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Harmonic Control Arrays Method With a Real Time
Application to Periodic Position Control

Murat Dogruel, Senior Member, IEEE, and Hasan Hüseyin Çelik

Abstract—A novel method is presented for systems with peri-
odic references and/or disturbances by employing controllers in
an array structure for each dispersed harmonic components. The
method is based on automatically and appropriately setting the
complex levels of the harmonic components of the control signal.
Both computer simulation and real time experimental results are
presented to illustrate the usefulness and effectiveness of the pro-
posed method.

Index Terms—Fourier series, harmonic assembler, harmonic
disperser, harmonic distortion compensation, periodic control,
periodic tracking.

I. INTRODUCTION

T HIS paper provides a formal introduction of the harmonic
control array (HCA) method for controlling systems in-

volving periodic reference and/or disturbance signals, including
a practical application. Preliminary ideas of this novel method
were presented in [1] and [2]. The HCA structure automatically
constructs and injects the compensating periodic control signal
into the plant input. Without necessarily employing the internal
model principle, the HCA method can be adapted and integrated
with various existing control techniques, enabling a perfect pe-
riodic reference tracking and disturbance rejection.

The HCA idea may be illustrated conceptually using a
light-prism mechanism as shown in Fig. 1. First, the incoming
light, representing the input signal, is dispersed to its frequency
components as different colors representing the harmonics. In
the implementation of the method, this is achieved by a har-
monic disperser producing the complex time-variant Fourier
series coefficients. Then, each frequency component is treated
separately, mixed together, amplified or reproduced in an
array structure in the HCA block which can be implemented
as a linear or nonlinear dynamical system carrying out the
required transformation or compensation. Finally, the modified
frequency components assembled together again to obtain
the composed output signal using a harmonic assembler per-
forming the Fourier series synthesis formula. Considering the
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feedback systems terminology, the input signal here can repre-
sent the error signal, and the output is the compensating control
signal applied to the controlled plant. The further theoretical
descriptions of these structures are described in Section II.

To achieve the zero error for periodic references or distur-
bances, various methods are developed. One of the most well
known among these is the internal model principle (IMP) [10]
which states that the controlled output can track a class of refer-
ence inputs without a steady state error if the generating model
of the reference signal is included in the stable closed-loop
system. To compensate for sinusoidal disturbances or track
sinusoidal reference signals, a resonant band pass filter having a
couple of complementary pure imaginary poles at the matching
frequency is added to the controller [11]–[17].

Developing control methods for tracking or rejection of peri-
odic signals in power electronics applications such as ac/dc con-
verters, uninterruptible power systems, active filters, and high
performance motor drives is especially important. The methods
of multisynchronous PI controller or multiple reference frame
controller [18], rotating reference frame controller [19], syn-
chronous regulator [20], multiple rotating integrator controller
[21], and synchronous frame harmonic controller [22] are based
on the frequency displacement process where the error signal
is premultiplied and postmultiplied by a frame transformation.
These algorithms are also applied on digital signal processors
for control of UPS systems [23], photovoltaic inverters [24], and
ac/dc converters [25], where digital signal processing (DSP) de-
tects the harmonic distortion signal within the output voltage
waveform and determines the amplitude of the real and imagi-
nary parts of the harmonic components.

In these synchronous frame harmonic control techniques,
first by multiplying with sinusoidal signals at a rotating fre-
quency, the system variables are transformed to rotating frame
quantities, that is like in demodulation process, the signal
around a given harmonic frequency is shifted to the base
band in the frequency domain. At this stage, the considered
harmonic frequency of a disturbance becomes a dc quantity.
Then, the signal in the synchronous frame is compensated by
a proportional integral or other control technique to guarantee
zero steady-state error for the considered harmonic frequency.
Finally, using a modulation process, the compensator outputs
are converted back to the stationary reference frame [22]. The
method presented in this paper, although similar to this idea,
has fundamental differences. To represent the harmonic values
correctly we use the complex Fourier series integral [3] as in
the dynamical phasor representation [4]–[6]. Given a running
signal, this Fourier-based computation naturally gives the best
harmonic representation in the sense of available data in the
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Fig. 1. Illustration of the HCA idea.

last period time of the signal. At any given time, using only the
last full period is important to immediately reflect the harmonic
changes in the signal. However, the band pass filtering type har-
monic detection methods, although decaying in an exponential
way, will carry the effect of the older data, therefore results in a
slower response than Fourier series integral. Also, the Fourier
series integral naturally and totally eliminates the effects of
other harmonics which are generally present in the given
signal. In the above methods of synchronous frame control, on
the other hand, since the frequency shifting or demodulation
process actually keeps all the frequencies but only changes their
positions, the effects of all other harmonic signals will appear
in the synchronous frame, and, may disturb the control per-
formance or may lead to instability. Furthermore, our control
technique is in more systematic and simpler structure that may
be applicable to numerous control systems in a modular way.

By applying the frequency shifting properties of the Laplace
transform, it is shown in [26] and [28] that, the synchronous
frame controller is actually equivalent to the well known linear
second order resonant compensator having an infinite gain at
the resonant frequency and therefore achieving zero steady state
error as used in the internal model control. Therefore, the com-
plexity regarding to the frame transformations involved in the
synchronous frame description can be avoided, and instead, a set
of band pass filters compensating for selected harmonics may be
utilized as an equivalent representation in the stationary refer-
ence frame. This technique is referred in the power electronics
literature as multiresonant controller or Stationary frame reso-
nant regulator [26], [27], stationary frame controller, or bank
of resonant filters [28]–[30], sinusoidal internal model com-
pensator [31], stationary frame generalized integrator [32], and
single synchronous frame hybrid controller [33]. As an alter-
native to the use of the bank of resonant filters for the com-
pensation of active power filters, selected harmonics are ob-
tained by a discrete Fourier transform (DFT) or discrete cosine
transform (DCT)-based running finite impulse response filters
in the time domain, and compensated by a closed-loop repet-
itive-based control scheme [34]. It is shown in [35] and [36]
that a bank of resonant filters with a particular structure used as
compensators for certain harmonics is equivalent to a repetitive
scheme using a simple feedback array with a delay line.

Another control method for systems involving periodic ex-
ogenous signals is the repetitive control. This method employs

an artificial delay line in a self loop to produce the necessary
periodic control signal, see [37] and the references therein. The
repetitive control is generally applied to reject periodic distur-
bances and to track periodic reference signals with a known pe-
riod. A number of repetitive control schemes have been devel-
oped and applied to various applications such as harmonic com-
pensation, industrial robots, disc drives, numerical control ma-
chines [38]–[47]. The disadvantage of repetitive control, on the
other hand, is that the systems without the exact models may
easily be led to an unpredictable or unstable behavior because
of the artificially inserted delay. This limits the usefulness of
repetitive control in industrial applications. The HCA method,
on the other hand, requiring no delay, and adapting a simple
proportional-integral-differential (PID) strategy in the harmonic
control array structure for instance, can be effectively used in in-
dustrial applications.

Mentioned compensating techniques above are based on
the well-known internal modal principle, and, including the
synchronous frame controller as shown to be equivalent to a
set of resonant regulators, have a linear time invariant (LTI)
system structure. In this regard, these techniques together with
the other modern LTI techniques have a well known structure
and achievement in applications at a certain level. However
the HCA, to obtain the harmonic components correctly and as
fast as possible, and, to eliminate the effects of all other har-
monics, directly uses the running Fourier series integral in its
complex nature. The block producing these dynamic phasors,
called the harmonic disperser, together with its complementary
block, called the harmonic assembler, becomes a time variant
system. Therefore inherently, the HCA compensator is not a
time invariant system as usual, and according to the employed
strategy, it can be either linear or nonlinear.

The PID control is most frequently and very usefully em-
ployed for many industrial control problems. Its simple struc-
ture and effectiveness make it very favorable for engineers. It is
well known that 90% or more of controllers in industry are PID.
One of the most important features of PID control is achieving
the zero steady-state error even if there are stationary distur-
bances or parameter perturbations which are abundant in real
applications. Although the error entering into the integrator is
zero, the integrator can produce the required compensating dc
control signal. To achieve the zero error for systems involving
periodic reference inputs and/or disturbances on the other hand,
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Fig. 2. HCA block diagram.

the PID control is not directly applicable, because instead of a
constant compensating dc value, a special compensating peri-
odic control signal is to be automatically constructed and in-
jected into the plant input.

For feedback systems involving periodic references or distur-
bances, the zero error can be achieved by automatically com-
posing the control signal at the right amounts of complex levels
for each of the harmonic frequencies. For this purpose, an array
of PI controllers may be easily employed in the harmonic con-
trol array structure. Therefore, the HCA method may allow the
PID control to be effectively applied to the systems involving
periodic signals and achieving the desired zero error. The other
control methods may also be utilized in implementing a har-
monic control array, or an HCA can be used in parallel with the
other methods. The HCA method looks promising for many in-
dustrial applications on periodic tracking and periodic harmonic
distortion compensation like in power electronic applications,
and in mechanical vibration or noise cancellation type problems.

The following exposition is planned for this paper. First,
the HCA method is described in Section II. Then, the method
is simulated on a typical system model with various cases in
Section III. Experimental results on a linear periodic position
control application are provided in Section IV. Finally, the
conclusion is provided in Section V.

II. DESCRIPTION OF HCAS

Considering a typical system to be feedback controlled, the
HCA structure can be briefly shown as in Fig. 2. Here, is the
reference input, is the control signal, and, is the system
output. The other blocks and signals in the diagram are ex-
plained in the following subsections.

A. Harmonic Disperser

A Harmonic Disperser [see Fig. 3(a)] produces the running
harmonic components of the input signal as a function of time.

th running harmonic (or simply th harmonic) of a signal
can be obtained using a running Fourier series integral as

(1)

where is an integer number, represents the fundamental
period and it is chosen as a fixed value by the designer, and

is the angular frequency. is assumed to be real
valued. In the future versions of this method, can be consid-

Fig. 3. Harmonic operations: (a) a harmonic disperser and (b) a harmonic as-
sembler.

ered as a system variable adaptively changed for an optimum
control performance.

is generally a complex value representing the time-
variant Fourier coefficient, and, also called an -component
lagged running average [3] or a dynamical phasor [4]. Using
the dynamical phasor representation, modeling of various elec-
tric machines and power system components is described and
some properties of this operator are provided in [5], [6], and the
references therein. Choosing a suitable sampling period by the
designer, the Fourier integral (1) can be calculated in the dis-
crete time by a DSP or a microcontroller. Goertzel algorithm
[7]–[9] provides a very efficient calculation method, and saves
computation time as well as storage memory. Like in almost all
systems, and especially as in causal filters, the Fourier integral
(1) has also an inherent delay. However, (1) uses the very last
period to correctly assess the harmonic values and to immedi-
ately reflect the harmonic changes in the signal.

is closely related to Fourier series coefficients. In fact,
if the signal is actually periodic with , will be a
complex constant value in time, and equal to the th Fourier
series coefficient. can also be a vector, in that case, is also
a vector with the same dimension. Considering such harmonics
from 0 to , harmonic dispersion of can be defined as

...
(2)

If is an -dimensional vector, will be an -dimensional
vector. If is constant in time (and does not contain any
harmonics higher than ), is periodic with .

Here, is a design parameter representing the maximum
harmonic number considered. can be decided according to
the process needs and the calculation power by the designer.
If more harmonics are needed to be controlled in the system
then can be increased, but in this case naturally, the compu-
tational load will also increase and a tradeoff may be needed to
manage all the calculations in one sampling period. However,
with the increasing computational power of DSP devices and
the efficient algorithms developed, the feasible implementation
of these kinds of operations with high harmonic numbers are
becoming possible for even fast sampling frequencies.

B. Harmonic Assembler

A Harmonic Assembler [see Fig. 3(b)] recombines a signal
from its running harmonic components. Borrowing from
Fourier series synthesis equation, the signal is produced using

(3)



524 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 19, NO. 3, MAY 2011

Fig. 4. Harmonic PI control array block diagram.

Here, the negative harmonic components are also needed to con-
struct . Since is assumed to be real valued, is equal
to the conjugate of (that is ). Therefore ,
as containing the harmonics 0 to , is sufficient to produce .
From (3), an equivalent representation involving only nonnega-
tive harmonics is

(4)

C. HCA Block

Using and , and possibly their previous values in time,
the HCA block in Fig. 2 produces harmonic dispersion of the
control signal in an optimum way as much as possible.
This can be achieved employing various control methods like
linear, fuzzy, sliding mode, adaptive, robust, depending on the
designer’s choice. Therefore, the control action works by firstly
obtaining the harmonic dispersions of the reference and the
system output, then, according to these complex values, the
HCA decides on , and finally the real control input to be
applied is composed by a harmonic assembler. There are some
complex valued calculations involved in this kind of control;
therefore an analog circuit may not be suitable to realize it. In-
stead, the algorithm can be easily and flexibly implemented on
a microcontroller or a digital signal processor. With the higher
calculation power and advanced speeds of the digital devices,
today it is possible to implement such control algorithms even
for relatively fast applications. In the present paper, the HCA
block is assumed to be constructed using PI controllers for
simplicity. For this case, the corresponding control diagram is
as shown in Fig. 4, and, the harmonic dispersion of the control
signal is calculated as

(5)

where is the error signal. Note that even if the
system is single-input-single-output (SISO), the dispersion vari-
ables will be vectors of dimension . Therefore,

and are the proportional and integral gain matrices with
proper dimensions, and possibly having complex valued en-
tries. In SISO case, these are square matrices with dimension

. If each harmonic has a feedback only
to the same harmonic (which may be suitable for sufficiently
linear plants), then these gain matrices are diagonal. For non-
linear plants, on the other hand, since the lower harmonics in
the plant input may affect the higher harmonics, the off-diagonal
entries may be needed for compensation or better control per-
formance. If needed, an anti-windup protection algorithm can be

Fig. 5. Typical system model.

Fig. 6. Reference and disturbance inputs.

used for the integral term in (5). However here, since the values
to be integrated are complex numbers in general, the saturation
should be activated when the magnitude of the integrated com-
plex values are reached to the maximum value foreseen at the
design stage.

Instead of only one PI controller as in classical control, an
array of PI controllers are, therefore, acting in parallel on each
harmonic to compose the final control signal. This, in general,
suggests the name “HCA” to describe this kind of control
structure.

III. NUMERICAL SIMULATION EXAMPLES

To investigate how the HCA method performs, let us consider
a typical system model provided in Fig. 5. The system is linear
having a pole at and an input delay of together with a
disturbance input. equals to 1 unless stated otherwise.

The reference that the system output must follow and a pow-
erful sample disturbance signal used are shown in Fig. 6. For
these signals, is chosen to be 4, and the period is 1 s. Cor-
responding constant harmonic dispersions are as follows:

(6)

The system behaviors for different cases are investigated in the
following sections.

A. Behavior of the System Without Delay

First, consider the system without delay . Apply the
harmonic PI control array method shown in Fig. 4 with PI gains
selected as

(7)
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Fig. 7. Output and error in controlling with the HCA method for the system
without delay.

The system response is given in Fig. 7. Despite the disturbance,
the error signal stably vanishes in about 10 periods, and there-
fore, the output completely follows the reference without any
error. Here our concern is to demonstrate that, without com-
plicated calculations, by choosing PI parameters manually with
simple gain adjustments, the suggested HCA strategy works
very well and makes the error zero as required. This type of
control strategy may be very feasible and useful for industrial
control problems as in classical PID control applications. Note
in Fig. 6 that, the disturbance is much stronger than the reference
level, therefore it takes several periods to make the error vanish.
A faster transient response may be achieved by choosing better
PI parameters or by employing different control dynamics for
the HCA.

The dispersion of the output is shown in Fig. 8. As expected,
all harmonic components of the output converge to the exact
complex value set by the reference. Here the disturbance input
is chosen randomly as a fixed periodic function, however even
when the disturbance is a slowly time varying function like in
practical applications, the HCA adapts to the disturbance and
produces zero steady-state error since for each harmonic com-
ponent, there is an independent stabilizing PI controller working
at a corresponding frequency in the frequency domain.

Despite the given disturbances and the perturbations in the
system dynamics, a special and certain control signal at steady
state, as shown in Fig. 9, is required to make the system output
exactly match to the reference input, and therefore to obtain a
zero error. If a different control signal was applied to the system
input at steady state, naturally the system output would also
change and would not match to the reference input any more.
Therefore, an array of controllers is in action and the HCA au-
tomatically produces this exact control signal at steady state as
required for the compensation.

Let us consider a high constant gain linear controller, which
can also make the error small throughout the frequency band, as

(8)

For , the system response is depicted in Fig. 10. The
controller performs well; however, although the error is small,
it must always remains nonzero because the error is multiplied
with a high gain to construct the control signal, which, in turn,

Fig. 8. Real and imaginary parts of ��� in controlling with the HCA method
for the system without delay.

Fig. 9. Control signal produced by the HCA method for the system without
delay.

is applied to the system as fast as possible. For higher values,
the system becomes unstable, preventing to lower the error
levels for this type of controller. Employing the HCA method,
on the other hand, the zero error can be achieved for periodic
references or disturbances. This is due to the integral terms
working independently for each harmonic component.
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Fig. 10. Output and error in controlling with high gain method for the system
without delay.

Fig. 11. Output and error in controlling with the HCA method for the system
with delay.

B. Behavior of the System With Delay

Let us consider the delay in the system, where 0.1 s.
Utilize harmonic PI control array method, and select the PI gains
as follows:

(9)
Here, the following simple manual adjustment strategy is

used to obtain the PI gains. First set all PI gains to zero, and
starting from the lowest harmonic , using complex
values when needed, manually adjust the corresponding PI gain
entries to obtain an acceptable performance at the dispersion
graph for the considered harmonic output. At this stage, do
not consider the performance for the higher harmonics. Then
continue to the next harmonic and set all the gains up to the
highest harmonic. If needed, start from the beginning again
and continue to adjust the gains to obtain a better control
performance. The PI gains above are simply obtained after a
few trails and errors as mentioned.

Note that there are complex values in the gain matrices
which may be necessary for adjusting the proper magnitudes
and phases and obtaining a stable response. The behavior of
the system for this case is depicted in Fig. 11, and despite
the delay and disturbance, the zero error is still achieved. For

Fig. 12. Output in controlling with the HCA method for a constant reference
level.

Fig. 13. Control signal produced by the HCA method for a constant reference
level.

comparison, if the behavior of the constant high gain method
is considered, at maximum, can be chosen as 14, and, the
results are not at acceptable level for this case. When there is a
delay in the system, the high gain control is not useful; however
the HCA method can still achieve the zero error in about 10
periods although there is a very strong disturbance.

C. Behavior of the System for a Constant Reference

The HCA method can also be employed for controlling sys-
tems with periodic disturbances at a constant reference level.
For example, if the output is to be kept at , then the ref-
erence dispersion can be selected as

(10)

Using the same system with delay and the same controller in
Section III-B, the result is found as in Fig. 12. Again, despite the
delay and the strong disturbance, the output is kept at the refer-
ence level. The required control signal produced by the HCA is
depicted in Fig. 13.

D. Robustness of HCA

Smith predictor type methods require knowing the system
model very precisely, which may be impossible for many prac-
tical applications. To test the HCA method for this issue, again
consider the same case in Section III-B, but change the system
parameter while keeping the same controller. The results are
shown in Fig. 14, and although the pole value is changed by con-
siderable amounts, the zero error performance is still achieved.
Therefore, even the dynamical model of the actual system to
be controlled is considerably different than the mathematical
model used, the HCA method can tolerate it like in robust con-
trollers. However for repetitive control techniques this may in-
troduce serious stability problems.
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Fig. 14. Error signals in controlling with the HCA method for the system with
delay with perturbations in the system parameter.

Fig. 15. Output in controlling with the HCA method for the unstable system
with delay.

Fig. 16. Designed position control system.

E. Unstable System With Delay

Consider the system in Fig. 5 with a delay and an unstable
pole this time, where and 0.1 s. We can select the
PI gains as follows:

(11)
The behavior of the system for this case is depicted in Fig. 15.

Despite the unstable system dynamics with the delay and the
disturbance, the zero error is easily achieved with the HCA
method.

IV. LINEAR PERIODIC POSITION CONTROL APPLICATION

An experimental control system is implemented to test and
compare the HCA performance. In this aim, a linear periodic po-
sition control system is designed. The block diagram of the ex-
perimental system is depicted in Fig. 16. Mainly, the system has
two permanent magnet dc motors for driving and for loading.
The driving motor actuates a linear motion mechanism to con-
trol the position. This movement is sensed by a sensor and con-
verted to digital form by an encoder. In order to make a physical
loading condition, a loading motor is mechanically attached to
the driving motor. The electrical load on the loading motor can
be either resistive or nonlinear according to symmetric or asym-
metric loading cases. The system has many internal or external

nonlinear effects like dead zones and backlash due to the im-
perfect mechanical structure, which prevents obtaining a simple
and fixed mathematical model.

The experimental system basically works as the following:
The software, executed by the host PC, controls the system by
using an input-output (I/O) interface card. The I/O interface
transmits data to the motor driver unit and receives position data
from the encoder. The control software, by receiving the po-
sition feedback, continuously calculates the necessary control
signal and sends it to the interface card for driving the motor
unit.

In the experiments, the reference position movement is de-
sired to be in a sinusoidal form with 4 s period. The linear move-
ments in forward and backward directions are chosen close to
the limits of 10 cm positions. The driving motor supplies a
maximum angular speed of 13.5 rad/s in clockwise or anticlock-
wise direction according to polarity of the input voltage. The
motor driver unit provides voltages in the limits of 5 V. The
system works in real-time with 1 ms sampling period.

In order to evaluate and compare the performance of the HCA
method, PI, and internal model control (IMC) methods are also
used in the position control system. The methods are tested
under no load, symmetric load, and asymmetric load conditions.
The asymmetric load is produced by attaching a diode in series
with a resistor to the loading motor. In this way, the motor is
loaded in only one direction of the linear movement.

In the following subsections, the results obtained using the PI
method, the PI plus IMC method, and the HCA method are pre-
sented correspondingly. Then the numerical comparisons about
these methods are provided. Ensuring that the control signal is
always in the given bounds, i.e., preventing the saturation; the
actual parameters and coefficients used in the methods are man-
ually adjusted as best as possible in the sense of maximum error
suppression for each case.

A. Proportional and Integral Control Method (PI)

In this method the control signal is chosen such that

(12)

where and are Laplace transforms of the input and
the error signals, is the proportional gain, and is the in-
tegral gain. Fig. 17 presents the experimental results of the error
signals for the three loading conditions. It is seen that although
the error is lower with no load condition, for all three cases,
the performance is not acceptable. In the asymmetric load con-
dition, the error at the negative alternates is more than at the
positive ones. There are some noises on the signals due to the
vibrations and the nonlinear effects like dry friction.

B. PI + Internal Model Control Method (PI+IMC)

In this method, a resonant filter which is a second degree mar-
ginally stable system function is added to the PI controller con-
sidering the sinusoidal reference. The control signal is chosen
such that

(13)
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Fig. 17. Comparisons of the error signals for a sinusoidal reference position with an amplitude of 10 cm. (a) Errors with no load, (b) errors with a symmetric load,
and (c) errors with an asymmetric load.

where and represents the PI gains as before, and
are the coefficients to completely represent the resonant

filter, and, is the angular frequency corresponding
to the sinusoidal signal with a period of 4 s. As observed
from Fig. 17, this method produces better results than the
PI method as expected. The error gradually decreases to
acceptable levels for no load case. However for the loading
cases, the error cannot be fully diminished to acceptable levels
at steady state.

C. HCA Method

The HCA method is applied to the experimental system using
3 harmonics . It is seen from Fig. 17 that, as in PI+IMC,
the HCA method reaches steady state within two period at the
no load condition. The control performance is continued at de-
creasing error levels in the next periods. Under the symmetric
or asymmetric loads, the HCA method produces acceptable and
gradually decreasing error levels.

Using a Pentium 4 PC running at 3 GHz, and a moderate 12
bit data acquisition card with the sampling frequency of 1 kHz,
the implemented HCA algorithm for this case takes a computa-
tion time of 0.14 ms of the available 1 ms sampling period. The
required computation time can be further significantly reduced
by using efficient computation algorithms and dedicated DSP
chips.

TABLE I
TOTAL RMS ERRORS IN ONE PERIOD

D. Comparisons Between the Methods

As observed from Fig. 17, the HCA method performs well
in all cases with gradually decreasing error, indicating that the
harmonic control values are properly adjusted to compensate
the nonlinear effects. Since the reference signal is sinusoidal,
the PI+IMC compensates the system at an acceptable level, but
the PI controller does not perform well as expected.

In order to compare the error levels at steady state, the root
mean square (RMS) error is calculated in the last periods. Table I
presents the RMS errors for the PI, the PI+IMC, and the HCA
methods. The error rates in the table represent the best results of
the collected data for each method. As seen from the results, the
HCA method performs more effective than the other methods.
Moreover, as , the control array dimension, increases, the
HCA method generates less and less rms error levels.
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The structure of the HCA is so convenient that, in general to
reduce the steady-state error further, the control array dimension
can be easily increased by the addition of two complex numbers
to the PI gain matrices. As long as the computation time is al-
located in the sampling period, this improvement does not cost
anything.

V. CONCLUSION

A control design method called HCAs is presented. The HCA
method offers an effective control solution for systems with pe-
riodic references and/or disturbances having a certain number
of harmonic components. Its effective compensation and sys-
tematic and simple construction may be a useful advantage for
industrial applications. Periodic disturbances affect many phys-
ical systems and the periodic reference tracking is required for
some applications. The HCA method, which is applicable for
both cases, can achieve the zero error by automatically pro-
ducing the control signal composed of the harmonic compo-
nents at correct magnitudes and phases.

As seen from the simulation examples, despite the delay and
a strong disturbance, even with an unstable dynamics, a fast and
robust performance can be achieved. The performance of the
HCA method is tested and compared using an experimental pe-
riodic position control system. It is found that it produces the
lowest RMS errors at steady state. As the harmonic array dimen-
sion is increased, even lower errors may be achieved gradually.

Since the signals in the harmonic array structure are imagi-
nary/complex valued, it may be impossible to realize the HCA
method with an analog circuit. However, using microcontrollers
or DSP devices, controllers can be implemented in a flexible
way and perform even better than analog ones. Therefore by
employing these digital devices and using efficient algorithms,
it is quite feasible to realize the HCA algorithm without any
problems at even high sampling frequencies. When using the PI
method in an HCA structure, the control engineer just need to
choose and adjust the complex PI gain coefficients starting from
the lower harmonics to the higher ones in an order to achieve the
minimum steady state errors and the fast settling times as in the
classical PID control.

To further develop this promising method, theoretical investi-
gations about stability and systematic control design should be
carried out. Methods may be produced for optimally selecting
the PI gain matrices for linear system models. Benefits of using
the off diagonal entries in the PI gain matrices, i.e., the cross in-
teractions between the harmonics, can be demonstrated for com-
pensation of nonlinear systems. Other existing control methods
can be implemented in the HCA block to achieve even better
and faster responses.
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