
Rep. Prog. Phys., Vol. 41, 1978. Printed in Great Britain 

Thermodynamics of black holes 
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Abstract 

In  spite of the fundamental difficulties associated with the thermodynamics of 
self-gravitating systems, the objects known as black holes appear to conform to a very 
straightforward generalisation of standard laboratory thermodynamics. In  this review 
the generalised theory is examined in detail. It is shown how familiar concepts such as 
temperature, entropy, specific heats, phase transitions and irreversibility apply to 
systems containing black holes, and some concrete results of the theory are presented. 
The thermodynamic connection is based on Hawking’s celebrated application of 
quantum theory to black holes, and in this review the quantum aspects are described 
in detail from several standpoints, both heuristic and otherwise. The  precise mech- 
anism by which the black hole produces thermal radiation, its nature and origin, and 
the energetics of back-reaction on the hole are reviewed. The  thermal states of 
quantum holes are also treated using the theory of thermal Green functions, and the 
entropy of the hole is shown to be related to the loss of information about the quantum 
states hidden behind the event horizon. Some related topics such as accelerated 
mirrors and observers in Minkowski space, super-radiance from rotating holes and the 
thermodynamics of general self-gravitating systems are also briefly discussed. 

This review was received in January 1978. 
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1. Gravity and thermodynamics 

In  laboratory physics, the topics of thermodynamics and gravitation lead a rather 
separate existence. Astronomers, however, have long had to contend with the con- 
junction of the two. In  the broadest sense, thermodynamics regulates the organisation 
of activity in the universe, and gravity controls the dynamics, at least on the large 
scale. The  interaction between these conceptually dissimilar aspects of fundamental 
physics is a grey area full of paradoxes, muddle and uncharted hazards. 

One of the central difficulties about the thermodynamics of gravitating systems is 
the apparent absence of true equilibrium. This problem, which can lead directly to 
‘peculiar’ effects, has long been known to astronomers. Stars are hot, self-gravitating 
balls of gas inside which the weight of the star is supported by its own internal kinetic 
or zero-point quantum pressure. Unlike ordinary laboratory thermodynamic systems, 
a star is made hotter, not by adding energy, but by removing it. If the Sun were to 
suddenly lose all its heat energy, it would rapidly shrink to a fraction of its present size 
and, after a period of oscillation, take up a new condition at a much higher temperature. 
The  ever-present threat of gravitational shrinkage under its own weight makes every 
star potentially unstable against catastrophe. We can think of stars like the Sun as 
metastable-a temporary interlude between a distended cloud of gas and totally 
imploded matter. 

1 .l. Black holes 

The  key to understanding black holes, and especially their connection with 
thermodynamics, is to appreciate the meaning of the so-called event horizon. Consider 
a very compact and massive star. The  strength of gravity at its surface can be increased 
either if the star shrinks, or if more mass is added. According to the general theory of 
relativity, gravity affects the properties of light, and this is manifested in the behaviour 
of light rays which leave the surface of the star travelling radially outwards. Because 
the light has to ‘do work’ to overcome the surface gravity and escape from the star, 
its energy, and hence frequency, will be somewhat diminished. This famous 
gravitational red shift has been measured in light leaving such relatively low-gravity 
objects as the Sun, and even the Earth. For more compact and massive objects the 
red shift can become enormous. Even on Newtonian grounds it is clear (as was 
pointed out by Pierre Laplace as long ago as 1798) that when the escape velocity from 
the surface of a star exceeds that of light, something odd must happen. According to 
both Newtonian gravity and relativity, this turn of events comes about for a spherical, 
uncharged star if the radius of the star shrinks below 2GMlc2, where M is the mass, 
c is the speed of light, and G is Newton’s gravitational constant. This size is very small, 
being of the order of 1 km for the Sun and 1 cm for the Earth. Ordinary stars are 
enormously more distended than this, although neutron stars closely approach the 
critical size. 

A straightforward calculation shows that as the star approaches the critical radius, 
the light from its surface becomes redshifted without limit, so that it can no longer be 
seen; it is black. This phenomenon can be viewed in a number of ways. One can think 
of the light struggling to escape against the intense gravity so that it takes longer and 
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longer to travel to infinity. Care is needed here though; locally an inertial observer 
will always measure the light to be travelling at the usual speed, but far away from the 
star it appears to move slower. Perhaps it is better to think of time near the star’s 
surface as being greatly dilated, so that the reduced frequency of the light can be 
regarded as a sort of slowing of events or clock rates. Either way, it is clear that as the 
star approaches the critical radius 2GM/c2 nothing at all can be seen of the events 
which occur on (and in) the star thereafter. The spherical surface r = 2GM,/c2 there- 
fore acts as an event horizon, separating the events which can be viewed from a great 
distance, from those which cannot, however long one waits. 

Studies of stellar structure indicate that many stars may not be composed of 
sufficiently stiff material to prevent them shrinking to this critical radius, purely under 
the gravity of their own contents. If a star cannot withstand its own weight, it implodes 
catastrophically and travels through the critical radius in a very short time as measured 
in its own (falling) time scale. Of course, as viewed from infinity, this process becomes 
infinitely dilated, and as the star approaches the horizon it appears to be ‘frozen’. At 
this stage, the red shift increases exponentially on an e-folding time that is typically 
10-5 s. Within the briefest moment the star effectively disappears from the universe. 

A useful picture of the event horizon can be obtained by imagining spherical wave- 
fronts of light which are emitted radially outwards from different surfaces Y = constant. 
Those spheres travelling from Y > 2GM/c2 gradually expand and eventually escape to 
infinity, but those emitted inside the critical radius actually shrink towards the centre, 
even though they are emitted in a direction away from the centre. Crudely speaking, 
the gravity there is so strong that it drags the light backwards. The event horizon is 
the spherical surface of light that just escapes to infinity after an infinite duration. From 
afar, it appears to hover, static, at Y = 2CM/c2. 

According to relativity, matter and information cannot propagate faster than light, 
so if light cannot escape from inside the horizon, neither can anything else. Thus, 
once the star has retreated through this surface it can never return to the outside 
universe, or signal its fate either. We can use the theory of relativity to conjecture the 
likely fate of the star, though this does not have any direct connection with the thermo- 
dynamic properties. As the surface of the star is composed of ordinary matter, it must 
move along a time-like trajectory, sandwiched between inward directed and outward 
directed light surfaces. As both these surfaces shrink in radius, it follows that the 
surface of the star must shrink also. No force, no pressure, however powerful, can 
cause it to remain static at a fixed radius r < 2GM/cZ. The shrinkage is inexorable and 
rapid. Within a fraction of a second, star-time, the surface apparently disappears into 
a single point and the density of the star becomes infinite. This state of affairs cannot 
be taken too seriously, because the space-time curvature also rises without apparent 
limit, and space-time would become smashed, invalidating all our theories of physics. 
In  some sense, not yet understood, the singularity represents a type of boundary or 
edge to space-time as at present conceived. Some very powerful theorems due mainly 
to Hawking and Penrose (Hawking and Ellis 1973) prove that under a very wide range 
of likely circumstances (not just spherical collapse) space-time singularities will forni, 
although not all of the imploding star need crash into them. 

The  region inside the horizon, once the star has shrunk away to nothing, is empty 
and, from the exterior universe, black and inaccessible. I t  is therefore called a black 
hole. Astronomers widely believe that black holes will form as the natural end state 
of the evolution of massive stars, but so far there is no direct observational evidence 
of their existence. 
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The  most general known solutions to Einstein’s field equations of general rela- 
tivity which contain black holes are the so-called Kerr-Newman family, which describe 
an axisymmetric, matter-free space-time representing a black hole which rotates and 
carries an electric charge. These solutions form a three-parameter set, labelled by the 
total mass-energy M ,  the angular momentum J =  1 JI and the electric charge e. For 
J = 0 the hole is spherical and, if e = 0 the solutions reduce to the case discussed above, 
originally discovered by Karl Schwarzschild in 1916, where the horizon is located at 
2GM/c2 (often called the Schwarzschild radius for this reason). The shape of the 
horizon and the behaviour of light rays in the general case is more complicated, but the 
essential qualitative features are the same as for the Schwarzschild black hole. 

Because the interior of the hole is invisible and inaccessible from the exterior 
universe, we cannot tell the difference between two holes with the same M ,  J and e. 
Whether the imploding star is made of antimatter, neutrinos, pions or green cheese, 
the end-state black hole will look the same. Only these three global parameters (which 
can all be measured by performing experiments far from the hole) have physical 
significance. Thus a given global, or macro, state ( M ,  J ,  e) can be realised by an 
enormous number of internal microstates. This at once suggests that black holes have 
a very high entropy, and represent in some sense the maximum entropy, equilibiium 
end state of gravitational collapse. 

It is instructive to consider the approach to equilibrium as the star implodes, to  
see how the information about the internal microstates is wiped out by the collapse. 
Only a qualitative understanding of this phase exists, and nothing like the equivalent 
of a Boltzmann equation or H theorem to describe the irreversible progress towards 
equilibrium. 

Suppose the imploding star has a lot of microstructure-temperature gradients, 
an electric charge and current distribution, density perturbations away from exact 
spherical symmetry, etc. During the brief period in which it implodes towards the 
horizon, the distant observer sees the collapse rapidly slow to a halt and fade out as the 
red shift escalates exponentially. If, for example, one wishes to measure the tempera- 
ture difference between two neighbouring patches of the surface using some kind of 
bolometer, then as the radiation shifts towards the red the temperature difference also 
diminishes as the two patches rapidly appear to approach zero temperature together. 
If one measures the surrounding pattern of electric fields to determine the charge 
difference between neighbouring regions then the effect of the growing space-time 
curvature is to bend the lines of force so that they appear to approach a purely radial 
configuration corresponding to a uniform charge distribution. In  a sense, therefore, 
the effect of the collapse is to impose a type of coarse-graining as far as measurements 
from a distance are concerned. In  the late stages of the collapse, as equilibrium is 
approached exponentially, all information about temperature and charge distributions 
disappears. Similarly, it can be shown that density perturbations, baryon and lepton 
number, and other parameters which might characterise the internal states of the star, 
become unmeasurable from outside the black hole. (For a summary of these so-called 
‘no-hair’ theorems see Misner et al 1973, chap 33.) 

In  summary, the collapse of a star to a black hole is rather like the irreversible 
degeneration of information and organisation in a gas. In  the latter case macroscopic 
information is destroyed by molecular collisions and it becomes inaccessible because 
it has been distributed among the microscopic degrees of freedom which we cannot 
resolve, whereas in the former case the information is destroyed by the gravitational 
field (i.e. the space-time structure) and it becomes inaccessible because of the event 

88 
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horizon. I n  both cases the physical appearance of the system changes from an ordered, 
structured state to a few-parameter disordered state which contains no obsevvable 
memory of the initial system. Clearly, the bigger the hole, the more information it 
has wiped out and the greater the number of internal microstates which can produce it. 
Hence a measure of the entropy ought to be provided by the size of the hole. 

1.2. The four laws of classical black hole ‘thermodynamicsy 

Curious analogues between the behaviour of black holes and that of thermodynamic 
equilibrium systems were noted some time ago (for a review see Carter 1973). Crudely 
speaking, because gravity always attracts, there is a general tendency for self-gravitating 
systems to grow rather than shrink. In  the black hole case, the inability for light to 
emerge from inside the event horizon precludes the escape of any material, so the 
horizon acts as a sort of asymmetric one-way surface: things can fall in and make the 
hole bigger but not come out and make it smaller. This is reminiscent of the second 
law of thermodynamics, in which there is an asymmetric tendency for a one-way 
increase in entropy. The size of the black hole is analogous to the entropy. It keeps 
on increasing. 

This analogy is almost trivial for a spherical, electrically neutral (Schwarzschild) 
black hole. In the more general case of black holes that possess angular momentum J 
and electric charge e, the size of the black hole depends both on J and e in a rather 
complicated way. If the total surface area of the horizon is used as a measure of size 
then this is given by the formula (Smarr 1973): 

where e2< M2 and J2< M4 (throughout, units with G=c=  1 will be used) so it is not 
clear at a glance whether a disturbance to the black hole which changes both e and J ,  
as well as M ,  will always increase the total area. 

In  fact, as shown in a theorem by Hawking (1972) the horizon area cannot decrease 
in any process, even for these more general black holes, so long as locally negative 
energy (which gravitates repulsively) is not involved. One famous example due to 
Penrose (1969) concerns a method for extracting mass-energy from a rotating black 
hole. The mechanism consists of propelling a small body into the region just outside 
the event horizon where (due to a dragging effect on the space surrounding the black 
hole caused by its rotation) some particle trajectories possess negative energy relative 
to infinity. If the body is exploded into two fragments, one of which is placed on one 
of these negative-energy paths, and this part disappears down the hole, it will reduce 
the total mass M of the hole somewhat and the mass-energy thereby released by this 
sacrificed component appears in the remaining fragment which is ejected to infinity 
at high speed. During this energy transfer the black hole’s rotation rate is diminished 
somewhat, so J also decreases. Inspection of (1.1) shows that when J decreases, the 
area increases, but when M decreases, the area decreases. The  changes in M and J are 
therefore in competition, but a careful calculation shows that J always wins and the 
area increases. 

Actually, if the class of all trajectories is studied, it is found that in general the area 
increases by an amount corresponding to a considerable fraction of the mass of the 
propelled body. However, the efficiency of energy extraction can be improved by 
approaching closely to a limiting class of trajectories for which the event horizon area 
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remains constant. The  limiting case is therefore reversible and corresponds to an 
isentropic change in thermodynamics. In  practice, 100% efficiency (complete reversi- 
bility) would be impossible. 

This strong analogy between event horizon area and entropy led to the use of the 
name ‘second law’ in connection with Hawking’s area theorem, which is therefore 
written thus: 

dA>O (1 *2) 

(equality corresponding to reversibility). 

From (1.1) we can obtain: 
There are also analogues of the zeroth, first and third laws of thermodynamics. 

dM=(87r)-k d A + Q  d J + @  de (1 3) 

where (87r)-k= 8M/aA, etc, which is really just an expression of mass-energy 
conservation and corresponds to the first law. If A plays the role of entropy then we 
see from the structure of (1.3) that K plays the role of temperature (K dA N T dS). 
The  interesting thing is that K can be shown to be constant across the event horizon 
surface. We thus have an expression of a ‘zeroth’ law, analogous to the thermodynamic 
one which says that in thermodynamic equilibrium there exists a common temperature 
parameter for the whole system. The quantity K is known as the surface gravity of the 
black hole. Its precise definition need not concern us here, but its significance lies in 
the fact that it determines the e-folding time which controls the rate at which the 
collapsing star red shifts and approaches equilibrium. For a Schwarzschild hole, 
K =  (4M)-1 and the constant 87r in (1.3) has been chosen to agree with this. The  
remaining terms in (1.3) simply describe the work done (energy extracted) from 
changes in angular momentum ( Q d J )  and electric charge (Ode), and have a very 
obvious structure: Q is the (magnitude of) angular velocity and @ the electric potential 
at the event horizon. 

Finally, there is the third law. It is straightforward to show that if J 2  or e2 become 
large enough such that: 

then K vanishes (although A does not). This corresponds to absolute zero (though with 
finite entropy). A black hole with parameters given by (1.4) is known as an extreme 
Kerr-Newman black hole. It is the limiting case of an object which still possesses an 
event horizon. Should the left-hand side become even infinitesimally greater than one, 
then the horizon would disappear and we would be left with a naked singularity, i.e. 
the singularity would no longer be invisible inside a black hole but would be able to 
influence, and be observed by, the outside universe. This circumstance is considered 
so undesirable for physics that most physicists believe in the so-called cosmic censor- 
ship hypothesis due to Penrose (1969) : naked singularities cannot form from gravita- 
tional collapse. Cosmic censorship implies the unattainability of ‘absolute zero’, K = 0 
(i.e. condition (1.4) for an extreme black hole), so it plays the role of the third law. 

1.3. Entropy, information and event horizons 

In  spite of the compelling similarities between the four laws of thermodynamics 
and those of black holes, it would seem that we are unable to identfy the laws for the 
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following reason. A black hole is supposed to be black, i.e. have zero temperature. 
This clearly makes nonsense of any attempt to regard the surface gravity K as a real 
temperature. Indeed, in the simplest case of a Schwarzschild black hole ( J  = e = 0), we 
obtain from (1 . 1) : 

A = 16nM2 (1 *5) 

Moreover, if we attempt to employ the well-known thermodynamic relation 
(obtained from integrating diW= K dA= T d S ) :  

energy = 2 entropy x temperaturej- (1.7) 

to the black hole, then as the energy M is finite, zero temperature would imply injiizite 
entropy. In  contrast, if we rewrite (1 .5) in the form (1 .7) : 

M =  A K / ~  (1 -8) 

we observe that the right-hand side is the product of twoJinite quantities. 
How can we understand the notion of the entropy of a black hole and why should 

it be infinite? Great insight is provided by using the relation between entropy and 
information (see, for example, Davies 1974). If a system is highly ordered then its 
entropy is low. Such a system requires a great deal of information to describe it or, 
alternatively, we can say that it has a high information content. This leads to the 
identification : 

information t) negative entropy. 

When a system becomes disordered, its entropy goes up and its state requires less 
information to describe it. I n  thermodynamic equilibrium, only a very small number 
of parameters (e.g. overall temperature, volume, number of particle species) are 
needed; this is the state of maximum entropy and minimum information content. 

The  relevance of information to the discussion of black hole entropy concerns the 
nature of the event horizon. As discussed in $1.1 it might be expected on general 
grounds that a black hole would possess entropy-and rather a lot of it-by virtue 
of all the information it has swallowed up. 

How can we estimate how much information has gone to make up a black hole of 
a given size? One crude estimate (Hawking 1976) is to count the number of internal 
degrees of freedom, assigning one bit of information to each. This means calculating 
how many particles go into the production of a black hole of, say, mass M .  On the 
basis of classical physics this number can be arbitrarily large, because we can always 
choose particles of arbitrarily small mass: for example, zero rest mass particles 
(photons, neutrinos) with arbitrarily low energy. It therefore seems that the information 
content, and hence the entropy, associated with the black hole should indeed be 
unbounded, as we suspected. 

It is tempting to regard the unbounded entropy as in some way connected with the 
inherent instability of self-gravitating matter against total collapse. Another system 
unstable against total collapse is the classical atom, wherein the orbiting electron can 
radiate unlimited entropy and spiral catastrophically and without limit indefinitely 

t The factor 2 arises because A is proportional to the square of M. 
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close to a point nucleus. When quantum theory is applied to this system, the entropy 
becomes bounded and the atom requires a stable ground state. 

If we take into account the quantum nature of matter we make the great discovery 
that the entropy of a black hole should also be finite. The reason is simple: we cannot 
choose particles of arbitrarily small mass to constitute a black hole because of the 
quantum relation between energy and wavelength : 

E=h/h. 

At the very least the wavelength h must be less than the size of the black hole if we are 
to regard the particle of energy E as being located inside the hole. Choosing h N 2M, 
the radius of a Schwarzschild black hole (in units G = c =  l), leads to a minimum 
particle energy, or mass, of the order of h / M .  Hence, the maximum number of such 
particles that go to make up a black hole of mass M is about M2/h. An estimate of the 
entropy is then: 

where k is Boltzmann’s constant and f is a number of order unity, to be calculated 
from a proper, full theory of quantum black holes. It is obvious from (1.9) that the 
entropy S diverges in the classical limit h-t 0. 

It is gratifying indeed that, using (1 . 5 ) ,  we can write the entropy (1 .9) in the form: 

s= (&) (1.10) 

showing the entropy as proportional to the area of the event horizon, exactly as 
indicated on the basis of the four laws of black holes. This result was first suggested by 
Bekenstein (1973). 

Finally, we deduce from (1 .7) : 

(1.11) 

for the temperature of the Schwarzschild black hole. On the basis of this formula, it is 
only in the classical limit h -+ 0 that the hole is completely black (T= 0). Otherwise, 
it appears to possess a temperature which, using (1.6), is: 

.=E) K (1.12) 

which is indeed proportional to the surface gravity K as we would have hoped. 
What does this temperature mean physically? To assign a temperature to some- 

thing implies that it can be in equilibrium with a surrounding heat bath at the same 
temperature. To be so, a black hole would have to emit heat energy at the same rate 
as it absorbed it. But the event horizon prevents any heat radiation from escaping 
from the hole-heat can flow in but not out. 

If the concept of temperature makes sense then we must be able to associate with 
it a thermal equilibrium radiation spectrum. (There is an unimportant technical 
point here. The  curved space round a black hole modifies the thermal equilibrium 
spectrum somewhat from the Planck form familiar from flat space-time.) The  
characteristic wavelength ho of this radiation is: 

A0 5 h/k T. (1.13) 
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Using the value 

(assuming 6.: 1) 

1.11) for the black hole temperature T yields: 

A0 N 2M= radius of black hole (1.14) 

This result is not, of course, unexpected because we chose the 
entropy of the black hole in the first place with this wavelength in mind. Still, it shows 
that it is not meaningful to try and locate the origin of the heat radiation to be inside 
or outside the black hole, anymore than it is meaningful to discuss where in an atom a 
photon of light is created. That is, we do not have to actually say that there is heat 
radiation flowing out of the black hole itself to be able to associate with it a temperature 
given by (1.11). Nevertheless, we do have to assume that the hole is a source of heat 
radiation in some sense, i.e. it is not cold and black, but hot. In  arriving at (1 . 11) 
we have hardly used any real physics, only some heuristic arguments about informa- 
tion and entropy. The  precise nature of the mysterious heat radiation associated with 
black holes can only be determined by a proper quantum treatment. 

2. Quantum black holes 

The application of quantum theory to black holes by Hawking (1975) established 
the result that they should indeed emit thermal radiation with a temperature given by 
equation (1.11). His calculation fixes the value of 5:  

E= 8772. (2.1) 
Sometimes people find Hawking’s result hard to understand because it depends on the 
details of quantum field theory in curved space-time. However, it is possible to gain 
considerable insight into the mechanism of the Hawking radiation process by consider- 
ing a much more familiar system which nevertheless reproduces geometrically pre- 
cisely the black hole situation. We shall first consider this simpler system, and then 
go on to discuss the black hole case in detail. 

2.1. Radiation from a moving mirror 

In  quantum theory, we are used to the idea of quanta being created by sources; 
for example, photons being created by electrically charged currents. One way of 
visualising this is that the presence of the source disturbs the vacuum (no-quantum 
state) of the electromagnetic field and excites some of the modes. The mode excita- 
tions are the created photons. 

Less familiar is the possibility of disturbing the vacuum (exciting modes) without 
having a source present at all. One way to do this is to contort the modesgeometrically. 
In  the case of a star imploding to form a black hole the dynamical gravitational field 
manifests itself through a changing geometry and the modes of the quantum field (e.g. 
electromagnetic field) are imbedded in this changing geometry and are thereby excited 
by the background motion. 

A simpler example of a geometrical disturbance occurs when the field modes are 
constrained by reflecting boundaries (mirrors). In  particular, if a mirror moves about, 
it will move the modes about too and thereby excite them, transferring energy to them 
in the form of quanta. Physically this will appear as particles created by the moving 
mirror, even though the mirror itself does not act as a source for the field. (Of course, 
a real mirror contains electric currents, although it may be overall electrically neutral. 
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However, the internal structure of the mirror is irrelevant to the discussion here 
because it is merely a device for reproducing on the field the effect of the gravity of a 
collapsing star.) 

We shall now outline how a moving mirror can create radiation out of the vacuum 
(Fulling and Davies 1976, Davies and Fulling 1977). For simplicity we shall consider 
space to have one dimension (x) only and treat a massless scalar field $(x, t )  rather than 
the electromagnetic field. The wave equation is (c = 1) : 

The field modes under discussion are solutions of (2.2) which form a complete set of 
quantum states. In  the absence of a mirror, these are conventionally chosen to have 
the form of complex exponential waves exp [ - iw(t + x)] and exp [ - iw(t - x)] for 
waves of frequency w moving to the left and right, respectively. 

If a mirror is inserted at the origin, x=  0, then these left- and right-moving waves 
are no longer independent because the left-moving waves reflect from the mirror and 
become right-moving. T o  the right of the mirror the modes must now be taken as 

exp [ - iw(t + x)] - exp [ - iw(t - x)] 

which are chosen to vanish at the mirror (x=O). We shall call these modes $, to 
avoid writing this cumbersome expression repeatedly, and include in the definition a 
conventional normalisation factor (4nw)-1/2. 

The field 4 is quantised by first expanding it in terms of the complete set of modes 
*U : 

4(2, t )  = c (a,*, + a,+*,*) (2 * 4) 
0 

where the a, are expansion coefficients and + denotes complex conjugation, then 
quantising each mode (independently) as a simple harmonic oscillator. (In the case 
treated here Z, denotes dw.) The amplitudes a,, a,+ then become quantum 
operators, which respectively annihilate (de-excite) or create (excite) quanta in the 
mode +,. 

The vacuum (no-quantum) state, denoted by IO), is defined as the state which 
vanishes under the action of all the operators a,: 

a, I 0 )  = 0 for all w.  (2.5) 
The operator which represents the number of particles in the mode w is a,+ a,. Thus 
the expected number of quanta of all frequencies contained in the vacuum state is, 
using ( 2 . 5 ) :  

(OICa,+a,10)=0. <U ( 2  * 6) 

Now suppose that the mirror moves about (see figure 1). This cannot affect the 
left-moving waves exp [ - iw(t + x)] to the right of the mirror because these are 
incoming from infinity. The reflected (right-moving) waves will, however, suffer a 
Doppler shift due to the motion of the mirror. This is a red shift if the mirror recedes 
to the left, and a blue shift if it approaches to the right. For a general mirror motion, 
the reflected waves will be very complicated, but it is still possible in this model to 
calculate them exactly as a functional of the mirror trajectory. We do not need them 
explicitly for this discussion, so the reflected waves will simply be denoted 
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Figure 1. (a) Radiation from a moving mirror. The motion of the reflecting boundary disturbs 
the vacuum of the quantum field and causes the production of quanta which propa- 
gate away to the right as shown. (b) When a mirror accelerates away to the left 
along the asymptotically null (light-like) trajectory x + - t - A exp (- 2 K t )  + B the 
radiation which is produced at late times has a Planck (thermal equilibrium) spec- 
trum. The broken line is the null asymptote ZI = B. Incoming null rays that are 
later than this ray do not reflect from the mirror but disappear off to left-hand 
infinity. 

exp [ - iwf(t - x)] where f is a complicated, but calculable, function depending on the 
details of the mirror motion. 

In  the new situation the modes of the scalar field will be of the form: 

exp [ - iw(t + x)] - exp [ - iwf(t -x)] 

d(4 4 = c (b,&+ b,"&,") 

(2.7) 

(2 * 8) 

and these we shall call $,. The field +(t, x) can be expanded as before: 

0 

where we now have a new set of amplitude operators denoted by b,. 

the form: 
Generally the b, will differ from the a, but they are related by a transformation of 

b ,  = c (~,,%l~ - P,,'+k~"> (2.9) 

known as a Bogolubov transformation. The  coefficients 01 and p may be evaluated by 
expanding the modes in terms of the modes #,: 

(2.10) 

As usual in field theory, the complex conjugate of the modes, such as $I,*, are 
considered to have negative frequency. Equation (2.10) therefore expresses the fact 
that mode functions of the type (2.7) cannot in general be expanded in purely positive- 
frequency exponentials (this is a well-known property of Fourier analysis). So long as 
p - 8  # 0, will contain a superposition of positive- and negative-frequency $o, modes 
and this will be the general situation for a non-trivial functionf(t-x) in (2.7). 
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We come now to the crucial point. Because b,# a, in general, the state IO) which 
represents the vacuum (no-quanta) state for a static mirror will not be a vacuum state 
for the modes (and operators b,) associated with the moving mirror. It will, in 
general, contain quanta. Indeed, the expected number of quanta in the mode T is: 

(2.11) 

a result which follows using (2.5) and inverting (2.9). Thus if g7 contains any 
negative-frequency #, modes then (2.11) will be non-zero. Physically this has a clear 
meaning. Suppose that prior to some moment, say t = 0, the mirror is static and there 
are no field quanta present. The  quantum state is therefore I O )  as defined by equation 
(2.5) in terms of the modes #,. The mirror then embarks on a period of acceleration 
and the modes become modified to The  state however remains as 10) (we are 
working with free fields in the Heisenberg picture). Equation (2.11) then tells us 
that the motion of the mirror has created quanta out of the vacuum and this radiation 
then proceeds to flow away to the right. 

One of the significant features about the particle creation is that a receding mirror, 
which has the effect of weakening (red-shifting) any reflected classical radiation, is 
just as effective in the spontaneous production of particles as an approaching (blue- 
shifting) mirror. Hence, high red-shift trajectories are efficient for particle creation. 

One particular such trajectory is of interest: 

x-+ - t -A  exp ( - 2 ~ t ) + B  a s t - t w  (2.12) 

where A, B and K are just arbitrary real and positive constants. This trajectory, which 
is joined smoothly to the static configuration at t=O, is shown in figure l(b). The 
mirror recedes to the left with ever-increasing acceleration, approaching the speed of 
light asymptotically. Notice that there is a latest ray which can reflect from the mirror 
out to the right. After this one, all incoming rays disappear off to the left. 

The red shift from the surface of a mirror moving along the trajectory (2.12) 
increases exponentially with an e-folding time K ,  so that any intrinsic luminosity of,the 
mirror, or any reflected incoming radiation, will also fade out exponentially. However, 
the spontaneous particle creation does not, The outgoing (reflected) part of the modes 
$, behaves like : 

exp {iwA exp [ - K(t - x)]} (2.13) 

which is one of the few functions for which the transformation coefficients a,,' and 
p,,,,) can be computed in terms of known functions (Davies and Fulling 1977). The 
result can then be used in (2.11) to calculate the number of particles created in each 
mode w, which tells us the spectrum of the radiation. This turns out to be (we use 
units A= 1): 

(2.14) 1 
exp ( Z ~ T W / K )  - 1 

which is a Planck (thermal equilibrium) spectrum at a temperature K / ~ x .  Of course, 
if the mirror continues to accelerate indefinitely, then an infinite number of quanta 
{i.e. a steady flux of radiation) will be created in each mode. 

2.2. Radiation from black holes 

We are now ready to deal with the black hole problem. When radiation (e.g. light) 
passes through a gravitational field it suffers a gravitational frequency shift, an effect 
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that can be measured even on Earth. If a beam of light could be shone through the 
centre of a static compact star, such as a neutron star, it would acquire a blue shift 
as it fell inwards and a red shift as it climbed away again on the other side. The  net 
shift is zero. However, if the star implodes while the light is passing through it, the 
climb outwards becomes considerably harder, because the escape energy goes up. 
Hence the energy gained by the infall does not pay for the work needed to escape on 
the other side and there is a net red shift. Because a star undergoing catastrophic 
gravitational collapse shrinks appreciably during the time it takes for the light to 
traverse its interior, it is clear that this red shift will be very large. In fact, it increases 
exponentially with an e-folding time determined by the surface gravity, K. For a star 
of solar mass this time is very short indeed-about 10-5 s. For a smaller mass it is 
proportionally greater. 

The gravitational red shift imparted to the electromagnetic field by a collapsing 
star is a direct analogue of the Doppler red shift imparted by the receding mirror 
which moves along the trajectory (2.12). Both increase exponentially on a time scale 
controlled by the constant K (in the mirror case this is just a parameter characterising 
the trajectory). Both have a latest ray that can pass into the system and out again. In 
the mirror case any later rays disappear off to the left, in the collapsing star these rays 
disappear down the black hole; they are trapped by the horizon and are drawn 
towards the singularity (see figure 2). 

The  effect on the field modes is almost identical. Around a spherical static star 
there will be incoming S wave (spherically symmetric) modes which start out at large 
radial distance like: 

exp [-iw(t+r)]/~ (2.15) 

Figure 2. 
Black hole evaporation. The star 
implodes to a singularity at r = 0. 
Its gravity bends the nearby null 
rays so that there is a latest ray 
(broken line) that can just pass 
through the centre of the col- 
lapsing star and escape on the 
other side to infinity. This latest 
ray forms the event horizon. 
Later rays are trapped inside it 
and cannot escape from the 
black hole. From the standpoint 
of geometrical optics the situa- 
tion outside the horizon is identi- 
cal to the moving mirror system 
of figure l ( b )  (they differ in 
appearance only because of a 
conformal transformation). The  
Hawking radiation produced is 
paid for by an ingoing negative 
energy flux (broken arrows). 
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pass through the star and emerge on the other side, at large r ,  like 

exp [ - iw( t -.)I/.. (2.16) 

If the star collapses, it is straightforward to show that at late times, the outgoing 
modes (2.16) get red-shifted exponentially to: 

1 
- exp {ioA exp [ - K(t - r ) ] }  ( A  constant) (2.17) 
Y 

which (apart from the use of radial coordinates) is identical to the mirror-reflected 
modes (2.13) with K the surface gravity (see $1 .2). 

The collapsing star therefore produces a flux of quanta travelling radially outwards 
for exactly the same reason as the moving mirror-a geometrical disruption of the 
vacuum-caused by the collapse of the star. Moreover, the geometrical optics of the 
two systems is identical and the calculation of the particle spectrum is nearly the same. 
The main difference is the fact that some of the outgoing radiation scatters gravitation- 
ally from the space curvature around the black hole and ends up going back down 
again. This is a frequency-dependent effect and so it alters the spectrum somewhat. 
However, the spectrum is still that of a black hole in thermal equilibrium, because there 
is a statistical balance between this back-scattering and that of incoming radiation 
being scattered out again. This is the reason that the thermal equilibrium spectrum 
associated with a black hole is not generally quite the same as the Planck spectrum. 
The spontaneous radiation flux therefore has the characteristics of a thermal spectrum 
with a temperature (see (2.14)): 

(2.18) 

precisely as expected from (1.12) with [= 8 4 .  This brilliant confirmation of the 
thermodynamic basis of black holes was demonstrated by Hawking (1974), and 
provides a most elegant connection between two previously unrelated topics in physics. 

Although the outline described here refers to a massless scalar field, the basic 
mechanism applies to all quantum fields. In  the real world, the black hole would 
produce photons, neutrinos and, presumably, gravitons. If the temperature is high 
enough (kTRnzc2) then massive particle production will also occur. For a solar-mass 
black hole, the temperature is very low indeed-about 10-7 K. For a microscopic 
hole about the size of an atomic nucleus the temperature is N 1012 K and electron- 
positron pairs would be produced. These mini-holes could have been formed from 
the aggregation of about 1014-1015 g of dense primeval matter during the cosmological 
big bang (Hawking 1971, Carr 1977). 

2.3. The energy balance 

Compelling though it is, the prediction of a steady flux of particles from a black 
hole still leaves a number of mysteries. Where do the particles come from? Where 
does the energy come from? What happens in the end when the energy supply runs 
out ? 

In  the example of the moving mirror it is natural to identify the surface of the 
mirror as the place where the radiation is created. There is no such privileged place 
for the black hole. I t  is most important to realise that the material of the imploding 
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star itself need not be directly coupled to the quantum field to produce the Hawking 
effect. The particles are produced out of empty space by the gravitational disturbance 
caused by the star’s implosion and not by the matter of the star acting as a souyce. Two 
bodies of the same mass (assuming for now J =  e = 0 )  made of totally dissimilar material 
would give rise to identical Hawking radiation. 

As discussed in $1.3, it is not meaningful to locate the origin of the created particles, 
because their wavelength is comparable to the size of the black hole. However, we 
can ask for the energy density and energy flux of this radiation at different locations 
round the black hole, because these quantities aye locally defined. T o  proceed covari- 
antly, we should calculate the expectation value of the stress-energy-momentum 
tensor, or stress tensor for short, in the chosen quantum state (e.g. the state 10) 
corresponding to an initial vacuum). This is denoted (Tpv).  An outline of the method 
of calculation will be given in $4.6. In  the moving-mirror case it is easy to evaluate 
explicitly (Fulling and Davies 1976). The  result shows that the energy of the radiation 
arises at the mirror surface and flows away to the right, remaining at constant density 
along the retarded null rays t - x. 

Mathematical complexity has so far precluded a complete evaluation of ( T J  for 
the black hole, but the general features are illustrated by a model two-dimensional 
black hole, for which (T+J has been calculated (for massless fields) in complete detail 
(see $4.6). The results (Davies 1976a, Davies et al 1976) show that around a massive, 
static body the gravitational field (or space curvature) induces a static vacuum stress, 
which is rather like the vacuum polarisation produced by the Coulomb field of a 
nucleus (and which contributes to the Lamb shift). This vacuum stress can be 
envisaged as a cloud of negative energy surrounding the body and falling off rapidly in 
density at large Y .  

Curiously, there is a laboratory analogue of this negative vacuum energy, which 
can actually be measured (Tabor and Winterton 1969). If two mirrors (conducting 
plates) are placed parallel and opposite each other there is an electromagnetic force of 
attraction between them even though the plates are electrically neutral. The force, 
which is independent of the electronic charge, arises because the presence of the plates 
disturbs the vacuum of the electromagnetic field and creates a static cloud of (uniform) 
negative-energy density in the space between them. The  vacuum disturbance is really 
a geometrical effect due to the fact that the electromagnetic field modes are forced to 
become a discrete set of standing waves in the direction perpendicular to the plates. 
Thus, some long-wavelength modes are excluded because they cannot ‘fit’ into the 
space. Crudely speaking, each mode oscillator carries an unobservable zero-point 
vacuum energy + A w ,  so the exclusion of these modes lowers the energy (to some 
negative value) between the plates. The  phenomenon is known as the Casimir effect 
(Casimir 1948). 

The  presence of a cloud of negative vacuum energy is negligible around an 
ordinary star, but near a black hole it can become intense, and is comparable in magni- 
tude to the energy of the Hawking radiation. When the star implodes, a hole appears 
in the centre of the negative-energy cloud, so this negative energy continuously 
streams into the black hole as the Hawking radiation streams away to infinity. Con- 
servation of energy demands that the Hawking flux is paid for by this ingoing negative 
energy and the effect is to steadily reduce the mass-energy of the black hole at just 
the right rate to compensate for the thermal radiation appearing in the surroundings. 
In  this way the mass of the hole supplies the energy of the Hawking radiation, not by 
this energy emerging from inside the hole (which is impossible because of the event 
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horizon) but by receiving negative mass-energy from the i n j m i n g  vacuum stream. 
Thus the requirements of both causality and energy conservation are simultaneously 
satisfied. 

As the mass of the hole is steadily reduced it shrinks in size. The violation of 
Hawking’s area theorem (1.2) is, we recall, explained by the presence of negative energy. 
From the thermodynamic point of view there is also consistency: the entropy of the 
black hole (as measured by its area) diminishes, but the creation of high entropy 
thermal radiation in the surrounding environment more than offsets this decrease 
and saves the second law of thermodynamics. 

One puzzling feature that remains concerns the experience of an observer who 
falls into the black hole (Hawking 1975). The Hawking radiation, as we have seen, is 
intimately connected with the existence of the event horizon and the exponential red 
shift associated with it. However, an observer who falls into a black hole does not 
experience the red shift or the horizon. Indeed, the horizon has no local significance 
(you cannot tell when you are crossing it-horizons are global constructs depending on 
the experiences of observers over the whole of future time). But freely falling observ- 
ers do not experience a loss of information; they can continue to see what is going on 
inside the collapsing matter after it enters the black hole. All this implies that a freely 
falling observer should not encounter many created particles. Yet if the particles are 
really there, surely he will pass by them as he falls towards the horizon? More than 
this: because of the time dilation effect, the falling observer seems to a distant observer 
to take an inJinite time to reach the horizon, even though in his own frame it takes a 
finite (and very short) time. Thus, as far as the distant observer is concerned, the 
falling observer should encounter all the particles emitted in that direction over the 
whole lifetime of the black hole. 

The resolution of this paradox comes again from the appreciation that the particles 
cannot be localised inside the region in which the observer is falling. The wavelengths 
of the quanta are necessarily much larger than the observer’s body, or his apparatus, 
so we should not expect him to attribute much significance to clicks in a counter, for 
instance. On the other hand, he can (in principle) measure the flux of energy which 
passes him as he falls, and it might be thought that the time-integrated energy of all 
the Hawking radiation would be very large. However, as far as energy is concerned 
there is no way the observer can distinguish the Hawking radiation flux from the other 
flux of energy which is observed due to his sweeping down through the cloud of static 
vacuum energy. Moreover the latter, being negative, subtracts from the Hawking flux 
contribution, so that the total energy flux which he encounters is actually rather small. 
In  summary, a freely falling observer does not encounter very much quantum energy, 
even though the distant observer does. 

Until now we have been deliberately vague about the total quantity of radiation 
emitted from the hole. If the back-reaction is ignored, the Hawking process is simply 
a steady flux which continues indefinitely. In  practice, the energy loss causes a slow 
shrinkage of the hole, as has been described. Thus, hot black holes slowly evaporate. 
As they do so their mass diminishes and according to (2.18) the temperature then rises, 
at least in the Schwarzschild case. This in turn accelerates the evaporation rate and 
the process proceeds catastrophically towards an explosive end. In  the last second the 
energy release is equivalent to many hydrogen bombs. It is conceivable that the 
intense burst of radiation, or secondary radiofrequency effects (Rees 1977), could be 
detected. 

So long as the rate of shrinkage of the hole is much less than the frequency of the 
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Hawking radiation, the effect of the back-reaction on the radiation spectrum can be 
ignored-the black hole still behaves as if it is approximately in thermodynamic 
equilibrium. Eventually this approximation will fail. This happens when dM/dt 21 
ADEM. But dMldt is given by the rate of energy loss, which according to Stefan’s 
law is proportional to T4 or PI-4 for a black hole (ignoring the deviation from the 
Planck spectrum). The area of the hole is 16nM2, so the rate of mass loss by the hole 
is of the order of M-2. Thus, back-reaction is important when M-2= M ,  or Mz: 1 
which in our units is the so-called Planck mass ( II 10-5 g). When the hole shrinks to 
this mass its size is a mere 10-33 cm. The present derivation of the Hawking effect 
then breaks down and the details of the evaporation process might become strongly 
modified. However, we cannot really guess what might happen because the Planck 
dimensions considered also herald the onset of quantum gravity effects, in which 
higher-order quantum processes of the gravitational field itself start to become import- 
ant. As we do not yet have a sensible theory of quantum gravity it is not known what 
the effect of quantum gravity, and hence the ultimate fate of the hole, will be. Perhaps 
the black hole just disappears altogether, taking the material of the star with it. This 
outcome would, of course, mean abandoning conservation of baryon number, etc, 
because we start out with a star of ordinary matter and end up with just thermal 
radiation. 

2.4. Super-radiance 

If the collapsing body is rotating it will produce a black hole with non-zero angular 
momentum J and angular velocity a. The system will no longer be spherically sym- 
metric (though it will be axisymmetric at late times) so that the S-wave modes such as 
(2.15) and (2.17) no longer accurately illustrate the behaviour of the quantum field. 
The red shift imparted to the outgoing modes will depend on their orientation relative 
to the rotation axis-that is, on their quantum number m (the usual axial component 
of the field angular momentum). The effect of this when worked through the analysis 
is to modify the Planck factor (2.14) to: 

, 
1 

exp [( w - mCl)/k TI - 1 
(2.19) 

(this is quite apart from the other modification due to back-scattering of the waves 
from the space curvature mentioned on page 1327). 

The quantity T which occurs in (2.19) is still related to the surface gravity by the 
formula : 

T = u/2nk 

but K is no longer simply (4M)-1 as it is in the Schwarzschild case. Instead it has a 
more complicated form which is given in equation (3.4) in the next section. 

I t  would not be correct to regard (2.19) as a thermal equilibrium spectrum. T o  
see this, suppose that the rotating black hole were immersed in an isotropic heat bath 
at the temperature T,  then the system would not be in equilibrium for the following 
reasons. Consider two quanta emitted with orbital angular momentum axial com- 
ponent parallel and antiparallel to the spin vector of the black hole respectively. The 
former will have m > 0 and the latter m < 0. Hence the magnitude of factor (2.19) will 
be greater for the quantum which carries away angular momentum parallel to the 
black hole’s spin axis than the other which is antiparallel. This means that the proba- 
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bilities of the emission of the two quanta are not the same. There is preferential 
emission of particles which tend to reduce the spin of the black hole. This implies that 
the hole will slowly lose angular momentum and spin down. It is not in equilibrium. 
Nevertheless, equilibrium could be established by immersing the black hole in a 
corotating bath of thermal radiation which reproduced the features of the spectrum 
(2.19). 

The  emission of quanta by a rotating black hole can actually be understood without 
recourse to the Hawking process involving a collapsing body, a feature which follows 
from inspection of (2.19). If we let T - t  0, then for a Schwarzschild (Q = 0) black hole 
it is clear that (2.19) vanishes, which simply says that the black hole does not radiate 
by the Hawking process. However, if Q#O then there exist frequencies w for which 
w - m!J < 0, and then the limit T -+ 0 does not cause (2.19) to vanish. The origin of 
this residue of non-thermal radiation, which was actually discovered before Hawking’s 
radiation, can be traced to a wave analogue of the Penrose process for energy extraction 
by a particle from a rotating black hole, discussed on page 1318. An incoming classical 
wave can be amplified by passing near (but not into) the rotating hole and removes 
some of the rotational energy as a consequence. Quantum mechanically this is rather 
like a laser, with the rotating hole stimulating the emission of quanta. On the basis of 
detailed balancing arguments it then follows that there should also be spontaneous 
emission and this is just the residue of non-thermal radiation discussed above (Ze1’- 
dovich 1970, Unruh 1974). 

It is interesting to notice that this radiation removes both mass-energy and angular 
momentum from the black hole. However, the condition: 

w < m Q  (2.20) 

ensures that the emitted quanta always remove more angular momentum (mQ)  than 
energy (U). Thus the ratio JjM for the black hole will be reduced rather than increased 
by this process. This is a good illustration of cosmic censorship at work, for if JIM 
were to increase, it could approach the limiting value of one at which the black hole 
converts into a naked singularity. 

If the black hole carries an electric charge and its temperature is great enough to 
permit massive particle production, then it will preferentially radiate charge of the 
opposite sign in an attempt to discharge itself. This is a form of charge super-radiance, 
analogous to the spin-down tendency of rotational super-radiance. An analysis has 
been given by Gibbons (1975). The  super-radiant frequencies are those for which 

w < m R + & .  (2.21) 

If we wish to consider a charged, rotating black hole in equilibrium with a surround- 
ing heat bath then we must expect that, due to these super-radiant effects, the heat 
bath will not contain ordinary thermal radiation but will be corotating with the black 
hole and possess a compensating electric potential. The  latter is, of course, unnecessary 
for black holes with masses $1015 g, because their temperatures are too low to pro- 
duce charged particles. 

3. Thermodynamic black hole processes 

With the establishment of the quantum basis of the thermodynamic connection 
by Hawking, it is possible to bring black holes within the framework of ordinary 
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thermodynamic theory (Davies 1977a, Hut 1977). The event horizon area is the 
entropy of the hole and the temperature is now seen to have its usual significance. 
Some of the features of black hole thermodynamics are rather strange, though. 

3.1. The fundamental thevmodynanzic equations 

It is convenient in this section to put Boltzmann’s constant k= 1 jSr  and h= 
h/277= 1. The  establishment of the value of 6 (see equation (2.1)) enables the precise 
numerical connection to be made between the event horizon area A and the entropy S. 
From equation (1.10) this is: 

S= BA. (3 * 1) 

This relation remains true for the generic case (e, J#O) so from equation (1.1) we 
can write down the fundamental thermodynamic equation for a black hole: 

M2= 2S+  - (J2+ e*) + 8 e2 (3 *2> 
1 

8 s  

and use this to study black hole processes on the basis of equilibrium thermodynamics. 
The  first law, equation (1,3), now assumes the conventional form: 

d M = T d S f Q d J + @ d e  
where 

and K is the surface gravity of a charged, rotating hole. 
Euler’s theorem allows (3.3) to be integrated to obtain the Gibbs-Duhem relation: 

M =  T S + Q J + &  @e 

which reduces to (1.7) when J = e = 0. 
Equation (3.2) can be inverted to give an expression for the entropy: 

S=z I M 2 - &  e 2 + &  M2(1-ez/M2-J2/M4)112. (3.7) 

In spite of the similarity between this set of equations and that for a conventional 
thermodynamic system, there are a number of features peculiar to the black hole 
case. One of these is that the entropy of a black hole cannot really be visualised as 
spread with a uniform density through it; black hole entropy is a global concept. 
Physically, this means that we cannot divide black hole systems into constituent 
subsystems which differ only by scale, as we can with, say, a laboratory gas. Mathe- 
matically, this limitation is connected with the appearance of M2 rather than 144 on 
the left of equation (3.2): the total energy is not a homogeneous jirst-order function 
of ‘extensive’ parameters. If two Schwarzschild black holes of masses MI and M 2  
are coalesced without loss of total energy, the final mass will be M I  + A 4 2  and the final 
entropy 4 ( M I  + M z ) ~ ,  which is always greater than the initial entropy 3 A412 + f M 2 2 .  



Thermodynamics of black holes 1333 

Black hole combination is therefore in itself an irreversible process: entropy considera- 
tions prevent a black hole from bifurcating. 

From equation (3.7) it is clear that S is maximised by making J=e= 0. Thus the 
effects of super-radiance, discussed in $2.4, which tend to irreversibly reduce the 
values of J and e by radiating away angular momentum and charge are seen to be a 
direct consequence of the second law of thermodynamics. 

3.2. Equilibrium and stability 

If a black hole is to be in thermodynamic equilibrium at some temperature T, 
then it must be surrounded by a heat bath at the same temperature. Suppose the 
system is enclosed in a box of volume V with impermeable walls, containing a mixture 
of n Schwarzschild black holes and some thermal radiation. Neglecting the small 
volume of the black holes, the distortion of the Planck spectrum due to space curvature 
and surface effects associated with a box of finite size, we may write for the total 
entropy of the contents of the box: 

S=$nMz++(aVM,.3)114 (3 .8 )  
where M,. is the mass of radiation and a is the usual radiation constant. The total 
energy is constant, which we call E, so: 

S= 8 nMz+A(E-nM)3/4 ( 3  a 9)  
where A = $ ( a  V)1/4. 

hole mass M which is a root of the equation: 
The  system will be in equilibrium when dS/dM=O, which occurs for a black 

(3.10) 

lying between 0 and E. The function f ( M )  has only two turning points: at M =  0 
and M =  (4/5) E/n, so it possesses at most three roots. One of these must always be 
negative, becausef(M) + - CO as M -+ - CO, but F(0) = (3A/4)4 > 0. This also shows 
that F(0)  is a maximum. Hence the turning point at M=(4/5) E/n must be a mini- 
mum. The remaining two roots will therefore only exist if this minimum lies below 
the axis f ( M )  = 0, i.e. if F(4E/5N) < 0. So we can conclude that the contents of the 
box will only possess equilibrium states if F(4E/5N) < 0, or if: 

44 E5 V<--.  
5 5  an4 (3 .11 )  

This curious result can be better understood by computing the specijic heat of a 
Schwarzschild black hole from (3.4): 

(3.12) 

That this is negative corresponds to the fact that the black hole heats up as it radiates 
energy (TccM-1). It occasions no surprise, because negative specific heats are a 
familiar feature of self-gravitating systems (see $1.1). 

Imagine a box with fixed volume V,  containing a quantity of energy E in the form 
of thermal radiation. Suppose we wish to convert a fraction of this radiation energy 
into one (or more) black holes, in such a ratio that the final radiation temperature 

89 
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equals the black hole temperature and equilibrium prevails. First we make a very 
small black hole. Its temperature is very high-much higher than the radiation. 
Now we allow the hole to grow at the expense of the radiation. As the hole gets 
bigger, its temperature fulls. At the same time, the surrounding heat bath, whose 
energy is being plundered to feed the hole, falls also in temperature. There is thus a 
competition, with the black hole attempting to grow and fall to the temperature of 
the heat bath, and the heat bath cooling to supply the mass of the hole. 

There are two possible ways in which equilibrium might be achieved: a small hole 
(high temperature) whose formation does not deplete the heat bath by much, or a 
large hole (low temperature) where a large fraction of the. heat bath has been removed, 
lowering its temperature appreciably. These two situations correspond to the two 
roots of equation (3.10). For a fixed volume, neither of these equilibria can be 
achieved unless the total energy E available is sufficiently great, because for smaller 
values of E the reduction in temperature of the heat bath is correspondingly greater 
to supply the energy of a black hole of given mass. As more and more energy is 
converted, the heat bath falls in temperature faster than the hole and they can never 
reach a common temperature. The limiting case is given by the equality sign in (3.11), 
where the two roots coincide. 

The question now arises about stability. Do the roots of (3.10) correspond to 
entropy maxima or minima? As there cannot be two maxima without a minimum 
between them, or vice versa, it follows that one root must be a maximum and the 
other a minimum. Because dS/dM<O at both extremes M=O, M=E,  it is clear 
that the low-fUl black hole corresponds to stable equilibrium and the high-M black 
hole to unstable equilibrium. 

If the latter situation were to occur, the system would achieve stability in one of 
two ways. The  small hole could start to evaporate, heating up the surrounding 
radiation bath, but not fast enough to match its own rise in temperature. The evapora- 
tion would thus escalate and the black hole would eventually explode and presumably 
disappear, leaving just the radiation. Alternatively, the hole could start to grow and 
deplete the heat bath, but initially not fast enough to match its own drop in temperature, 
The growth would continue until the energy of the heat bath was low enough for its 
rate of fall in temperature to match that of the hole, and then the system would come 
into equilibrium in a situation corresponding to the other stable root of (3.10). 

It is also clear from (3.11) that equilibrium is harder to achieve when several black 
holes are present. However, several black holes cannot be in stable equilibrium 
together. Because S is proportional to the square of M, it is always entropically more 
favourable for them to coalesce. If they do this without loss of energy, then their final 
mass will be nM, so their entropy will be 4 n2M2, compared to the initial entropy of 
$nM2. 

An alternative procedure for merging together black holes is to require that the 
final entropy be the same as the initial entropy (reversible change) and enquire what 
fraction of the mass of the system may be extracted as energy (Hawking 1973). For n 
Schwarzschild black holes of equal initial mass one obtains the fraction 1 -n--W. 
Thus, for two black holes, the maximum extractable energy allowed by the second law 
of thermodynamics is about 29%. The prospect of, say, two solar-mass black holes 
divesting themselves in one go of 1054 erg-more than twenty times their total energy 
output from nuclear burning over the billions of years they spend as ordinary stars- 
is mind-boggling, Moreover, for a sufficiently large number of holes (n$l) the 
fractional energy release can clearly be even greater. 
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In  the general case of rotating charged black holes, still more energy may be 
released. If the initial holes differ only in the sign of the charge, and they are coalesced 
along their spin axes in a counter-rotating fashion, the final J and e will be zero. The  
maximum fractional energy extracted is then : 

( 3 . 1 3 )  

where Mi is the mass of one of the initial black holes. In  the limiting case (1.4) of 
maximum e and J ,  (3 .13)  reduces to: 

( 3 . 1 4 )  

T o  maximise expression ( 3 . 1 4 )  one should choose J =  Q, e2= Mi2 (non-rotating, 
supercharged hole). This yields the greatest possible fractional energy that black holes 
can release according to the second law: 1 - 4 n-1/2. This is about 65% for two black 
holes. The other limit, e= 0, J = Mi2, yields only 500/,. 

It is instructive to compare the entropy of a black hole with that of ordinary 
matter of the same mass. For a non-relativistic gas, the entropy of N particles is of 
the order of N k .  If the particles are, say, of atomic mass (2: 10-19 in these units) the 
entropy of a mass M is thus about 1019 M ,  compared to & M2 for the black hole. In  
the case of the Sun, M2: 1033 g2: 1038 units, so its entropy is about 1057, which is 
nearly twenty powers of ten less than that of a black hole of the same mass. 'The two 
entropies will be about equal for a mass of 1019 units, or around 1014 g, which is the 
mass of a large asteroid. It is thus extremely entropically favourable for a solar-mass 
object to implode to form a black hole, but unfavourable for mini-holes of less than 
about 1014 g to form from non-relativistic matter. It is doubtful, however, if this is 
relevant to the formation of primordial mini-holes, as the cosmological fluid in the big 
bang was far from thermodynamic equilibrium and was also highly relativistic. 

A black hole of mass 1014 g has a further curious significance. Its size is about 
one fermi (10-13 cm), or about the size of an atomic nucleus. If it is formed by the 
implosion of 1038 protons with their spins aligned, its angular momentum J will be 
equal to M2, i.e. it will be an extreme Kerr black hole of limiting rotation rate. 

There is a further significance to black holes of this mass. Page (1976) has carried 
out detailed computer calculations for the emission rate of gravitons, neutrinos and 
photons, which yield a total luminosity for a Schwarzschild black hole of 

The lifetime of this hole against total evaporation is obtained by integrating this over 
time to obtain 10-26 (Mjl  g)3 s. For a mass of about 1014 g this works out at about 
1010 yr, which is just the present age of the universe. These various coincidences are 
examples of the famous 'big number' coincidences between cosmological and atomic 
constants first noted by Eddington and Dirac (see, for example, Davies 197713). 

3.3. Phase transitions and the third law 

Imagine a black hole at some temperature T in equilibrium with a surrounding 
heat bath. In  general the hole will have angular momentum J and electric charge e. 
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Suppose there is a small, reversible transfer of energy between the hole and the 
environment which occurs in such a way that J and e remain unchanged. The specific 
heat corresponding to this transfer is easily calculated from (3.4) and (3.7): 

(3.15) 

which reduces to (3.12) in the limit J=e=O. 
If we examine the opposite limit corresponding to condition (1.4), it follows from 

(3.7) and (3.4) that T-tO in this limit. Thus a black hole may be cooled down by 
rotating it or charging it up. In  equation (3.15) we see that as T-t  0, C J ,  ,+ 0 through 
positive values. Recall, however, that the specific heat of a Schwarzschild black hole is 
negative. Consequently, at some values of J and e between these limits, C J ,  e changes 
sign. This occurs when the denominator of the right-hand side of (3.15) vanishes. At 
this point the specific heat passes from negative to positive values through an infinite 
discontinuity. This is a feature commonly associated with a phase transition of the 
second order. Just what physical difference there is in the black hole structure in the 
different phases is unclear. It is known (Bertin and Radicati 1976) that a similar type 
of phase transition occurs in Newtonian rotating fluids, for which the higher angular 
momentum phase represents a breakdown of axisymmetry. 

The values of JZ and e2 at which the transition occurs are found to be aM4 and 
PMZ respectively, where a and ,B are positive roots of the equation: 

a2 + 6a + 4,B= 3. 

For an uncharged hole (e=0) this gives J-0.68 M2 and for a non-rotating hole 
(J=O) it gives e-0.86 M .  It is easy to show that these transitions occur when 
!2 21 0.23 T and CD = 3-112, respectively (Davies 1977a). 

In  the high J ,  e phase, there is a change in the stability characteristics of the black 
hole. It is possible for them to be in stable equilibrium with a (suitably rotating) 
surrounding heat bath of infinite volume. If the hole is non-rotating but carries a 
sufficiently large electric charge, its temperature can be made to approach zero as 
e2 -+ M2. In  this situation the hole cannot discharge itself by super-radiance, because 
in order to emit charged particles its temperature must be at least of the order of 
T E  mecZ/k where me is the mass of the electron-the lightest charged particle. If its 
environment is cooled, it will slowly radiate mass, and hence increase the value of the 
ratio ez/M2 nearer to the extreme value of one. Moreover, as its specific heat is 
positive in this phase the hole cools down with its surroundings. 

An intriguing question is: can it reach absolute zero, thereby violating the third 
law of thermodynamics, and open up the prospect that a small perturbation might cause 
the horizon to disappear altogether and expose a naked singularity? From equation 
(3.7) it is clear that the entropy approaches the finite value M2/8 in the limit e2+ M2. 
The fact that a zero-temperature black hole has a finite entropy rather than zero is 
easily understood in terms of statistical mechanics. In  a laboratory thermodynamic 
system, the quantum state at absolute zero will be the lowest energy state of the 
system, and as such will be unique. The zero-temperature macrostate can therefore 
be realised by just one microstate, which yields an entropy of zero. In  contrast, a black 
hole with e2= M2 can clearly be realised by an enormous variety of internal micro- 
states, so we expect it to possess finite entropy. It follows that black holes violate the 
third law as formulated by Planck. Moreover, the Nernst formulation of this law, that 
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entropy differences between states that can be connected by an isothermal process 
must vanish as T -+ 0, is also violated. For example, the quantity (aS/aCl>~ -+ - M 3  
as T -+ 0. Hence the usual arguments about the unattainability of absolute zero do 
not seem to extend to black holes. 

Nevertheless, it is not possible to argue from this that naked singularities can 
be produced by cooling down supercharged black holes. The law of cooling for such 
a hole is very complicated but approaches T K  t-1 as time t -+ CO. Hence, it will never 
attain absolute zero unaided in a finite time. On the other hand, the Reissner- 
Nordstrom solution of general relativity, on which this model of the charged black 
hole is based, is an idealisation (e.g. exact spherical symmetry, electrovac exterior) and 
it may be that a statistical fluctuation or some external perturbation could enable the 
limit (1.4) to be exceeded. All one can say is that there is no thermodynamic reason why 
not. There may, of course, be non-thermodynamic reasons why cosmic censorship 
cannot be violated. Certainly, simple dynamical mechanisms to increase J or e2 
beyond the black hole limit seem to fail for curious reasons. For example, if a massless 
subatomic particle with spin is shot into a black hole for which the limit (1.4) has 
already been attained, then it will impart a small additional angular momentum of 
about one unit. However, it will also increase M by a small amount. In  order to ‘fit’ 
into the hole, a massless particle such as a neutrino, photon or graviton must have a 
minimum energy of M-1 so that its wavelength is less than M .  The left-hand side of 
(1  -4) then becomes: 

(3.16) 

Using the fact that J $  1,  M $  1 ,  and that (1.4) is a first approximation, we may 
rewrite (3.16) as: 

1+---- 2(J+e2) 4 
M4 M-2 

which is always less than one, because J <  M2 and e2 < M2. Thus, in absorbing the 
particle, the hole acquires insufficient angular momentum per unit mass to cool below 
the thermodynamic limit T =  0. It actually heats up instead. Of course, this conclu- 
sion may be invalidated if there exist in nature massless fields of very large spin. 

4. Two-dimensional models 

The radial modes for a field in the vicinity of a black hole cannot be written down 
in terms of known functions. This shortcoming obscures many of the features of the 
thermal emission process because numerical, rather than analytic, techniques must be 
applied. Fortunately, most of the qualitative features of quantum black holes are 
present in the two-dimensional analogues, which do possess explicit solutions, and 
study of these models has provided great insight into the nature of the thermal 
radiation. 

4.1. The relation between coordinates and quantum states 

by the space-time metric: 
A spherically symmetric black hole with mass M and electric charge e is described 
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where 1742 > e2 and Y is a radial coordinate chosen to make the surface area of a sphere 
of radius Y equal to 47~2,  as in Minkowski space. The metric (4.1) is evidently singular 
at Y = Y* M (1742 - e2)1/2. These are not singularities in the geometry itself but in 
the coordinate system (t,  r ) ,  similar to those which occur to latitude and longitude on 
the surface of a sphere at the poles. In  fact, the outer surface r+ corresponds to the 
event horizon: notice that Y+ --f 2.41 as e -+ 0. This surface has global significance, but 
locally an inertial observer would find nothing unusual about the space-time geometry 
there. The inner surface Y- is another type of horizon inside the hole itself which 
need not concern us here. 

The physics of the Hawking process depends in essence on the geometry of the 
( r ,  t) surface; the angular dependence, which enters through the final term of equation 
(4.1), is really only incidental. A natural two-dimensional model of this black hole is 
therefore obtained by suppressing the angular dependence (removing the final term) 
and treating one-half (Y > 0) of two-dimensional space-time with coordinates (t, r ) .  
If necessary, the origin of the spherical coordinates, Y = 0, can be modelled by assuming 
a perfectly reflecting barrier at this point, or by reflecting the geometry in the origin. 
I t  is not possible to include the effects of rotation in this model as a black hole with 
J #  0 is not spherically symmetric. 

A simple change of coordinates : 

converts the two-dimensional residue of (4.1) into 

(4.2) 

For some purposes it is convenient to work with the so-called null coordinates U, a, 
defined by : 

u=t-Y" 

a=t+Y* 
whence (4.2) reduces to 

The advantage of the forms (4.2) and (4.3) lies in the fact that they are confovmal 
to Minkowski space. That is, a transformation of the form ds2+ Q(t, Y) ds2, for some 
space-time function Q, converts the metric to the flat form du du. The significance of 
conformal flatness is that the wave equation for a massless scalar field: 

o+=o (4.4) 
is invariant under conformal transformations. This property is also true for the mass- 
less spinor equation. Thus, in these coordinates, equation (4.4) is simply the same as 
the ordinary flat space form: 
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and we may immediately write down a complete set of normalised mode solutions in 
the standard way: 

(4 * 6) 
1 __  - exp ( -  iwu). 2 1 i,bw-(t, r*)=--= exp (-iwu) 

2 d n w  2 4 n w  

These complex exponentials represent right (+) and left (t) moving waves, res- 
pectively. They may be used to construct a Fock space and vacuum state for the 
quantised theory in the fashion described in 52.1. 

We now come to an important point. Equation (4.3) has the general form: 

ds2= C(U,  V) du dv. (4.7) 
There is a Fock space, and in particular a vacuum state, associated with the coordi- 
nates u and a through the choice of modes (4.6). However, under a coordinate trans- 
formation: 

21 7% &(U) 

v -f a(.) 
the metric changes to: 

d 9  = C(C, a) da dfi (4.9) 

where C(6, 5)  = C(u,  V) (duldc) (dvldfi). But the transformed metric (4.9) is still 
conformally flat and possesses mode solutions: 

1 
_ _  exp ( - iwfi) ~- 4 1  &- = - exp ( - iw6) 

2 d n w  22/7rw 
(4. lo) 

exactly like (4.6) but in the new coordinates 6, fi. Indeed, for every choice of coordi- 
nates there exists a set of standard exponential modes, and hence a different set of 
states. In  particular, each coordinate system possesses its own vacuum state. 

When it comes to the physics of black hole thermal emission we have to face the 
question: what is the quantum state in which the field observables are to be evaluated 
as expectation values? Which coordinate system do we choose for our mode solutions? 
It is important to realise that the choice of coordinatcs in which to actually calculate 
is irrelevant-as required by general covariance. The  significance of a particular 
choice is that the modes should reduce to simple exponential form like (4.6) or (4.10). 

As always, the choice of quantum state depends on the physical circumstances of 
interest. For example, suppose we choose the modes (4.6) based on the standard 
coordinates ZL and v (or t and r )  used in equation (4.3). Far from the black hole the 
metric (4.3) approaches that of Minkowski space and the coordinates t, r are the usual 
time and space coordinates of special relativity. Thus the modes (4.6) become 
standard exponential wave solutions of conventional quantum field theory. On the 
other hand, near the horizon, as r -+ r+, r* --f - CO and u -+ CO so that the ( -+ ) modes 
oscillate infinitely fast. This indicates some serious pathology in the quantum 
mechanics of any states built out of these modes, and indeed it can be shown (see 
54.6) that the expectation values in these states of various field observables, such as the 
local energy density measured by an inertial observer, actually diverge at r+.  

The implication of this bad behaviour is that quantum states based on (4.6) could 
not be realised for a black hole: back-reaction effects of the diverging field energy 
would in practice drastically modify the geometry near the horizon. On the other 
hand, these states could be realised in the region exterior to a static star whose radius 
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is much larger than the horizon because the metric (4.3) would then only apply down 
as far as the surface of the star. Inside the star the modes would change to some new 
well-behaved functions. (If the star is not static then the outgoing modes will no 
longer be simple exponentials because of red-shift effects: see $2.2.) In  many ways 
the vacuum state based on these modes would seem to be a natural generalisation to a 
static star of the Minkowski vacuum, to which it reduces at large Y. 

4.2. The eternal black hole 

The unsuitability of the modes (4.6) for a black hole is directly related to the 
behaviour of the U or Y% coordinate at the horizon Y+. As explained, this is not a 
physical singularity in the geometry, a fact which may be seen by computing the 
space-time curvature for the geometry (4.3) : 

(4.11) 

which is clearly non-singular at Y = Y + .  The singularity is, therefore, a feature of the 
coordinate system only and a change of coordinates will remove it. Field modes 
based on new coordinates zj, 8 which are regular at Y+ will not then give rise to diver- 
gent quantities at Y+ in the quantum field theory. 

The standard analytic extension of the space-time (4.3) into the interior of the 
black hole, i.e. across the horizon Y = Y+, uses new coordinates zj, 8 defined in terms of 
U and '(I by the transformation: 

a=exp [ - (Ir+z)u] r+--Y- =exp ( -m> 

8= exp [ (')'(I] Y+ - Y- = exp (w) 
(4.12) 

where K is the surface gravity of the charged black hole, being the same quantity which 
is related to the Hawking temperature through equations (1.12) and (3.4). (The latter 
follows by inserting the definitions of Y* in K . )  The appearance of an exponential in 
(4.12) is directly related to the exponential red shift which is the cause of the thermal 
radiation. 

In  the a, 8 coordinates the metric (4.3) is transformed to: 

(4.13) 4Y+4 
Y2 

where a = (r+2 + ~-2) / r+2 .  The metric (4.13) is clearly non-singular at Y = r+. 
Having extended the space-time analytically inside the black hole, it is necessary 

to ask where it will end. If a collapsing star is encountered inside the hole, then the 
geometry will no longer remain that of (4.13) and we should have to match this metric 
onto some other metric which describes the interior of the star. However, the thermal 
properties of black holes seem to be completely independent of the details of the actual 
gravitational collapse, so great simplification may be achieved if the imploding star 
is omitted from the picture altogether, and the empty space-time (4.13), often called 
an eternal black hole, is used as the background on which to examine our quantum 
fields. In  the next section this will be justified by comparing the energy flux emitted 
by a star which implodes into a black hole with that from an eternal black hole. 

ds2= -- exp ( - ~ K Y ) ( Y + - - - ) - ~ ( Y - - - ) ~  dzj d8 
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Whether or not there exist in the universe any eternal black holes, or whether all black 
holes form from imploding stars, is not known. 

Although the geometry of an eternal black hole is identical to that of the vacuum 
region outside an imploding star, the topology is different. The  reason for this is that, 
in the absence of the star, the space-time described by (4.13) must continue on without 
end through the interior of the hole, unless it terminates at a physical singularity. 
Such a singularity does indeed form a boundary to the space-time inside the black 
hole at r=O. It can be seen from (4.11) and (4.13) that not only does the metric 
become singular here but the curvature does also. We cannot continue the space- 
time beyond this point. However, it turns out that the singularity does not block off 
all the space-time inside the hole. 

An observer in the exterior universe at fixed distance from the centre moves along 
a line of constant r > r + .  From equation (4.12) we see that: 

Bb=exp (2KY') 
so that a line of constant Y' (or Y )  is a rectangular hyperbola in the B,  5 plane. I t  
follows that there exists another rectangular hyperbola, obtained by reflecting the 
first in the origin (U --f -By 5 + - 5). Consequently, there is a whole new region of 
space-time-a sort of mirror universe-with the same metric (4.3), existing on the 
'other side' of the black hole, joined onto our universe through the inside of the hole 
(see figure 3). If the hole had formed from an imploding star instead, this mirror 
universe would not exist. 

Figure 3. Eternal uncharged black hole. This space-time diagram shows the causal structure of 
the extended time-symmetric hole. The space-time is bounded above and below by 
the r=O singularity, but there is a space-like throat joining our universe (wedge- 
shaped region marked +) to a mirror universe (marked -) through the interior of 
the hole. The null ray ii = 0 is the event horizon for our universe. The hyperbolae 
represent the world lines of inertial observers far from the hole. In  the charged case 
the space-time can also be extended vertically. 

90 
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The  mirror universe cannot be reached by an observer falling into the black hole 
from our universe, for it is space-like-separated from us. However, so long as the 
charge of the black hole is non-zero, the spacc-time can be continued in a time-like 
direction also, without hitting any singularities and opens out into yet another uni- 
verse that way. In  fact, the continuation can be repeated ad injinitum into an unlimited 
sequence of other universes. Moreover, this time-like extension can also exist inside 
a black hole formed from an imploding, electrically charged star. The  question of 
whether an observer could really travel through a charged black hole into these other 
universes is another matter (Birrell and Davies 1975, Simpson and Penrose 1973, 
McNamara 1978). 

There is a further crucial difference between an eternal black hole and the implod- 
ing star. Because the former is static and everywhere empty, it is time-symmetric. 
There will be a past horizon and past singularity which are the time reversals of the 
future event horizon and future singularity. Sometimes the time-reversed hole is 
called a white hole. 

4.3. Thermal Green junctions 

We now have two different sets of coordinates which cover the eternal (maximally 
extended) black hole: the original 'Schwarzschild-like' coordinates U and v defined by 
(4.3) and which cover 'our' universe and the 'mirror' universe in two separate patches, 
and we have the so-called 'Kruskal-like' coordinates C, B defined in terms of U and ZI 
through (4.12) which cover the whole space in one patch. Associated with each 
coordinate system is a complete set of modes, given by (4.6) for the U ,  v system and 
by (4.10) for the Q, 8 system. 

The  scalar field 4 may be expanded in terms of either set: 

4 =  [c , (+)#,~+c~,~((+)#,~)"  + d,(-)#,-+ do:((-)#,-+)*] + [ t ] (4.15) 

J ;  referring to the set associated with the barred coordinates, (4.12). The  symbol [ t] 
denotes a similar expression for left-moving waves of the form exp ( -  iov). In  (4.15) 
4 has been expanded in terms of two sets of #, modes denoted by (*)#,. The (+)  set 
refer to those that cover the region outside the black hole in our universe, and the ( - ) 
set refer to the mirror universe. Note that (+)#wF' vanish in the exterior mirror 
universe, and 

With each set of modes is associated a vacuum state. The  first, which we denote 
by IO), is defined by: 

a,\ U) = 0. (4.16) 

The  second, denoted by IO), is defined by: 

W 

vanish in our universe. 

c,] 0 )  = d, 10) = 0. 

These are not the same state. For example: 

(4.17) 

The i,h, modes are related to the 4, modes through a transformation of the type (2.10) 
which mixes positive and negative frequencies. The  operators a,, c, and d, will be 
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related by a Bogolubov transformation of the type (2.9), so as ,f?,,,#O the vacuum 
state 10) will contain quanta of the modes 

modes 
when the system is in the vacuum state 10). This may be done directly by explicitly 
expanding one set of modes in terms of the other according to a relation like (2.10). 
However, the thermal properties of black holes are better displayed by exploiting 
quicker and more elegant routes. 

First, note that the coordinates zi and d do not reduce to ordinary Minkowski co- 
ordinates t - y, t + r at large r (far from the black hole where space-time is flat). On  
the other hand the U ,  2: coordinates do. Hence we conclude that the vacuum state I U) 
is not the conventional vacuum state of ordinary flat space quantum field theory even 
in the region distant from the black hole. We must therefore expect that a black hole 
whose quantum state is 10) will be regarded by an ordinary observer far from the 
hole as being immersed in a bath of quanta. 

Perhaps the easiest way to explore the nature of this bath of quanta is to compare 
the so-called two-point, or Green, functions: 

and vice versa. 
It is a straightforward matter to calculate what quanta are present in the 

G(x”, x’) = (0 I +(x”)+(x’) IO) 

G(x”, x’)= (u~r$(x“)+(x‘)p) 

(4.18) 

(4.19) 

computed in the two different vacuum states. A simple mode-sum calculation gives: 

1 
47r 

(4.20) G(x”, x’) = In AU AV 

1 G(x”, x’)= --.- In Azi Ad 
47r 

(4.21) 

for the respective vacua, where Au=u”-U‘ ,  etc. In  arriving at (4.16) and (4.17) it has 
been necessary to discard an infinite constant. This is a manifestation of an infrared 
divergence which is always present in these two-point functions in two-dimensional 
massless scalar field theory. The presence of the infinite constant is not a serious 
problem as it disappears when G is differentiated to obtain observable quantities 
such as the stress tensor (see $4.6). 

The  relation between the two G (Gibbons and Perry 1976, Dowker 1977) is 
revealed by substituting for zi and d in (4.21) from the transformation equations (4.12): 

1 
47r 

G(x”, x’) = {K(r * ” + Y *’) + In 2 [cosh K ( t  ” - t ’ )  - cosh K ( r  * ” - r *’)I}. (4.22) 

It is seen that € is unchanged under the replacement t” -+ t”+ 27r in K-1, n integer. 
That is, G is periodic in imaginary time, with period 2 7 r l K :  

G(t”+277 in K-1, Y * ” ;  t’, ~ * ‘ ) = € ( t ” ,  r * “ ;  t’, Y*’ ) .  (4.23) 

This feature is characteristic of thermal Green functions. That  is, if G is averaged 
over a grand canonical ensemble to give : 

Gp(x”, x’) = T r  [exp ( - /IH)+(x”)r$(x’)]/Tr exp ( - / IH)  (4.24) 

corresponding to  thermal equilibrium at temperature kT= /3-1, where H is the 
Hamiltonian (defined with respect to the time coordinate t ) ,  one readily finds from 
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the Heisenberg equations of motion : 

Cb(t”, r ” ;  t’, r‘)=C&t’, r ’ ;  t”+ij3, Y”). 

Observing the symmetry of (4.22) under interchange of primes, we can identify € as 
a thermal Green function at a temperature T = ~/27rk, which is precisely the Hawking 
temperature for the black hole (see equation (3.4) with K =  (872)-1). 

Next we note that the zero-temperature Green function ( j3+  CO or K +  0) is: 

1 
472 

which, froin (4.20), reveals that: 

=- In Au Au 

€cc = G. 
Using the identity: 

m 

(4.25) 

(4.26) 

and discarding another infinite constant, we readily obtain : 

In [2 (cosh x - cosh y )] = C In [(y + 272ni)z - $1 
m 

n--co 

which enables (4.22) to be written, using (4.25): 
m 

C(t”, r ” ;  t’, r ’ )=  C Ga(t”+272tli K-1, r ” ;  t’, Y ’ )  
9 2 3 - C O  

(4.27) 

as an infinite series of zero-temperature images. 
These properties of the Green function C reveal that the vacuum state 10) 

behaves in the region outside the black hole, where the coordinates U, v (t ,  Y) are more 
appropriate, like a bath of thermal equilibrium radiation at the Hawking temperature 
~/2nk. In  arriving at this conclusion we have nowhere used the implosion of a star, 
or the tracing of null rays through a collapsing object, as did Hawking in his original 
derivation. This illustrates the fact that the Hawking effect owes its existence primarily 
to the space-time structure associated with the black hole and not to the details of the 
hole’s formation. Indeed, in the original ray-tracing argument, outlined in $2.2, the 
final answer turned out to be independent of the details of the imploding star in the 
late-time limit when the flux settles down to a thermal spectrum. This very basic 
nature of the Hawking effect accounts for the remarkably large number of different 
ways in which it has been derived. 

Further information may be obtained about the 10) vacuum by computing the 
expectation value of the stress tensor TPy of the quantum field in this state, As will 
be discussed in $4.6, this quantity is formally infinite, but the difference (0 I Tpu 10) - 
(01 T,,10) is finite. The  expectation value for TIL, in any given vacuum state may De 
obtained by differentiating the corresponding two-point function G (see equation 
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(4.54)). For example, for the U-U component: 

(01 T,.Io)-(Ol T,.JO)= lim a,d,,[G(x”, x’)-GG(x”, x’)]. (4.25) 
%“,X‘--tX 

From equation (4.27) we now see that G(x”, x’) is just the n=O term in the 
expansion of G. Therefore we may insert for G- G i n  (4.28) the summation (4.27) with 
the n = 0 term removed. One readily obtains the result: 

~21487 (4.29) 

which corresponds exactly to the energy density of a bath of thermal (Planckian) 
radiation at a temperature ~ / 2 n k .  

The energy flux (TTt) can be calculated similarly. However, we merely need to 
note that the model is time-symmetric to deduce that the net flux vanishes. The  
temperature ~ / 2 n k  is, of course, the temperature of the black hole as calculated by 
Hawking. Thus, we see that the IO> vacuum corresponds physically to a black hole 
in thermal equilibrium with a surrounding heat bath. The  hole does not evaporate: 
it emits and absorbs thermal radiation at an equal rate. 

4.4. Relating the vacuum states 

In  the previous subsection it was suggested that the vacuum 10) appeared as a 
thermal state as far as quanta of the modes were concerned. We shall now demon- 
strate this explicitly by calculating the unitary transformation from one vacuum state 
to the other: 

IO>= UlO> (4.30) 
where U is a unitary operator to be found. This equation will enable us to compute 
such things as the expected number of quanta in each mode when the black hole is 
in the state 10). 

As already remarked, relation (4.30) could be deduced by expanding the modes 
in terms of IJu by brute force. However, we do not need to do this for the following 
reason. The state 10) is the vacuum of the qu modes, but it is also the vacuum of any 
linear superposition of these modes which does not mix up positive and negative 
frequencies (for then ,&,? = 0). There is a very easy way of characterising such pure 
positive-frequency superpositions, namely that they are analytic functions of E,  
bounded in the lower-half complex plane. (This is clearly true for exp (-ha).) 
Thus, finding U in (4.30) reduces to finding a suitable linear combination of the 
modes which is bounded analytic in the lower-half C plane. As it happens, this is 
almost trivial. Restricting for the moment to right-moving waves ( -+ ) only, we note 
from (4.6) and (4.12) that, in C coordinates: 

C>O 

= O  C < O  

1 ___ - exp (iwK-1 In C) 
2 d n w  

(4.31) 

(-9 = 0 C > O  

C<O 
(4.32) 

1 - -~ __ exp [iwk-1 In ( - E ) ]  
2 d n w  

C > 0 corresponding to ‘our’ universe and E < 0 to the ‘mirror’ universe. Although the 
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discontinuity at zi = 0 prevents the individual (*)$, modes being analytic, the sum of 
the two would be analytic if it were not for the minus sign in the argument of the 
logarithm in (-)$,. However, factoring this out gives exp ( 5  ~ T W K - ~ ) ,  so the linear 
combination : 

is analytic. (The sign of the exponent in (4.33) is determined by choosing the branch 
cut for the logarithm to lie in the upper-half zi plane, so as not to spoil the required 
analyticity in the lower-half plane.) 

We shall call modes like (4.33) Y,'. Inserting the correct normalisation factors: 

(+)$,+ + exp (- ~ T W K - ~ )  (4.33) 

Y,-+=cosh 4, (+)i,hu-++sSinh C$,(-)$,+ (4.34) 

where tanh 4,= exp ( - T O K - ~ ) .  Because the modes Y, are analytic in the lower-half 
zi plane, they will be a pure positive-frequency superposition of 4, modes and so 
possess the vacuum state IO). Thus, the required superposition (4.34) of $, modes is 
very simple and does not even involve different frequencies w ,  which makes it easy to 
relate the two vacuum states. This construction is due originally to Unruh (1976). 

If 4 is expanded in terms of Y,: 

4 = c h J ~ , - +  + b,"(YU')"l+ [ +- 1 (4.35) 
w 

then, as stated: 

It follows from (4.15), (4.34) and (4.35) that 

b, I 0) = 0. (4.36) 

b, = cosh C$,c, - sinh 4, d,. (4.37) 

This simple transformation can also, with the help of the commutation relations for 
the c, and d,, be written: 

b, = exp ( - iG) c, exp (iG) (4.38) 
where 

G =  i4,(c,*duX - cudu). (4.39) 
w 

Now from (4.36) and (4.38): 
exp (iG) b,/O)=c,exp (iG)IO)=O. (4.40) 

But we know by definition that c, IO) = 0, so (4.40) provides the relation: 

I 0) = exp (iG) IO) 
which when inverted gives (4.30): 

IO)=exp (-iG)lO}. (4.41) 

If the exponential is expanded, the cud, operators will all give zero when acting 
on IO). Using this and the commutation rules the exponent can be rearranged to 
give : 

IO> = exp (E - In cosh 4, + tanh +,c,"d,*) IO) 
w 

(4.42) 
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where the state I nu(+)) I nu(-)) corresponds to n, quanta in the mode 4, in our universe 
and another n, quanta in the corresponding mode in the mirror universe. 

We now ask the question: what is the expectation value of an observable A as 
measured by an observer who remains in our universe, when the quantum state of the 
black hole is lo)? The operator A corresponding to such an observable, being 
restricted to our universe, leaves I nu(-)) unaffected, so this part of the state just factors 
out to give an overall factor of one in ( O l f f l U ) .  Suppose, for example, we choose ff 
to be the number operator N,,rc,,+c, for quanta in our universe in the mode w =  U. 

Then N ,  1 n,(+)) =nu I n,(+)) and we note that every U #  U simply contributes a factor 
of one in the product II, in the expectation value (0 IN,, IO). The only factor which is 
different from unity is at the U frequency. Thus: 

00 

(U I Nu 10) = (cosh &)-z 1 nu exp ( - ~ ~ T c J K - ~ )  (4.43) 
n=O 

where we have also used the orthogonality between states of different occupation 
number n to reduce the double summation to a single summation. 

Noting that: 

I-' m 
(cosh 4 , ) -2=  1 - exp ( - 2nu~--1) = [ exp ( - n.rroK-1) 

n=O 
we can write (4.43) as: 

where /3 = 2nK-l and E, is the energy of the nth mode. 
In  the general case (4.44) is replaced by: 

(4.45) 

where a,  is the o-mode eigenvalue of A,. Equation (4.45) has the form of a thermal 
average over the eigenvalues a,, 

For the specific case of the number operator, the summations in (4.44) are im- 
mediately evaluated to give : 

which is a Planck thermal equilibrium spectrum at temperature: 

(4.46) 

(4.47) 

which is again the Hawking temperature for the black hole. We conclude that the 
vacuum state 10) corresponds to a bath of thermal radiation at the Hawking tempera- 
ture in the region exterior to the black hole. 

This is not all. If we ask for the probability that the vacuum 10) contains nl 
particles in 4, mode 1, nz in mode 2, etc, we obtain from (4.42): 

1 (n l ,  nz, . . . , n,, . . . I U) I 2 = n exp ( - 2n,.rrw~-l) [ 1 - exp ( - 27~wK-l)] 
w 

(4.48) 
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where P (n,) is the probability that the mode w contains n, particles. From the form 
of (4.49) it is clear that the probabilities for the excitation of different modes are all 
independent. This implies that the quanta are emitted at random and the state of the 
field outside the black hole is a mixture, which must in general be described by a 
(diagonal) density matrix II, Gn,n,lP(n,). This has a clear physical interpretation. 
An observer who is restricted to the exterior of the black hole can have no information 
about the state of field in the mirror universe, hidden from him by the event horizon. 
He  must therefore trace over the modes (-)&, and use a density matrix for the acces- 
sible modes (+)$a. 

These results are based on work due to Israel (1976). They are further strengthened 
by an analysis by Unruh (1976) of the way in which a model particle detector would 
respond to the 10) vacuum if constrained to move along the non-inertial path r =  
constant (i.e. at a fixed radial distance) outside the hole. He finds that the detector 
absorbs energy in precisely the same way that it would if immersed in a bath of thermal 
radiation at the temperature ~/277k. 

All the results of this section have so far been restricted to the right-moving ( -+ ) 
modes which in the exterior region in our universe describe particles which travel 
away from the vicinity of the hole out towards infinity. A distant inertial observer 
would interpret the vacuum state 10) as a steady flux of thermal radiation with the 
Hawking temperature ~/277TTk being emitted by the hole. Identical consideration can 
be given to the left-moving ( + ) modes, which will contribute another similar term 
to G in (4.39). The analysis of these modes proceeds in the same fashion as above and 
(inevitably, due to the inherent time symmetry of the space-time and the quantum 
state) leads to an equal and opposite, ingoing, flux of thermal radiation. Thus, there 
is no net transfer of energy between the black hole and its environment. The state 
10) therefore describes a black hole immersed in a bath of thermal radiation, in ther- 
modynamic equilibrium at a temperature K/277k. 

We could also describe the Hawking evaporation process by deliberately making 
the state time-asymmetric, i.e. choosing a vacuum state in which only the right- 
moving modes were of the form yTW but the left-moving modes were chosen to be of 
the type (*)gLW. There would then be no flux of particles travelling towards the black 
hole from great distance in our universe-only an outgoing flux. This vacuum state 
was suggested by Unruh (1976) as a model of the Hawking process in which the effect 
of the imploding star is reproduced by choosing an appropriate vacuum state in the 
eternal black hole. Similarly, the state I U) is a model of a black hole formed from an 
imploding star which is then placed in a heat bath at the same temperature. Although 
the topology of the space-time associated with an imploding star is different from that 
of the eternal black hole (there is no mirror universe), nevertheless the event horizon 
is still present and the behaviour of the quantum field in the exterior region is the same. 

In  dealing with the full four-dimensional case, most of the details of the present 
treatment go through with little change. The  main difference is the presence of back- 
scattering-the outgoing quanta have a certain probability of being scattered by the 
gravitational field around the hole and being deflected back into it. There is an equal 
probability of ingoing quanta being reflected out again. This means that the thermal 
equilibrium nature of the 10) state is unchanged, but as already mentioned the 
spectrum of the radiation is no longer Planckian: equation (4.46), for example, would 
contain a frequency-dependent transmission factor for the probability of the emitted 
quantum reaching infinity. There is also the possibility of including the effect of 
rotation of the hole. This enters into the results rather like a chemical potential. 



Thermodynamics of black holes 1349 

The reason that the thermal properties of black holes formed by an imploding 
star are so well described by the simplified eternal black hole model, and that the 
details of the implosion do not enter into the final result, can be seen by inspecting 
the form of the modes in the two treatments. The  modes of the field which propagate 
through the imploding body and out again emerge redshifted. During the early stages 
of the implosion, the form of the outgoing modes will depend on how fast the collapse 
of the star proceeds, the internal structure, and so on. However, as the star nears the 
event horizon, these details get washed out and the modes settle down to the simple 
form given by equation (2.17). This is precisely the radial equivalent of the modes 
$,, so it is no surprise that the vacuum state 10) corresponding to 4, correctly des- 
cribes the black hole end state which follows the late stages of the collapse. We can 
regard the implosion phase when the radiation spectrum is non-thermal as the 
approach to thermodynamic equilibrium and the asymptotic, static, end state repre- 
sented by the black hole as the equilibrium condition. 

4.5. Accelerated observers in Minkowski space 

The association of sets of modes with coordinate systems discussed in the preceding 
subsection is not a connection with relevance only to curved space-time and black 
holes. Even in Minkowski space we can solve the field equation in any coordinate 
system we choose. If a consistent quantisation of the field is carried out in modes 
constructed from a coordinate system which is different from the usual (Cartesian) 
Minkowski coordinates then the usual vacuum state of conventional quantum field 
theory will not be the vacuum state of these other modes, i.e. the Minkowski vacuum 
will contain quanta of the non-standard modes. In  particular, if the new coordinates 
are related to the Minkowski coordinates by a transformation of the type (4.12), with 
the Minkowski vacuum corresponding to IO), then we would expect quanta of the 
other modes to be present in the form of a thermal bath of radiation. How can we 
understand the thermal nature of the ordinary vacuum state of quantum field theory 
in the absence of an evaporating black hole? 

Still in two dimensions, let us call the Minkowski coordinates t ,  x and define null 
coordinates: 

t i = t - x  

b = t + x .  
(4.50) 

Then, in analogy with (4.12) we can define new coordinates 7, 6 and U = 7 - E, v = 7 + 6 
through: 

G=exp (-U) 

d=exp (v). 
(4.51) 

The modes 
those associated with (4.51), 

associated with (4.50) are the usual blinkowski plane wave modes, but 
will not be. 

T o  understand the significance of the new coordinates, note from (4.51) that: 

iid = t2 - x2 = exp (2 f )  (4.52) 

so that a line of constant .$ is a rectangular hyperbola in Minkowski space, asymptotic 
to the null rays x= 5 t which pass through the origin of the Minkowski coordinate 
system (see figure 4). It is well known that an observer who moves along such a world 
line experiences a uniform proper acceleration of magnitude exp ( - f ) .  
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Figure 4. Accelerated observers. The causal structure of Minkowski space as viewed by 
uniformly accelerating observers (hyperbolae) is identical to the eternal black hole 
(see figure 3) without singularities. The null ray z i  = 0 is an event horizon for these 
observers in the right-hand wedge-shaped region. 

Because the world line is asymptotic to the null rays x=  t ,  this observer will not 
be able to see events which occur in the region x < t .  The future asymptote is an event 
horizon. Moreover (4.52) also describes a conjugate hyperbola to the left of the 
origin (x< 0), representing an observer who accelerates to the left and for whom the 
null ray x=  - t is an event horizon. Although we are in Minkowski space, the causal 
structure as far as these accelerated observers are concerned is remarkably similar 
to an eternal black hole, with the regions I x I > t corresponding to the exterior of the 
hole, that to the left of the origin being analogous to the ‘mirror’ universe located on 
the remote side of the black hole interior. Perhaps all this is not too surprising if we 
remember that, according to the equivalence principle, a uniform acceleration is 
indistinguishable locally from a static gravitational field. 

The construction of modes and the connection between vacuum states proceeds 
in direct analogy to the black hole case. In  particular, equation (4.42) is unchanged 
(when we put K =  1). The physical interpretation of the thermal radiation is somewhat 
different, however. Whereas the vacuum 10) of a black hole appears to an inertial 
observer far from the hole as a bath of thermal radiation, the Minkowski vacuum seems 
like a thermal bath to an accelerated observer. Indeed, Unruh (1976) has shown that 
a simple model particle detector carried by such an observer would record the presence 
of radiation with a Planck spectrum. The  fact that accelerated systems see a different 
physical situation from inertial systems comes as no surprise, because even classically 
the presence of inertial forces will cause ‘peculiar’ effects in non-inertial reference 
frames. 
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Unlike the black hole case, where the surrounding heat bath contains energy (see 
expression (4.29)) the Minkowski vacuum naturally has zero energy density. The  
quanta which are detected by the accelerated observer cannot be regarded as carrying 
energy or momentum in the usual sense. The  energy which is absorbed by the Unruh 
detector must presumably be traced to the agency which is responsible for accelerating 
the detector. 

4.6. The vacuum energy 

In  $4.3 we saw how the energy density difference between the 0 )  and IO) states 
of a black hole behaves like that of a bath of thermal radiation at a local temperature 
~/27rk .  This thermal energy is, of course, superimposed on the background vacuum 
energy of the state IO). Because the space-time is curved, this will not be zero (see 
$2.3). In  this subsection we shall outline how the vacuum energy density can actually 
be calculated. 

The stress tensor operator for a massless scalar field in two dimensions is: 

Tfiv = afi4 44 - * g p  gup au4 a p 4 .  ( 4 . 5 3 )  

The vacuum expectation value of Tfiv can be expressed as an infinite integral over the 
complete set of modes. Alternatively, the mode integral can be performed before the 
differentiation, so that (0 I TIL” IO) can be obtained by differentiation of the two-point 
function G(x”, x’) EE (0 I +(x”)$(x’) IO), after which the points XI’, x’ can be set equal to x. 

For example, using (4.20) and noting that gu,=O: 

(01 TUu10)= lim a,n au,G(x”, x ’ ) ~  lim (Au)-2 (4.54) 
U*, u‘+u A W O  

which clearly diverges quadratically as the points x”, XI come together at x. This 
divergence is an expression of the infinite vacuum energy which arises from the sum 
of the i h o  zero-point energy of all the field oscillators. In  four dimensions the 
divergence is quartic and occurs even in Minkowski space. In  special relativity this 
is not a problem because only energy differences are observable, so the infinite vacuum 
energy can be trivially subtracted away, but in general relativity energy is a source of 
gravity and the divergences must be handled in a more systematic way. 

As in other branches of quantum field theory, the ultimate aim is to absorb the 
divergent quantities into renormalised physical constants and to argue that only the 
observed physical constants are relevant. In  the case of quantum field theory in 
curved space-time this can only be done by generalising Einstein’s equations to  
include higher-order terms. The divergences can then be absorbed into the coupling 
constants of these terms, as well as G, and A-the cosmological constant. 

The mathematical techniques which must be used to separate a finite residue from 
these renormalisable divergences vary, and are generally rather complicated so will not 
be described here. Instead, we need only use one result which emerges from all these 
techniques-the so-called conformal anomaly. The stress tensor operator (4.53) is 
formally traceless : 

gfivTpv = 0 ( 4 . 5 5 )  

a feature closely associated with the conformal invariance of the field equation (4.4) 
and of TP. However, because the quantum expectation value (0 I T,,,) 0) is divergent, 
the vanishing of the trace does not extend to the expectation value (we henceforth 
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omit the 0 from the expectation value for convenience). Davies et aE (1976) obtained 

(4.56) 

The scalar curvature R is, in fact, the only geometrical scalar available in two dimen- 
sions. An identical result is true for a massless spinor field (Davies and Unruh 1977). 

Armed with this information, we may compute the vacuum energy and the strength 
of the Hawking flux uniquely by integrating the covariant conservation equation : 

<Tpv>;, = 0. (4.57) 
In  null coordinates U, v this yields (Davies 1977c) : 

av(Tuu>+$ C &T=O (4.58) 

where C is, as usual, the conformal factor of the metric. Using the definition of the 
scalar curvature : 

ac au “c) av a2c R= 4 (C-2 auv - C-3 - - (4.59) 

and interchanging the order of differentiation, enables (4.58) to be integrated: 

(4.60) 

wheref(u) is an arbitrary function of U. T o  fix it, we note that the stress tensor in the 
static geometry around the black hole must be independent of time and fall to zero in 
the asymptotically flat region at large Y ,  where C-t 1. This requiresf(u) =O. More- 
over, by symmetry ( Tuu)  = <Tvv>. 

Substituting for C = 1 - 2M/r + e2/r2 gives : 

(4.61) M 3M2 3e2 3Me2 e4 ( r3  2 r 4  2r4 ~5 ‘r”)‘ (Tuu) = (Tvv) = (244-1 - - + -- ~ + - -- - __ 

Equation (4.61) describes a static cloud of vacuum energy density surrounding the 
black hole. It is negative in the region Y > Y+ and falls rapidly to zero in the asymptotic 
region Y --f 00. Near the horizon the U, v coordinate system has a coordinate singu- 
larity but we may transform (4.61) to the a, 5 coordinates defined by (4.12), which are 
regular at Y=Y+. This operation introduces an additional factor of 16M2/C2 in the 
expression (4.61) for (Tuu) .  Thus, at the horizon where U= CO, C=O, this component 
of the stress tensor diverges quadratically in 8. It is for this reason that the vacuum 
state IO), used here for computing ( Tbv), is regarded as unacceptable for the quantum 
state in the vicinity of a black hole (although it is still suitable for the vacuum region 
outside a static ‘star’, which has no horizon), 

To obtain the stress tensor corresponding to the 10) vacuum, we must add the 
expression (4.61) to that of the thermal radiation given by (4.29). That expression also 
diverges at Y = r+ in the C, 5 system, but the two divergences actually cancel each 
other. Thus, a freely falling observer will only encounter afirzite flux of energy when 
he crosses the horizon, in spite of the fact that during the brief interval of proper time 
required for him to reach the horizon, the black hole has emitted an infinite quantity 
of energy to infinity (neglecting back-reaction). This was discussed in $2.3. 

Instead of adding (4.29) to (4.61) one can calculate the stress tensor for the (0) 
vacuum directly from (4.60) by substituting for C from the ‘Kruskal form’ of the 
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metric (4.13) rather than the ‘Schwarzschild form’ (4.2). Thus, the stress tensor 
calculation, based solely on the value for the conformal anomaly (4.56), provides a 
completely independent derivation of the Hawking effect and gives precisely the same 
value of the temperature (it cannot predict the spectrum, however). Alternatively the 
argument can be inverted and the Hawking effect used to fix the coefficient 1 1 2 4 ~ .  of 
the conformal anomaly (Christensen and Fulling 1977). 

5. Conclusions 

The usual laws of thermodynamics cease to apply when gravitational fields are 
present, Specifically, if space-time horizons occur, then information and entropy may 
disappear from the observable regions of the universe. However, by extending the 
concepts of thermodynamics to  include black hole regions, the laws may be generalised 
with remarkable ease to encompass these situations. The evidence for the generalised 
laws lies primarily in the result of Hawking that black holes emit radiation with a 
thermal equilibrium spectrum. This establishes the concept of a definite temperature 
for black holes. Although only based on a semiclassical approximation in which the 
quantum degrees of freedom of the gravitational field are ignored, the elegant connec- 
tion with thermodynamics that Hawking’s result provides is compelling evidence 
that it is a result of fundamental significance, and not merely an accident of the 
approximations used. 

The weakest link in the reasoning rests with the identification of entropy with the 
event horizon area. Only heuristic arguments have been advanced to actually equate 
entropy with area rather than, say, some monotonic increasing function of it. Once 
the relationship is accepted, then the constant of proportionality [ is determined from 
Hawking’s result. Ideally, one would like a totally independent derivation of the 
entropy formula. The  problem is that entropy is usually associated with the arrange- 
ments of microscopic degrees of freedom, but it is hard to see how the internal degrees 
of freedom of a black hole can be given a precise meaning in the absence of a quantum 
theory of the hole’s gravitational field. Possibly a few internal degrees of freedom 
could be quantised (along the lines of quantum cosmology) and the evaporation 
regarded as a succession of transitions from excited internal states. In  this way the 
entropy could be calculated by taking a thermal average over these states. 

A related problem is that the black hole represents the thermodynamic equilibrium 
limit of gravitational collapse. I n  statistical mechanics, entropy can be defined for a 
general configuration of microstates, not just those corresponding to equilibrium. 
Similarly, it would seem that there must exist an entropy associated with gravitational 
fields which goes over to the black hole expression in the end-state limit. After all, 
when a star collapses, the ordinary entropy of the star does not suddenly convert to 
the black hole entropy. The  collapse is a continuous process and the entropy of the 
star must gradually fade away, while that of the gravitational field grows. It would 
seem to be a major outstanding problem to understand how this limiting process 
occurs. Its solution would provide the equivalent for gravitational collapse of Boltz- 
mann’s H theorem for a box of gas. 

One of the novel features of black hole entropy is its relative nature. Only for an 
external observer does the collapsing star lose information. It is possible to discuss 
how the increasing curvature inexorably coarse-grains the observations from a distance, 
steadily making information about the internal structure of the imploding star harder 



1354 P C W Davies 

to obtain. At the same time the quantum radiation, at first highly non-equilibrium, 
gradually approaches the analogue of the Planck form. I t  ought to be possible to 
describe the thermodynamics of this transition phase in detail. 

-4s a first step in dealing with non-equilibrium black hole problems, one can 
consider fluctuations about equilibrium and the irreversible dissipative processes 
associated with them. Investigations by Candelas and Sciama (1977) show that black 
holes obey the standard theory of non-equilibrium thermodynamics, including the 
fluctuation-dissipation theorem. This strongly suggests that the thermodynamic basis 
of self-gravitating systems may be fruitfully extended beyond the stationary end state 
of black holes to more general gravitational fields and quantum states. 

Perhaps the most attractive feature of black holes is that they enlarge our notion 
of thermodynamics. In  an area where both quantum theory and relativity are suspect, 
it is a remarkable thought that the laws of thermodynamics may remain intact and 
provide as strong a guide to producing the elusive theory of quantum gravity as they 
did for Planck and Einstein in producing quantum mechanics. 

Acknowledgments 

I should like to thank Drs P C Aichelburg, R Beig, L H Ford and C J Isham for 
helpful discussions in the course of preparing this review. I am grateful to the 
Institut fur Theoretische Physik, Universitat Wien for hospitality during part of this 
preparation. This work was supported in part by the Einstein Memorial Foundation 
( A K  77). 

References 

Rekenstein J D 1973 Phys. Rev. D 7 2333 
Uertin G and Radicati L A  1976 Astrophys. J. 206 815 
Dirrell N D and Davies P C W 1978 Nature 272 35 
Candelas P and Sciama D W 1977 Phys. Rev. Lett. 38 1372 
Carr B 1977 Mon. Not. R .  Astron. Soc. 181 293 
Carter B 1973 Black Holes ed DeWitt and DeWitt (London: Gordon and Breach) 
Casimir H B G 1948 Proc. Kon.  Ned. Akad. Wetenschap. 51 793 
Christensen S M  and Fulling SA 1977 Phys. Rev. D 15 2088 
Davics P C W 1974 The Physics of Time Asymmetry (Surrey University Press/University of 

- 1976a Proc. R. Soc. A 351 139 
- 1976b Nature 263 377 
- 1977a Proc. R .  Soc. A 353 499 
- 1977b Space and Time in the Modern Universe (Cambridge: Cambridge University Press) 
- 1977c Proc. R .  Soc. A 354 529 
- 1977d New Scientist 75 238 
navies P C W and Fulling S A  1977 Proc. R .  Soc. A 356 237 
Davies P C W, Fulling S A  and Unruh W G 1976 Phys. Rev. D 13 2720 
Davies P C W and Unruh W G 1977 Proc. R. Soc. A 356 259 
Dowker J S 1977 Preprint University of Manchester 
Fulling S A  and Davies P C W 1976 Proc. R. Soc. A 348 393 
Gibbons G W 1975 Commun. Math. Phys. 44 245 
Gibbons G W and Perry M 1976 Phys. Rev. Lett. 36 985 
Hawking SW 1971 Mon. Not. R. Astton. Soc. 152 75 
- 1972 Commun. Math. Phys. 25 152 

California Press) 



Thermodynamics of black holes 1355 

- 1973 Black Holes ed DeWitt and DeWitt (London: Gordon and Breach) ppl-56 
- 1974 Nature 248 30 
- 1975 Commun. Math. Phys. 43 199 
- 1976 Phys. Rev. D 13 191 
- 1977 Sci. Am. 236 34 
Hawking S W  and Ellis G F R  1973 The Large Scale Structure of Space-Time (Cambridge: 

Cambridge University Press) 
Hut P 1977 Mon. Not. R. Astron. Soc. 180 379 
Israel W 1976 Phys. Lett. 57A 107 
McNamara J M 1978 Proc. R. Soc. A 358 499 
Misner CW, Thorne KS and Wheeler J A  1973 Gravitation (New York: Freeman) 
Page D N  1976 Phys. Rev. D 13 198 
Penrose R 1969 Nuovo Cim. 1 Special No 252 
Rees M J 1977 Nature 266 333 
Sciama D W 1976 Vistas in Astronomy 19 385 
Simpson M and Penrose R 1973 Int. J .  Theor. Phys. 7 183 
Smarr L 1973 Phys. Rev. Lett. 30 71 
Tabor D and Winterton R H S  1969 Proc. R. Soc. A 312 435 
Unruh W G 1974 Phys. Rev. D 10 3194 

Zel’dovich Ya B 1970 Zh. Eksp. Teor. Fiz. Pis. Red. 12 443 (Engl. trans. JETP Lett. 12 307) 
- 1976 Phys. Rev. D 14 870 


