectly fits this type of
implementation. Generic HCA controller devices can be
produced like PID controllers in the industry for tracking
or rejecting periodic signals in systems.

REFERENCES

[1] M. Dogruel, “Harmonik kontrol dizileri,” presented at the Turkish Nat.
Symp. Autom. Control, Istanbul, Turkey, Jun. 2005.

[2] M. Dogruel, “Harmonic control arrays,” presented at the Syst. Control
Theory Workshop, Gebze, Turkey, Sep. 2005.

[3] M. Dogruel and H.H. Celik, “Harmonic Control Arrays With a Real
Time Application to Periodic Position Control,” IEEE Trans. Control
System Technology, vol. 19, no. 3, pp. 521-530, May 2011.

[4] M.S. Karbasforooshan, M. Monfared, and M. Dogruel, “Application of
the Harmonic Control Arrays Technique to Single-Phase Stand-Alone
Inverters,” IET Power Electronics, vol. 9, no. 7, pp. 1445-1453, 2016.

[5] M. -S. Karbasforooshan, M. Monfared and M. Dogruel, ”Indirect
control of single-phase active power filters using harmonic control
arrays,” 2017 Conference on Electrical Power Distribution Networks
Conference (EPDC), pp. 143-148, 2017.

[6] M. F. Celebi and M. Dogruel, ”Microcontroller implementation of a
Harmonic Control Arrays system,” 6th International Conference on
Systems and Control (ICSC), pp. 145-149, 2017.

[7] B. A. Francis and W. M. Wonham, “The internal model principle of
control theory,” Automatica, vol. 12, no. 5, pp. 457–465, 1976.

[8] C. E. Garcia and M. Morari, “Internal model control. a unifying review
and some new results,” Industrial & Engineering Chemistry Process
Design and Development, vol. 21, no. 2, pp. 308–323, 1982.

[9] S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Repetitive control
system: A new type servo system for periodic exogenous signals,”
IEEE Transactions on automatic control, vol. 33, no. 7, pp. 659–668,
1988.

[10] T. Vyhlidal and P. Zitek, “Control system design based on a universal
first order model with time delays,” Acta Polytechnica, vol. 41, no.
4-5, 2001.

[11] K. Omura, H. Ujikawa, O. Kaneko, Y. Okano, S. Yamamoto, H.
Imanari, and T. Horikawa, “Attenuation of roll eccentric disturbance
by modified repetitive controllers for steel strip process with transport
time delay,” IFAC-PapersOnLine, vol. 48, no. 17, pp. 131–136, 2015.

[12] Can Kutlu Yuksel, Jaroslav Busek, Silviu-Iulian Niculescu, Tomas
Vyhlidal, “Internal Model Controller to Attenuate Periodic Distur-
bance of a First-Order Time-Delay System”, 2021 European Control
Conference (ECC), pp. 81-86, 2021.

[13] C. Kutlu Yuksel, J. Busek, T. Vyhlidal, S. -I. Niculescu and M. Hrom-
cik, ”Internal Model Control with Distributed-Delay-Compensator
to Attenuate Multi-Harmonic Periodic Disturbance of Time-Delay
System,” 60th IEEE Conference on Decision and Control (CDC), pp.
5477-5483, 2021.


