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 

Abstract—This paper proposes the adaption of the harmonic 

control array (HCA) technique to control a single-phase stand-

alone inverter system. The HCA method is recently proposed as 

an effective control solution for systems with periodic references 

or disturbances. The HCA appropriately adjusts the harmonic 

components of the control signal to obtain a zero steady-state 

error. Since the signals and parameters involved in this method 

are complex valued, a discrete time implementation is presented 

for applying the method through a digital platform. The design 

procedure of the controller parameters are also presented by 

details. To confirm the theoretical achievements, experimental 

results for the prototype system are presented in this paper. The 

results demonstrate the effectiveness of the suggested control 

scheme. 

 
Index Terms—Harmonic assembler, harmonic disperser, 

periodic tracking, discrete time implementation, single-phase 

stand-alone inverter. 

 

I. INTRODUCTION 

TAND-ALONE inverters are widely used in industrial 

applications to supply sensitive loads or provide electric 

energy for local loads. So, the main aim of a stand-alone 

inverter system is to provide a regulated ac voltage, with low 

total harmonic distortion (THD), in spite of load disturbances 

and variations, to maintain a high-quality electric power flow to 

critical/local loads.  

The stand-alone inverter system thus requires tracking or 

rejection of periodic signals. Several control methods to deal 

with periodic signals have been presented in literature [1-18]. 

From these, the stationary reference frame proportional 

resonant (PR) regulator [1-6], the synchronous reference frame 

(SRF) controller [7-14] and the digital repetitive controller [14-

19] have shown successful performance. Although, the PR 

controller has the advantages of simplicity, low computational 

burden and zero steady-state error, but this method suffers from 

exponential decaying response to step changes, high sensitivity 

to the frequency variations of periodic signals and probability 

of instability to the phase shift of measured signals [1-6]. The 

SRF control technique transforms the system variables to a 

rotating frame at the synchronous speed, where the ac quantities 

become dc. Therefore, the signal in the SRF can be regulated 

by a simple proportional integral (PI) controller with zero 

steady-state error. Among the limitations of the SRF techniques 

 
 

are the need for several reference frame transformations, which 

increases the memory requirements and calculation errors, the 

limited application to balanced systems, complexity of 

algorithm and etc. [7-14]. Repetitive control which is based on 

the internal model principle (IMP) is a very useful method that 

can track or reject periodic signals. The Bode plot of the 

repetitive controller has infinite amplitudes at multiples of the 

fundamental frequency that can lead to instability. Although 

many solutions to solve this problem are presented yet, but this 

method suffers from other drawbacks, such as a slow transient 

response, sensitivity to model accuracy and last but not least the 

high memory requirements [14-19]. 

The harmonic control array (HCA) method is recently 

introduced for controlling systems involving periodic reference 

and/or disturbance signals [20]. The HCA structure 

automatically constructs the compensating periodic control 

signal and enables a perfect periodic reference tracking and 

disturbance rejection. To obtain the harmonic components 

effectively, HCAs use the running Fourier series integral in its 

complex nature. Although other control methods may also be 

utilized in implementing HCAs, an array of proportional 

integral (PI) controllers is employed in the present paper. The 

HCA method is easily applicable and effective on periodic 

tracking or periodic harmonic distortion compensation. In this 

paper, only brief information is provided for HCAs. Details of 

description, comparisons with alternative methods and 

numerical examples can be found in [20].  

In this paper, a discrete time implementation procedure for 

the HCA method is provided so that the required algorithms can 

be easily and effectively implemented on digital systems. The 

procedure is applied to a single-phase stand-alone inverter 

voltage control system. The paper is organized as follows. First, 

the model of a single-phase stand-alone inverter, with an output 

LC filter, is described in section II. Then, the basics of the HCA 

method and its discrete time implementation are summarized in 

section III. Then, the step-by-step tuning procedure of 

controller parameters is provided in section IV. Simulation and 

experiments of the presented system are coming in section V. 

Finally, the conclusions are drawn in section VI. 

II. INVERTER MODEL 

The power and control circuits of a single-phase voltage-

source stand-alone inverter are shown in Fig. 1. According to 
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this figure, the power circuit consists of a full-bridge inverter, a 

LC-type smoothing filter and a local load. The parameters of 

the system under study are listed in Table 1. The state-space 

equations of the system can be readily written as (1). 
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Then, the system transfer function is [20] 
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Since the switching frequency of the PWM modulator is 

chosen to be much higher than the cut-off frequency of the LC 

low pass filter, then by using the average switching model, one 

can approximately write 

u dcv mV u  . (3) 

Therefore, the corresponding block diagram of the system is 

shown in Fig. 2. 

III. HARMONIC CONTROL ARRAYS METHOD 

Considering a typical system to be feedback controlled, the 

Harmonic Control Array (HCA) structure can be briefly shown 

as in Fig. 3. Here, r is the reference input, u is the control signal 

and y is the system output. The other blocks and signals in the 

diagram are briefly presented in the following subsections. 

A. The Harmonic Disperser 

A Harmonic Disperser (Fig. 4(a)) produces the running 

harmonic components of the input signal as a function of time. 

hth running harmonic (or simply hth harmonic) of a signal x(t) 

can be obtained using a running Fourier series integral as 
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where h is an integer number, T represents the fundamental 

period and it is chosen as a fixed value by the designer and 

=2π/T is the angular frequency of the reference signal. In our 

application, x(t) is assumed to be real valued.  

<x>h (t) is generally a complex value representing the time-

variant Fourier coefficient, also called an h-component lagged 

running average [8] or a dynamical phasor [22]. Choosing a 

suitable sampling period by the designer, the Fourier integral of 

(4) can be calculated in the discrete time by a DSP or a 

microcontroller. Goertzel algorithm provides an efficient 

calculation method and saves computation time, as well as 

storage memory [23]. This technique uses the very last period 

to correctly assess the harmonic values and to immediately 

reflect the harmonic changes in the signal. <x>h is closely 

related to Fourier series coefficients. In fact, if the signal x(t) is 

actually periodic with T, <x>h will be a complex constant value 

in time and equal to the hth Fourier series coefficients. 

Considering harmonic components from 0 to H, the harmonic 
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Fig. 1.  A voltage-source single-phase stand-alone inverter system: 

power and control stages. 
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Fig. 2.  Block diagram of the control system. 

TABLE I 

SYSTEM PARAMETERS 

Parameter Symbol Value 

dc-link voltage Vdc 250 V 
Nominal voltage VC 110 Vrms 

Nominal power S 1 kVA 

Filter inductance L 1 mH 
Filter capacitance C 25 uF 

ESR of the inductance rL 0.2 Ω 

Fundamental frequency f 60 Hz 

Switching frequency fs 6 kHz 
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Fig. 3.  Harmonic control array block diagram. 
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Fig. 4.  Harmonic operations: (a) a harmonic disperser and (b) a harmonic 

assembler. 
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Fig. 5.  Harmonic PI control array block diagram. 
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dispersion of x(t) can be defined as 
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If <x> is constant in time (and x(t) does not contain any major 

harmonic higher than H), then x(t) is periodic with T. 

Here, H is a design parameter representing the maximum 

harmonic number considered. H can be decided according to 

the process needs and the calculation power of the real platform. 

If more harmonics are needed to be controlled in the system, 

then H can be increased, but in this case, the computational load 

will also increase and a tradeoff may be needed to manage all 

the calculations in one sampling period. However, with the 

increasing computational power of DSP devices and the 

efficient algorithms developed, the feasible implementation of 

these kinds of operations with high harmonic numbers are 

becoming possible for even high sampling frequencies. 

B. The Harmonic Assembler  

A Harmonic Assembler (Fig. 4(b)) reconstructs a signal from 

its running harmonic components. Borrowing from Fourier 

series synthesis equation, the signal is produced using 
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Here, the negative harmonic components are also needed to 

construct x(t). Since x is assumed to be real valued, <x>-h is 

equal to the conjugate of <x>h (that is <x>-h=<x>h
*). Therefore, 

<x> as containing the harmonics 0 to H, is sufficient to produce 

x. From equation 6, an equivalent representation involving only 

nonnegative harmonics is then 
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C. The Harmonic Control Array block  

Using <r> and <y>, and possibly their previous values in 

time, the HCA block in Fig. 3 produces harmonic dispersion of 

the control signal, <u> in an optimum way as much as possible. 

This can be achieved employing various control methods like 

linear, fuzzy, sliding mode, adaptive, robust, etc., depending on 

the designer’s choice.  

Therefore, the control action works by firstly obtaining the 

harmonic dispersions of the reference and the system output, 

then, according to these complex values, the HCA decides on 

<u> and finally the real control input to be applied is composed 

by a harmonic assembler. There are some complex valued 

calculations involved in this kind of control; therefore an analog 

circuit may not be suitable to realize it. Instead, the algorithm 

can be easily and flexibly implemented on a microcontroller or 

a DSP. With the higher calculation power and advanced speeds 

of the digital devices, today it is possible to implement such 

control algorithms even for relatively fast applications. In the 

present paper, the HCA block is assumed to be constructed 

using PI controllers for simplicity. For this case, the 

corresponding control diagram is as shown in Fig. 5 and, the 

harmonic dispersion of the control signal is calculated as 
t

P Iu K e K e dt


        (8) 

where e = r – y is the error signal. Note that even if the system 

is SISO, the dispersion variables will be vectors of dimension 

(H+1)1. Therefore, KP and KI are the proportional and integral 

gain matrices with proper dimensions, and possibly having 

complex valued entries. In SISO case, these are square matrices 

with dimension (H+1)(H+1). If each harmonic has a feedback 

only to the same harmonic (which may be suitable for 

sufficiently linear plants such as our problem), then these gain 

matrices are diagonal. For nonlinear plants, on the other hand, 

since the lower harmonics in the plant input may affect the 

higher harmonics, the off-diagonal entries may be needed for 

compensation or better control performance. If needed, an anti-

windup protection algorithm can be used for the integral term 

in (8). However here, since the values to be integrated are 

complex numbers in general, the saturation should be activated 

when the magnitude of the integrated complex values are 

reached to the maximum value foreseen at the design stage. 

Instead of  only one PI controller as in classical control, an 

array of PI controllers are, therefore, acting in parallel on each 

harmonic to compose the final control signal. This, in general, 

suggests the name “Harmonic Control Array” to describe this 

kind of control structure. 

D. Discrete Time Implementation  

As already seen, to use the HCA method, the implementation 

of the harmonic disperser (4), the HCA block (8) and the 

harmonic assembler (7) are necessary in the discrete form. To 

realize these, let use a sampling period of Ts such that N=T/Ts is 

an integer number. The ratio N/H, as representing the number 

of points in one sinusoidal period of the highest harmonic, 

should be as high as possible to get a satisfactory approximation 

in discrete domain. 

The discrete time version of the harmonic disperser of (4) can 

then be obtained as 

2
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where x[k]=x(kTs) and <x>h[n] approximately represents 

<x>h(nTs). Note that the exponential term in (9) is a periodic 

function in time, that is 
2 2 ( )j hk N j h k N Ne e    , (10) 

for each integer k, therefore, it is enough to calculate these terms 
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Fig. 6.  The simplified block diagram of the single-phase inverter control 

system. 
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for one period (for a total of N cases) only. After recording these 

values for k=0, 1, …, N-1, instead of recalculating each time, 

these values can be called from the memory. Another important 

calculation time saving can be achieved, noticing that the sum 

in (9) is carried out for a limited period, and many common 

terms are present in the addition. To this end, (9) can 

alternatively be written as 

  21
[ ] [ 1] [ ] [ ] j hn N

h hx n x n x n x n N e
N

         (11) 

This last equation, requiring only one complex 

multiplication, greatly simplifies the calculation load of the 

harmonic disperser and suggests a feasible way to find the 

dispersion of the signal x(t) (or e(t)) in the discrete time. 

The PI HCA block (8) can also be implemented in discrete 

time using 

[ ] [ ] [ ]P Iu n K e n K E n       (12) 

where E represents the integral of <e> in discrete time and can 

be calculated as 

[ ] [ 1] [ ]sE n E n T e n     . (13) 

To find the real control action u to be applied to the 

modulator, on the other hand, (7) can be transferred to the 

discrete domain as 
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IV. CONTROLLER PARAMETERS DESIGN 

The block diagram of the converter in presence of the HCA 

controller is shown in Fig. 5. It is possible to simplify this model 

by neglecting the assembler and disperser dynamics and 

modeling the load dynamics by an impedance Z. Then the 

controller parameters are designed based on the simplified 

model shown in Fig. 6. 

Traditionally, a very small resistor in series with the filter 

capacitor is used to passively damp the high-frequency 

resonances due to switching side-band harmonics, which its 

effect on the dynamics of the control system can be reasonably 

neglected. 

It is observed that under light loads (Z tends to ∞), the phase 

margin (PM) and the closed loop stability of the system are 

decreased [7]. Therefore, the controller is designed and its 

parameters are tuned under the worst condition; i.e. the no load. 

As a conservative assumption, this ensures that the system PM 

will never become smaller than the desired value for a wide 

range of operating conditions. The simplicity of the controller 

design is another benefit of neglecting the load dynamics. 

Under this condition, the plant transfer function simplifies to 

2

( ) 1
( )

( ) 1

C

P

v s
G s

u s LCs rCs
 

 
 (15) 

and the loop gain is 
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Tuning the PI controller is essentially a tradeoff between the 

attainable control bandwidth and the loop stability [7]. The 

integral part of the PI controller provides a high gain at zero 

frequency and its effect around the loop cross-over frequency, 

 

and therefore the bandwidth frequency (ωb), can be neglected, 

especially in the case of a large bandwidth. So, first it is 

assumed that KI = 0 and the transfer function of the closed loop 

system becomes 
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Considering -3 dB attenuation for (17) at the bandwidth 

frequency ωb yields to 
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from which, the proportional gain KP is calculated as 

   
2 22 21 2 1P b b bK LC LC rC       . (19) 

The control bandwidth of the system in this application is a 

compromise between the transient response and the switching 

noise rejection capability, which in this paper is selected to be 

1000 Hz. With this selection, a high dynamic performance and 

at the same time a proper immunity of the control loop to 

switching noises is ensured. Substituting b=2π1000 rad/s into 

(19) gives KP = 0.32. 

After calculating KP, based on the selected bandwidth and the 

filter parameters, the proper value of KI must be determined 

according to stability requirements. For this end, the 

simultaneous effect of KI and KP will be considered. 

Assuming that the cross-over frequency of the loop gain (16) 

is close to the closed-loop bandwidth, ωb, it is possible to 

examine the stability degree, in terms of the phase margin (PM), 

from the loop gain (16). Accordingly, the phase of transfer 

function (16) at ωb is set equal to PM-π. The result is shown in 

(20). To ensure the stable operation of the system, especially in 

presence of unmodelled dynamics, such as the delays associated 

to the assembler, disperser and PWM modulator, a PM in the 

range of 70-100 is recommended. Evaluating (20) for PM = 

85 and KP = 0.32 (already determined), yields KI = 101.43. 
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The resulted KP and KI are the PI control parameters for the 

fundamental frequency component. In other words, these 

parameters are designed for the case h = 1. The control 

parameters for higher harmonics (h = 3, 5, …) are obtained by 

dividing KP and KI by h.  

V. PERFORMANCE EVALUATION 

In this section, the experimental results of the prototype 

system, with the parameters of Table I, are presented. The 

nominal frequency is 60 Hz and the switching frequency is 

selected such that fs/f becomes an integer (N = 100). The 

experimental setup is shown in Fig. 7, which consists of dc-link 

capacitors fed from a diode rectifier circuit, a full-bridge IGBT 
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inverter, a LC-type output filter and measurement devices. The 

control algorithm is implemented on a TMS320F28335 digital 

signal controller from TI.  

In the first study, the steady-state performance under the 

nominal resistive load was examined and the results are shown 

in Fig. 8. The output voltage waveform is highly sinusoidal with 

THD = 1.5%. In this test, only the fundamental harmonic 

component is considered for compensation; i.e. h = 1. 

In the second study, the experimental results for a capacitive 

(lightly damped) load is reported in Fig. 9. While the load 

power factor (PF) is less than 0.7, the output voltage THD 

remains below 1.6%. In the final steady-state performance 

verification, a highly distorted and nonlinear load, according to 

the IEC 62040-3 standard (Annex E) requirements [24], is 

connected to the output of the single-phase inverter. The results, 

when only the fundamental component compensation is 

included in the control loop (h = 1), is shown in Figs. 10 and 

11. The THD of the output voltage is 4.2% and the third and 

fifth harmonics of the output voltage have considerable 

magnitudes. In the next experiment, the third and fifth 

harmonics compensation are also added to the control algorithm 

and the output results for the same loading condition are shown 

in Figs. 12 and 13. Obviously, the added harmonic 

compensators can efficiently mitigate the third and fifth 

harmonics from the output voltage. Then, the output voltage 

THD is improved to 2.6%, which is far below the standard limit 

of 8% [24]. However, it is possible to attenuate more harmonics 

of concern, according to the application requirements, by 

adding extra HCAs to the controller, at the price of more 

computation burden. Finally, the transient performance of the 

system was investigated, with only the fundamental 

compensation, and the results are depicted in Figs. 14 and 15. 

In Fig. 14, the transient performance in response to a load step 

change from no-load to nominal resistive load is shown. The 

output voltage experiences a small dip at the moment of load 

connection, which occurs around the voltage peak, and recovers 

in less than 2 ms. Fig. 15 shows the transient performance of 

the system in response to a step jump followed by a step fall of 

the reference voltage magnitude under the nominal resistive 

load. A slow oscillation, with a very small 

overshoot/undershoot, can be recognized in the voltage 

waveform envelope, which safely dies in less than two cycles. 

VI. CONCLUSION 

This paper proposes the use of HCA method for the single-

phase stand-alone inverters. The suggested control method 

ensures zero steady-state error at the fundamental frequency 

and other harmonics of interest. This technique takes benefit of 

a simple concept and ease of implementation on digital 

platforms. The discrete time implementation of the HCA 

method along with a systematic procedure to design the control 

parameters are reported in this paper. The performance of the 

proposed scheme is confirmed with different experiments. The 

results indicate the effectiveness and excellent steady-state and 

transient performance of this method to control the single-phase 

stand-alone inverter.  
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