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Abstract—The underlying assumption in traditional machine learning algorithms is that instances are Independent and Identically

Distributed (IID). These critical independence assumptions made in traditional machine learning algorithms prevent them from going

beyond instance boundaries to exploit latent relations between features. In this paper, we develop a general approach to supervised

learning by leveraging higher order dependencies between features. We introduce a novel Bayesian framework for classification

termed Higher Order Naı̈ve Bayes (HONB). Unlike approaches that assume data instances are independent, HONB leverages higher

order relations between features across different instances. The approach is validated in the classification domain on widely used

benchmark data sets. Results obtained on several benchmark text corpora demonstrate that higher order approaches achieve

significant improvements in classification accuracy over the baseline methods, especially when training data is scarce. A complexity

analysis also reveals that the space and time complexity of HONB compare favorably with existing approaches.

Index Terms—Machine learning, statistical relational learning, naı̈ve bayes, text classification, IID.
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1 INTRODUCTION

A well-known problem in real-world applications of
machine learning is that expert labeling of large

amounts of data for training a classifier is prohibitively
expensive. Often, in practice, only a small amount of labeled
data is available for training. In this case, however, making
an adequate estimation of the model parameters of a
classifier is challenging. Underlying this issue is the tradi-
tional assumption in machine learning algorithms that
instances are IID: independent and identically distributed
[1]. This assumption simplifies the underlying mathematics
of statistical models, but, in fact, does not hold for many real-
world applications [2]. As a result of this assumption, models
constructed under the IID assumption do not leverage
connections between the attributes in different instances. A
well-known example is market basket analysis, which forms
sets of items that are purchased together in a given context
such as a market basket. The advantage to this approach is
that classification of a single instance of previously unseen
data is possible because no additional context is needed to
infer class membership [3]. However, such a context-free
approach does not exploit valuable information about
relationships between instances in the data set [4].

Recently, a new domain termed link mining has emerged
[2]. The focus of the research in this new domain is on data

sets of instances that are explicitly linked, for example, by
hyperlinks. Data sets with explicit links of this nature have
been termed networked data [3]. One of the areas of
algorithm research in this domain is link-based object
classification, where the task is to classify instances
connected to each other via a set of explicit links of this
nature. Such approaches leverage both the attributes
contained in the instances and the explicit links between
instances, making the underlying assumption that labels of
the linked objects tend to be correlated. Collective classifi-
cation algorithms operate on networked data by jointly
inferring class labels of a set of instances based on this
underlying assumption. Several classification algorithms of
this nature have been proposed that exploit the explicit
links between instances (e.g., [5], [6], [7], and [8]). As noted,
they utilize class labels of related instances when labeling a
test instance and usually reduce classification error com-
pared to flat (i.e., IID) classifiers. Models built in this way
can be thought of as second order because explicit links
between instances are leveraged during model construction.
Such second-order connections are based on explicit links
between instances such as hyperlinks between web pages,
citation links between scientific papers, etc.

In this work, we focus on the development and analysis
of a supervised machine learning algorithm that does not
make the IID assumption, but instead moves beyond
instance boundaries to exploit the latent information in
higher order co-occurrence paths between features within
data sets. Unlike existing approaches, however, we do not
rely on explicit links between instances when learning a
model, but rather leverage implicit links. In what follows,
we define these implicit links.

We often refer to the terms “higher order path,” “higher
order link” or “higher order co-occurrence” in this paper. In
order to understand the meaning of these terms, consider
Fig. 1 (reproduced from [9]). This figure depicts three
documents, D1, D2, and D3, each containing two terms, or
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entities represented by the letters A, B, C, and D. Above the
three documents, there is a higher order path that links
entity A with entity D through B and C. This is a third-order
path since three links or “hops,” connect A and D.

A higher order path can also be represented as a chain of
co-occurrences of entities (attribute values, words, terms,
etc.) in different records (instances, documents, etc.).
Actually, we can extract co-occurrence relations from
virtually any data set as long as there is a meaningful
context of entities.

In general, we are interested in exploiting the latent
information in such higher order paths. We are motivated
by the Latent Semantic Indexing (LSI) algorithm [10], which
is a widely used technique in text mining and IR based on
Singular Value Decomposition (SVD) matrix factoring. This
approximation reduces the noise and sparsity of the original
term vector space and partially solves the synonymy
problem. The authors note that the fundamental problem
in IR is that existing methods try to match words of queries
with words of documents, but these individual words do
not provide reliable evidence for the conceptual content the
user is seeking because there are many ways to express a
concept and words usually have several meanings. Similar
to the IID assumption in machine learning, in traditional
vector space models used in IR, documents are assumed to
be independent since only documents that include query
terms are retrieved and higher order relations between
words are not considered. However, LSI takes advantage of
implicit higher order (or latent) structure in the association
of terms and documents. For example, [9] proved mathe-
matically and demonstrated empirically that LSI is based on
the use of higher order relations, in particular higher order
co-occurrences. The authors also demonstrated that the
retrieval performance of LSI is correlated with higher order
relations. Higher-order relations in LSI capture “latent
semantics” [9]. Our second motivation comes from the
statistical relational learning domain. The work in this
domain focuses on the limitations of the IID assumption in
traditional machine learning and as noted reveals that such
a context-free approach does not exploit the available
information about relationships between instances in the
data set [4].

Motivated by this prior work, we developed a novel
classification algorithm termed Higher Order Naı̈ve Bayes
(HONB) that leverages higher order paths, which implicitly
link instances in a data set. Unlike approaches that assume
instances are IID, HONB leverages implicit co-occurrence
relationships between attributes in different instances.
Attributes (e.g., words in documents in text collections)

are richly connected by such higher order paths, and the
generative model built by HONB exploits this rich con-
nectivity pattern.

The power of HONB is most visible, when we have only
a small amount of training data. This is important because,
for example, labeling documents by category or class is an
expensive process and in many real-world applications the
amount of labeled data is far from adequate [11]. In order to
demonstrate the utility of this approach, we vary the
amount of the input (i.e., labeled training data) in our
experiments. Our results on several textual data sets show
that when training data is scarce (i.e., a small number of
labeled instances), HONB significantly reduces the general-
ization error by leveraging higher order paths.

In what follows, we first discuss background and related
work, then present our approach to learning based on
higher order paths. We follow this with a section summar-
izing our results for widely used text classification data sets.
Next, we discuss these results including aspects of future
work, and finally draw conclusions.

2 BACKGROUND AND RELATED WORK

2.1 Higher Order Co-Occurrences

Higher order co-occurrences play a key role in the effective-
ness of systems used for information retrieval and text
mining. One example is Literature Based Discovery (LBD),
which employs second-order co-occurrence to discover
connections between concepts (entities). A well-known
example is the discovery of a novel migraine-magnesium
connection in the medical domain. In [24] Swanson found
that in the Medline database some terms co-occur frequently
with “migraine” in paper titles, e.g., “stress” and “calcium
channel blockers.” They also discovered that “stress” co-
occurs frequently with “magnesium” in other titles. As a
result, they hypothesized a link between “migraine” and
“magnesium,” and some clinical evidence has been obtained
that supports this hypothesis. In LBD a second-order link of
this nature is represented as A! B! C, where in this
example A is “migraine,” C is “magnesium,” and B is one of
several possible connecting terms such as “stress.”

Another example is LSI, a well-known approach to
information retrieval. Kontostathis and Pottenger [9] math-
ematically prove that LSI implicitly depends on higher
order co-occurrences. They also demonstrate empirically
that higher order co-occurrences play a key role in the
effectiveness of systems based on LSI. LSI can reveal hidden
or latent relationships among terms, as terms semantically
similar lie closer to each other in the LSI vector space. This
can be demonstrated using the LSI term co-occurrence
matrix as the following example shows.

Let’s consider a simple document collection given in Fig. 2,
where document c1 has the words {human, interface} and c3
has {interface, user}. As can be seen from the co-occurrence
matrix in Fig. 3, the terms “human” and “user” do not co-
occur in this example collection. After applying LSI, however,
the reduced representation co-occurrence matrix in Fig. 4 has
a nonzero entry for “human” and “user” thus implying a
similarity between the two terms. This is an example of
second-order co-occurrence; in other words, there is a
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second-order path between “human” in c1 and “user” in c3
through “interface” (common to both c1 and c3). This second-
order path implicitly links c1 to c3, violating the IID
assumption. The results of experiments reported in [9] show
that there is a strong correlation between second-order term
co-occurrence, the values produced by the SVD algorithm
used in LSI, and the performance of LSI measured in terms of
F-measure , the harmonic mean of precision, and recall. As
noted, the authors also provide a mathematical analysis,
which proves that LSI does, in fact, depend on higher order
term co-occurrence.

There are several research efforts that use LSI in text
classification [25], [26], [27], [28], [29]. Although, LSI is
essentially an unsupervised method, several authors have
developed modifications to LSI such that it makes use of class
labels during training [27], [28], [29]. Of these approaches [25]
is particularly relevant to our work since the focus is also on
small training sets. For example, for the 20 newsgroup data
set the training set sizes range from one instance per class to
20 instances per class in this work. In addition, the algorithm
employs a large number of unlabeled instances to aid in
learning. The kNN classifier presented in [25] uses cosine
similarity and combines the similarity scores of the 30 closest-
neighbors using a noisy-OR operator.

A related issue in LSI is the choice of the truncation
parameter k, which can be very important for supervised
learning systems based on LSI. Previous work shows that
values of k ranging from 100 to 300 give the best results [25].
However, this value is dependent on the size of the corpora.
On the other hand, there are methods for choosing a “good”
number of singular values for the dimensionality reduction

in LSI, some of which are discussed in [30]. Such methods
can be used to build an automated LSI-based classifier,
which adapts the k value as the training set size changes.

2.2 Statistical Relational Learning

The vast majority of statistical machine learning algorithms
operate on “flat” data and traditionally assume that
instances are independent and identically distributed
(IID). As noted, however, this context-free approach does
not exploit the available information about relationships
between instances in the data set [4]. In statistical relational
learning, models operate on relational data that includes
explicit links between instances (e.g., hyperlinks between
web pages or citation links between scientific papers). These
relations provide rich information that can be leveraged to
improve classification accuracy because attributes of linked
instances are often correlated, and links are more likely to
exist between instances that have some commonality [2].
Given a set of test instances, relational models simulta-
neously label all instances in order to exploit the correla-
tions between class labels of related instances. This is also
called collective classification (or collective inference), and
violates the traditional IID assumption. Several studies (e.g.,
[5], [6], [7], and [8]) have shown, however, that by making
inferences about multiple data instances simultaneously,
classification error can be significantly reduced [12].

In related work, Macskassy and Provost [3] formulate
linked data as networked data and classify machine learning
methods for networked data into two categories; within-
network inference and across-network inference. Networked
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Fig. 2. Example document collection (Deerwester et al., 1990). Fig. 3. Deerwester term-to-term matrix (adapted from Kontostathis and
Pottenger [9]).

Fig. 4. Deerwester term-to-term matrix truncated to two dimensions (adapted from Kontostathis and Pottenger [9]).



data is relational data, where instances are interconnected
such as web pages or research papers. In our case, however,
the data set does not have to be innately relational. We extract
relational information (i.e., links) from a standard machine
learning data set by using higher order co-occurrences. These
links are called higher order paths. Each such higher order
path implies a relation between different records (instances).

2.3 Naı̈ve Bayes (NB)

NB is a very popular algorithm due to its simplicity and
efficiency, especially in the text-mining domain. The primary
reason for its simplicity and efficiency is the attribute
independence assumption. Although, NB assumes that
attributes are independent, it nonetheless performs well in
numerous domains, including on real-world data sets. A
detailed analysis of NB can be found in [13]. There has been a
focused effort, however, to relax NB attribute independence
assumption while retaining its desirable simplicity and
efficiency. Two techniques that exemplify this effort are Lazy
Bayesian Rules (LBR) and Super-Parent TAN (SP-TAN). Both
of these techniques have achieved remarkable accuracies, but
at the cost of high-computational overhead. SP-TAN, for
example, has high-computational complexity at training time
and LBR has high-computational complexity at classification
time. The complexity of such approaches detracts from their
usefulness as alternatives to NB [14]. A detailed analysis of
these approaches can be found in [14].

3 ENUMERATION OF HIGHER ORDER PATHS

We focus on discovering higher order association patterns in
a labeled machine learning data set based on relations
between items, or entities. Entities can be attribute-value
pairs in a standard machine learning data set, words in a
textual data set, etc. A higher order association is repre-
sented as a chain of co-occurrences of such entities in
different instances. As noted, we also refer to such
associations as higher order paths. Given a supervised
learning data set (i.e., labeled training data), we attempt to
discover patterns in sets of higher order associations that
distinguish between the classes in the labeled data. In order
to accomplish this, we first need to enumerate all higher
order paths in a given class of instances. In this section, we
present our definitions for higher order paths and data
structures to represent and enumerate them. In the follow-
ing section, we present a theoretical framework for the
closed-form (analytical) enumeration of higher order paths.

Our definition of a higher order path is similar to that
found in graph theory, which states that given a nonempty
graph G ¼ ðV;EÞ of the form V ¼ fx0; x1; . . . ; xkg, E ¼
fx0x1; x1x2; . . . ; xk�1xkg with nodes xi distinct, two vertices
xi and xk are linked by a path P, where the number of edges
in P is its length. Such a path is often referred to by the
natural sequence of its vertices x0x1 . . . xk [15]. Our defini-
tion of a higher order path differs from this in a couple of
respects. First, vertices V ¼ fe0; e1; . . . ; ekg represent entities,
and edges E ¼ fr0; r1; . . . ; rmg represent records, documents
or instances. Finally and most importantly, in a higher order
path both vertices and edges must be distinct. We are
interested in enumerating all such paths.

It is not straightforward, however, to represent higher
order paths in conventional graph structures. In order to use
conventional graph structures and algorithms, we divided
the above representation into two structures. First, we form
a co-occurrence graph Gc¼ ðV;EÞ, in which the vertices are
the entities and there is an edge between two entities, if they
co-occur in one or more records. A path (length � 2)
extracted from Gc satisfies the first requirement of our
higher order path definition since the vertices in this path
are distinct. The second requirement entails that records on
a path must be distinct, and another data structure that
contains lists of records for each edge is needed. We term
this structure a path group. Note that the second requirement
results in more intuitive paths. For example, with LSI in
view the latent semantics of e1 � R1 � e2 � R2 � e3 is more
clear than e1 � R1 � e2 � R1 � e3. We are interested in paths
of this nature that implicitly link entities through different
records because they have the potential to reveal latent
information. As noted previously, such implicit links
between records violate the IID assumption typically made
in traditional machine learning algorithms.

However, we are not necessarily looking for the shortest
paths between two entities. In the second-order path
between e1 and e3 in Fig. 5 below, there is a shorter (first
order) path between e1 and e3 as well. Although, we use
particular order paths (e.g., only second order or only third
order) in our algorithms, given our definition of a higher
order path, we enumerate many more higher order paths
than just the shortest paths. These higher order paths
include latent connection information for number of
different records.

Using the path group representation it is possible to
satisfy the second requirement of our higher order path
definition. In effect, we need to identify the systems of
distinct representatives (SDRs) from the sets of records in a
path group. An SDR of the sets S0; . . . ; Sn�1 is defined as a
sequence of n distinct elements r0; . . . ; rn�1 with ri 2 Si; 0 �
i � n� 1 [16]. Each distinct representative corresponds to a
record in a higher order path. In order to enumerate all the
distinct representatives in a given higher order path, a
bipartite graph Gb ¼ ðV1U V2;EÞ is formed such that V1

represents the sets of records ðS0; S1; . . .Þ in a given path
group and V2 represents the records themselves. A
maximum matching with cardinality jV1j in this bipartite
graph yields the SDR for a single higher order path. All
possible maximum matchings in the bipartite graph
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together comprise all the SDRs for all higher order paths in
the path group. This process is summarized in Figs. 5 and 6.
In Fig. 5, we can see an example of the second-order path
group (e1-f1; 2; 5g-e2-f1; 2; 3; 4g-e3), that is, extracted from
the co-occurrence graph Gc. This particular second-order
path group includes two sets of records: S0 ¼ f1; 2; 5g and
S1 ¼ f1; 2; 3; 4g. S0 corresponds to the records in which e1

and e2 co-occur, and S1 is the set of records in which e2 and
e3 co-occur. As noted, the path group may be composed of
several higher order paths. In Fig. 6, a bipartite graph
Gb¼ ðV1U V2;EÞ is formed where V1 represents the two
sets of records and V2 represents all records in these sets.
Enumerating all maximum matchings in this graph yields
all higher order paths in the path group. The second
diagram (depicted in Fig. 6) shows two examples of the
many paths in this path group. In the first such path, edge
labels r1 and r3 are records in S0 and S1, and the path
corresponds to maximum matching in the bipartite graph.

Although, this framework gives us the ability to

algorithmically enumerate higher order paths of any length,

in fact, we have developed closed forms for enumerating

the systems of distinct representatives of record sets in

second, third, and fourth order path groups. Our approach

is motivated by the inclusion-exclusion principle in set

theory [16].

Definition 1. An SDR of the sets S0; . . . ; Sn�1 is defined as a

sequence of n distinct elements r0; . . . ; rn�1 with ri 2 Si; 0 �
i � n� 1 [16].

As noted, we wish to discover all of the systems of
distinct representatives of n sets. This requires that we
enumerate all possible combinations of n distinct records,
each coming from one of these n sets. Motivated by the
inclusion-exclusion principle, we have proven three theo-
rems stating formulas for calculating the number of systems
of distinct representatives of two, three, and four sets,
respectively. Note that in what follows, we use the notation
“SDRs” to refer to systems (plural) of distinct representa-
tives (i.e., one or more higher order paths).

Theorem 1. The number of SDRs for two sets A1 and A2 is

#SDRðA1; A2Þ ¼
X

ijj2�ð1;1Þ
SiSj �

X

ij2�ð2Þ
Sij

where SI ¼ j \i2I Aij:

Proof of Theorem 1. Each term can be represented by a
partition of two, which is shown as �ð1; 1Þ and �ð2Þ. The
first term represents and counts all sequences of
representatives from A1 and A2 by multiplying the
number of elements in each. In the simplest case, consider
that we have two disjoint setsA1 andA2, andA1 \A2 ¼ ;.
Since there are no intersections, an element fromA1 can be
combined with any element in A2 to form a system of
representatives and all the representatives in all the
systems will be distinct. However, if A1 \A2 ¼ ; then the
elements in the intersection can represent both A1 and A2

because they belong to both sets. In this case, it is possible
to have a sequence with repeated or nondistinct repre-
sentatives. This obviously violates the definition of a SDR
and needs to be excluded from the total count. This kind
of exception will occur for all elements in the intersection.
Therefore, we need to subtract the number of elements in
the intersection, which corresponds to the second term in
the closed-form formula. tu

Theorem 2. The number of SDRs for three sets A1, A2, and A3 is

#SDRðA1; A2; A3Þ ¼
X

ijjjk2�ð1;1;1Þ
SiSjSk �

X

ijjk2�ð2;1Þ
SijSk

þ 2
X

ijk2�ð3Þ
Sijk:

Proof of Theorem 2. For three sets the proof is more
involved. A SDR of these sets consists of three distinct
representatives. This time we have three sets and we
refer to the terms using a partition of three �ð1; 1; 1Þ,
�ð2; 1Þ, and �ð3Þ. We again start by taking the product of
the number of elements in the sets. There are a total ofP

ijjjk2�ð1;1;1Þ SiSjSk ¼ jA1j jA2j jA3j of these sequences.
Then, in the second term, we subtract the cases where
two or more representatives are nondistinct or identical.
In this step, we are considering the two set intersections
and since we have three sets, there are Cð3; 2Þ ¼ 3
combinations of them. For the sequences, where all three
elements are identical, we count them once in the first
term and subtract them three times in the second term.
As a result, we need to add twice the number of these
sequences back in to the sum to compensate for over
counting. tu

Theorem 3. The number of SDRs for four sets A1, A2, A3, and
A4 is

#SDRðA1; A2; A3; A4Þ
¼

X

ijjjkjl2�ð1;1;1;1Þ
SiSjSkSl �

X

ijjkjl2�ð2;1;1Þ
SijSkSl

þ 2
X

ijkjl2�ð3;1Þ
SijkSl þ

X

ijjkl2�ð2;2Þ
SijSkl � 6

X

ijkl2�ð4Þ
Sijkl:

Proof of Theorem 3. We refer to all possible sequence
patterns by a partition of size four �ð1; 1; 1; 1Þ, �ð2; 1; 1Þ,
�ð3; 1Þ, �ð2; 2Þ, �ð4Þ with respect to the formula above.
Since �ð1; 1; 1; 1Þ represents all the sequences obviously
its coefficient will be one. In the second term, we subtract
�ð2; 1; 1Þ; two set intersections, which produce sequences
with two or more nondistinct representatives. As with
the previous theorem, the second term includes the
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sequences of �ð3; 1Þ, which are three set intersections that
produce three or more nondistinct representatives. Thus,
we add twice �ð3; 1Þ back into the sum in the third term.
Similarly, each summand of �ð2; 2Þ occurs in two
different summands of �ð2; 1; 1Þ, so we add �ð2; 2Þ once
to compensate in the fourth term. Finally, �ð4Þ is a four
set intersection, which produces sequences with four
nondistinct representatives, which occur once in every
summand of the previous terms. This means the formula
is too large by 1� Cð4; 2Þ þ 2Cð4; 3Þ þ 3 ¼ 6, so we need
to subtract �ð4Þ six times in the fifth term. tu

These closed-form formulas (Theorems 1, 2, and 3) are
used in enumerating the second, third, and fourth-order
paths in the path group structures exemplified in Fig. 6
above. When it is necessary to enumerate paths of order
greater than four, we use the algorithmic approach outlined
previously to enumerate all maximum matchings in the
bipartite graph.

4 HONB

Our approach is based on a NB algorithm, that is applied to
the problem of text classification. NB is commonly used in
text classification because it is fast and easy to implement.
NB is the simplest of Bayesian classifiers in that it assumes
that all attributes of the examples are independent of each
other given the context of the class [17]. Although, this
assumption does not hold for most real-world data sets,
overall NB performs fairly well. In our case, the relative
simplicity of the NB classifier allows for detailed analysis of
the effect of using higher order paths.

It is important to note that the focus in this work is on the
independence assumption between instances. Per the
definition in the previous section, higher order paths link
attributes from different instances thereby implicitly linking
different instances. In this way, we violate the IID
assumption on instances. For this reason, our approach is
similar to the work in link mining that leverages explicit
links between instances during training. We do not,
however, modify the NB algorithm to relax its assumption
of independence between attributes. (As noted in the
background and related work section, this latter approach
is taken in work such as [14].) In contrast, in our framework
although priors for NB are estimated from higher order
paths, we do not alter the NB algorithm itself. That is why,
we name our approach HONB.

NB assumes that a document is generated by a
parametric model. We use training data to calculate
estimates of model parameters. By using these estimates
with Bayes rule, we can calculate the probability that a class
generated a given test document. We classify the document
in the most probable class in the usual way.

There are two different generative models commonly
used for NB classification, the multivariate bernoulli model
and the multinomial model. A multinomial model is a
unigram language model with integer term counts [17]. In
this research, we implemented a multivariate bernoulli
model (also known as a binary independence NB model). In
this model, an event is a document and is represented by a
vector of binary attributes X1; . . . ; Xd, which take values

f0; 1g indicating occurrence of terms in the document. The
number of times a term occurs in a document is not
captured. X0 represents the class label of the document and
takes values in f1; . . . ; Cg, where C is the number of classes.

One can calculate the probability of an event (i.e., a
document) given the probability of a document d belonging
to class C using Bayes rule as follows:

P ðcjdÞ ¼ P ðdjcÞP ðcÞ
P ðdÞ : ð1Þ

In a multiclass classification scenario, one assigns
document d to the class with the highest P ðcjdÞ. In addition,
since P(d) is independent of the class it is not needed during
classification and we have

P ðcjdÞ � P ðdjcÞP ðcÞ: ð2Þ

A document consists of words d � fw1; w2; . . . ; wng.
Here, we can understand the document to be the “event,”
and the absence or presence of words to be attributes of the
event [17]. The NB algorithm assumes that each word in a
document is independent of others and independent of its
position in the document. As a result, when calculating the
probability of a document, the product of the probabilities
of all the attribute values, including the probability of
nonoccurrence for terms that do not occur in the document,
is taken

P ðdjcÞ ¼
Y

w2d
P ðwjcÞ

Y

w 62d;w2W
ð1� P ðwjcÞÞ: ð3Þ

However, during classification performance is improved by
not calculating the second product for each test document
[18], so the equation is rewritten as

P ðdjcÞ ¼
Y

w2d

P ðwjcÞ
1� P ðwjcÞ

Y

w2W
ð1� P ðwjcÞÞ: ð4Þ

Here, the second product is precomputed and stored for
each class.

To estimate a class probability of a document pðcjdÞ, the
priors must be estimated from labeled training documents.
Probabilities of all words in class c are estimated by

P̂ ðwjcÞ ¼ nðc; wÞ
nðc; dÞ ; ð5Þ

where n(c,w) is the number of documents in class c
including word w as in (6) and n(c,d) is the total number
of documents in class c

nðc; wÞ ¼
X

d2Dc

nðd; wÞ: ð6Þ

Another parameter of the system is the class prior
probability, which is estimated using Maximum Likelihood
Estimation (MLE) as follows:

P̂ ðcÞ ¼ nðc; dÞP
c2C nðc; dÞ

: ð7Þ

In HONB, we form a co-occurrence graph for each class of
labeled training documents and enumerate specific higher
order (e.g., second order) paths. Our system parameters are
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the same as in the traditional multivariate NB model;
however, we estimate the parameters using the higher
order paths instead of documents. Similarly, probabilities of
all words in class c are estimated by

P̂�ðwjcÞ ¼
~nðc; wÞ
~nðc; hÞ ; ð8Þ

where �nðc; wÞ is the number of higher order paths in class c
including word w as in (9), and �nðc; hÞ is the total number of
higher order paths in class c

~nðc; wÞ ¼
X

h2Hc

~nðh;wÞ: ð9Þ

The class prior is estimated by dividing the number of
higher order paths in class c by the sum of the higher order
paths in all classes as shown in (10)

P̂�ðcÞ ¼
~nðc; hÞP
c2C ~nðc; hÞ : ð10Þ

Finally, by using the parameter estimates described above,
we can estimate the class probability of a test document using

P̂ ðcjdÞ � P̂�ðcÞ
Y

w2d

P̂�ðwjcÞ
1� P̂�ðwjcÞ

Y

w2W
ð1� P̂�ðwjcÞÞ: ð11Þ

By using the same parameters—e.g., words—HONB has
the advantage that (just like NB) a single test instance can be
classified without the need for additional context or a
mapping function. However, by using higher order paths
instead of documents, we also exploit the latent connections
between documents within a given class. For both NB and
HONB, we employ Laplace smoothing to avoid zero
probabilities.

As noted above, although, we do not assume that
documents are IID during model construction, we still
make the “naı̈ve” assumption that attributes are indepen-
dent from each other during classification because we are
using NB.

For all the experiments reported in this paper, we used
second-order paths. This choice was based on the empirical
observation that although models built from third order
paths show the same pattern of performance, the perfor-
mance for second-order paths is slightly better. As noted
previously a second-order path connects three different
words (or entities) in two different documents (or records).
For example, w1 � Dx � w2 � Dy � w3.

4.1 Complexity Analysis

During training, NB assembles a simple table of class
probability estimates and a table of conditional attribute
value probability estimates for each class. Therefore, the
space complexity is O(cnv), where c is the number of classes,
n is the number of attributes, and v is the average number of
values per attribute [14]. In the case of text classification, the
number of attribute values corresponds to the word
dictionary size in both the multinomial and multivariate
NB models. As a result the space complexity can be defined
as O(cd), where d is the dictionary size. Attribute value
conditional probability estimates can be calculated by a
simple scan through the data; thus the time complexity of

the learning phase is O(td), where t is the number of
training examples and d is the dictionary size. During
classification, classifying a single instance has time com-
plexity O(cd) using the tables formed during training.

During training with HONB, we first need to enumerate
second-order paths before calculating probability estimates.
As mentioned before, for each class in k classes, we first
form a co-occurrence graph, and then, enumerate all length
two paths from this graph. All length two paths in a graph
can be enumerated in time Oðn3Þ (based on Stirling’s
approximation of Oðn2Þ for the number of paths of length
two [19]1), where n is the number of nodes (words) in the
co-occurrence graph of the words in the documents in a
given class, and is bounded by d. After this step, we form
path groups based on each of these paths. We enumerate
higher order paths from the path groups using a closed-
form formula, which in the worst case has time complexity
O(u log(r)), where u and r are the set sizes, both of which are
bounded by t, the number of training examples (see Figs. 5
and 6). In our work with small samples of training data in
text classification, t� d. We saw previously that there are
Oðn2Þ path groups, yielding a worst-case time complexity of
Oðt logðtÞn2Þ for path enumeration. In addition, we saw that
the time complexity of training for NB is O(td), where d is
equivalent to n in the worst case (when the documents in a
class have the entire dictionary in them). As a result, during
training HONB has an overall worst-case time complexity
of Oðcn3Þ, where c is the number of classes and as noted n is
bounded by d. This compares favorably with the time
complexity for training in SP-TAN as well as the time
complexity for classification in LBR, both of which require
Oðtkn3Þ, where t is the number of training examples, c as
before is the number of classes and n is the number of
attributes (equivalent to the number of words in the
dictionary of size d in a text classification application) [14].

In terms of space complexity, the only difference
between HONB and NB is that in HONB, we need to store
the co-occurrence graph (e.g., as an adjacency list). In the
worst case for a complete graph, we have Oðd2=2Þ
additional space complexity since this is a undirected
graph. We don’t need to store higher order paths
themselves since the attribute value statistics can be
updated while enumerating paths. Finally, the time com-
plexity of HONB is exactly the same as NB in the
classification phase, which is O(cd).

5 EXPERIMENTS

5.1 Comparing HONB with Traditional Classifiers

In this section, we present the results and analysis of our
experiments comparing HONB with three traditional
classifiers, NB, Support Vector Machines (SVM) and an
LSI-based kNN classifiers (LSI kNN). NB is our baseline
classifier. As stated by Chakrabarti [18] “SVMs are some of
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1. An intuition for the OðnðPþ1ÞÞ bound for paths of length P can be seen
by comparison to the generation of a tree for path traversal. The number of
children formed is the total number of paths generated. Such a tree has a fan
out of (n� 1) at the first step (in the worst case of a clique, meaning a node
can generate a path to every other node excluding itself), n� 2 at the second
step (excluding itself and the first vertex), and so on down to one for paths
of all lengths up to P. Therefore, the total number of children is
n� 1 � n� 2 � . . . � n� P , yielding OðnP Þ complexity for each of n vertices.



the most accurate classifiers for text; no other kind of
classifier has been known to outperform it across the board
over a large number of document collections.” For example,
SVMs usually perform better than NB. Therefore, we
included SVM in our experiments as the state-of-the-art
classifier in general in text classification domain. In addition
to SVM, we also included an LSI-based k-Nearest Neigh-
borhood (kNN) classifier since in our prior work we proved
that LSI implicitly uses higher order co-occurrence paths
[9]. Both SVM and LSI-based kNN classifiers were
optimized to achieve the best performance on our data
sets. Experiments were done using second-order paths for
HONB. We have conducted additional experiments using
third-order paths, but the results did not differ significantly.
Therefore, given the lower execution time of second-order
path enumeration, we chose to use second-order paths. For
the experiments in this section, we used four subsets of the
20 newsgroups data set that are also used in related work
using word clusters for text classification (e.g., [11]). This
related work is also focused on improving the efficiency of
the classifiers when the training data is scarce, and these
data sets provide an appropriate platform to demonstrate
the usefulness of our algorithm. The description of these
data sets is given in Table 1. The 20 newsgroups data set is a
collection of approximately 20,000 newsgroup documents,
partitioned evenly across 20 different newsgroups. It is a
commonly used benchmark data set for text classification.
We used the 18,828 version of the data set, which has cross
postings (duplicates) removed and all headers filtered
except for “From” and “Subject” headers.2 The data set
was preprocessed using the Text Mining Infrastructure
(TMI) [20]. We used the stemmer and stop word list
embedded in the TMI, and filtered words that occurred in
less than three documents. Furthermore, for comparison
purposes, we employed Information Gain (IG) to rank the
words in the dictionary and select the top-ranked
2,000 words for each subset. To observe the scalability of
HONB, we also conducted experiments on several addi-
tional data sets Cora [21], Citeseer [23], and WebKB [22]. For
Cora, Citeseer, and WebKB, we downloaded3 and used the
same processed versions of these data sets that were used in
the experiments reported in [23]. The Cora data set is

composed of a number of scholarly research papers on
machine learning, in all comprising seven classes: Case-
Based, Genetic Algorithms, Neural Networks, Probabilistic
Methods, Reinforcement Learning, Rule Learning and
Theory. In [23] Sen and Getoor chose documents such that
each document is either cited or cites one of the other
documents in the corpus. Stop words were removed and
words with document frequency less than 10 were also
removed. The final corpus contains 2,708 documents with a
vocabulary of 1,433 distinct words and 5,429 links.
Similarly, the Citeseer data set is composed of a number
of scholarly research papers from computer science domain
and contains 3,312 documents with a vocabulary of
3,703 terms. The WebKB data set is a hypertext data set
consisting of the web pages of the computer science
departments of four different universities. There are five
classes: Course, Student, Faculty, Project, and Staff. Sen and
Getoor [23] selected only those documents, which either
link to or are linked by at least one other document in the
data set and extracted a corpus of 877 documents. After
stemming and stop word removal the dictionary size is
1,703 distinct words, and there are 1,608 links in this corpus.

As mentioned, we compare our results to those from
three different traditional classifiers, NB, LSI kNN, and
SVM. All our data sets have binary word features, which
indicate only the occurrence or nonoccurrence of a word in a
document. We employed a multivariate binary event model
in a NB framework as described above. The SVM classifier,
we used is implemented in the R statistical tool kit [31] in
package e1071, which is the R interface to the libsvm library
[32]. For the comparison to SVM, we optimized parameters
to obtain the best possible result including a range of
experiments with different kernels (e.g., polynomial, radial
basis function). In addition, when selecting the value of the
soft margin cost parameter C for SVM, we considered the set
f10�4; 10�3; . . . ; 104g of possible values. On every trial, we
picked the smallest value of C, which resulted in the highest
accuracy obtained on the training set. During optimization
of the parameters for the SVM runs, we observed that the C-
values were mostly 10�4 and 10�3, and the RBF kernel
performed the best about 60 percent of the time.

For the LSI kNN classifier, based on the related work in
[25], we used the 25 nearest neighbors combined using the
noisy-OR operator and cosine similarity. The LSI kNN
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classifier we employed is implemented in the LSA package,
also in the R statistical tool kit. The truncation parameter k
of LSI can be set using various recommender routines in
this package. Similar to SVM, we optimized the LSI kNN
classifier by choosing the best performing recommender
routine in this package, which was based on Kaiser-
Criterium that retains the singular values larger than 1.0.

In order to simulate a real-world scenario, where only a
few labeled data instances are available, in this set of
experiments, we selected five percent of the data for
training from each data set. In the 20 Newsgroups subsets,
five percent corresponds to 25 documents per class. The
remaining 475 documents per class were used as our test
set. The other data sets, however, do not have an equal
number of documents in each class so the number of
instances selected varied depending on the distribution of
instances. In all experiments, we conducted eight random
trials and averaged the results over these trials. The detailed
results are depicted in Table 2. The performance is
presented in terms of accuracy, and the number of classes
per data set is given in parentheses in the first column.
Additionally, the largest absolute performance is high-
lighted in bold. Percent improvements are statistically
significant at the five percent level unless marked in red
italics, in which case the performance difference is not
statistically significant.

For all data sets, HONB significantly outperformed the
baseline NB classifier. The performance of HONB is most
visible on the 20 Newsgroups data sets. On these data sets
HONB outperforms all the other classifiers including state-
of-the-art SVM and LSI kNN. The improvement of HONB
over SVM is statistically significant for these 20 newsgroups
data sets. Similarly, HONB performs statistically signifi-
cantly better than LSI kNN on three of the four data sets.
Nonetheless, for the Citeseer, Cora, and WebKB data sets,
SVM is the best performing classifier. However, the
difference in performance between SVM and HONB on
the WebKB data set is not statistically significant. Addi-
tionally, HONB statistically significantly outperforms LSI
kNN on both the Cora and WebKB data sets.

These results suggest that under the conditions where
training data is scarce, HONB is a significantly better
classifier than NB. In addition, for five out of seven of these

data sets HONB is comparable or better than SVM, which is

as noted one of the best performing algorithms for text

classification. Finally, for six of the seven data sets HONB is

comparable or better than LSI kNN.
We contend that the main reason behind the superior

performance of HONB is that it makes explicit use of the

most valuable latent information that exists in higher order

paths. Just as prior research revealed for LSI [9], higher

order paths provide additional latent information. Unlike
LSI, however, HONB explicitly leverages this higher order

information. This, in fact, was one of the motivating

purposes for our research—from our prior work, we knew
LSI leveraged higher order information, but wanted to get

an answer to the question “How is this information best

leveraged?” These results represent a significant step

forward in answering this question.
In summary, in the case of text classification documents

and words in a document set are richly connected by such

higher order paths. Higher order paths as noted go beyond

instance boundaries. In contrast, traditional classifiers only
leverage relationships between attributes within instances

(e.g., words within documents), or as with the case of LSI

kNN is a black box in terms of how they leverage latent

information. When training data is scarce, these approaches
do not exploit sufficient information from individual

instances, and thus, do not obtain reliable parameter

estimates. In contrast, HONB explicitly exploits the rich
connectivity between words in different documents that

belong to a given class. Consequently, HONB is able to

obtain better parameter estimates and performs better.

5.2 Evaluating HONB by Varying the
Sparsity of Input

In the previous section, we provided an analysis of HONB

performance compared to the traditional classifiers NB,

SVM, and LSI kNN. We observed that for a five percent
subset of the training data, HONB outperforms the baseline

NB classifier for all the data sets and outperforms the other

traditional classifiers in most cases. In this section, we drill

down more deeply to explore the range of performance of
HONB as a function of the scarcity of input training data.

As before, we compare HONB’s performance to traditional
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classifiers including NB, SVM, and LSI kNN. The summary
of data sets is repeated for convenience in Table 3.

Although, there are explicit links in some of these data
sets, as noted previously HONB does not use them. We are
only interested in modeling the textual data so that we can
assess the impact of leveraging implicit higher order
information. For the following experiments, we use the
standard evaluation metric of accuracy. As mentioned, in
the analysis in this section, we vary the scarcity of the input
(i.e., labeled training data) in the experiments in order to
demonstrate the utility of our approach. Scarcity is
measured in terms of the size of the input training set,
where the number of documents per class ranges from five
percent to 90 percent.

Figs. 7a, 7b, 7c, 7d confirm that HONB consistently
outperforms the baseline method, traditional NB, in terms of
classification on the COMPUTER, SCIENCE, POLITICS, and
RELIGION data sets. All these accuracy improvements of
HONB over NB are statistically significant at the five percent
level for all the percentages shown from five percent to
90 percent. HONB performs exceptionally well on 20 news-
groups subsets, and in addition to outperforming the
baseline classifier it also outperforms the state-of-the-art
SVM classifier, as well as LSI kNN. Improvement over SVM
is statistically significant at the five percent level for all the
percentages above from five percent to 90 percent. Improve-
ment over LSI kNN is also statistically significant at the five
percent level except for the 80 percent and 90 percent
samples on the COMPUTER data set, the five percent,
10 percent and 60 percent to 90 percent samples for the
POLITICS data set, and the 90 percent sample for the
RELIGION data set.

A slightly different pattern of performance can be seen
on Citeseer (see Fig. 7e) and Cora (see Fig. 7f) data sets.
While classification accuracy of each method monotonically
increased with increasing training set size, HONB drasti-
cally outperformed NB when training sets were small,
reaching close to SVM and LSI kNN. Interestingly, LSI kNN
performs comparably with SVM for all the training set sizes,
and after about 50 percent NB also achieves similar
performance. For our last data set, WebKB, we see a similar
performance pattern as that of the 20 newsgroups subsets in
that HONB outperforms the baseline NB classifier for all
training set percentages. However, here again improvement
is statistically significant at the five percent level only up to
the 50 percent sample size. In addition, although LSI kNN
performs comparably with SVM on all the other data sets,
SVM performs exceptionally well on this data set and

outperforms LSI kNN by a large margin. Nonetheless, the
performance of HONB is close to SVM in the five percent to
10 percent sample size range, and the difference between
the two is not significant at five percent. WebKB is a much
smaller data set than the others (see Table 3) resulting in
many fewer training documents per class for each subset of
the training data selected. Additionally, we should note that
the class distribution of WebKB is quite different from that
of the other data sets. One of the five classes (the student
class) has many more documents than the others. Despite
these differences HONB still achieves better performance
compared to the baseline model. This highlights the
robustness of HONB over different data sets with different
class distributions.

These results are especially encouraging in that they
suggest that higher order methods were able to construct
robust models even when training data was particularly
scarce. We speculate that changes in the distribution of
highly discriminative terms across classes as a result of
increasing training set size allowed NB to outperform
HONB on the Citeseer and Cora data sets once the amount
of training data reached a certain point. We are currently
investigating this hypothesis and intend to report our
findings as part of future work.

We conclude that the advantage of HONB, especially at
the five percent to 10 percent sample size range, for all data
sets is due to the lack of sufficient information in these small
training sets to estimate the parameters for a traditional
model. Simply put, there are too few documents per class.
Even with a very small number of documents per class,
however, HONB leverages a large number of second-order
paths. These paths enable HONB to generalize even under
conditions of extremely scarce input.

In order to verify the value of latent higher order
information, in an additional experiment, we used what we
termed pure second-order paths. In this case, we enumerated
only length two paths between entities (words) that did not
co-occur elsewhere in the collection. This means we
exploited only the higher order latent information. Table 4
compares the accuracy of HONB versus HONB with pure
second-order paths. As before eight random samples were
chosen for each newsgroup category and the average
accuracies computed. As can be seen in Table 4, there is
no statistically significant difference between the results.

We conclude that the performance improvement of
HONB is due to the fact that the algorithm leverages the
latent information present in higher order paths. By exploit-
ing this latent information we obtain significantly better
results than traditional IID classifiers on several data sets.

Overall, these results indicate that when there is
insufficient information for traditional NB to estimate
parameters, HONB exploits the latent information in higher
order paths to achieve significantly better generalization.

6 DISCUSSION

By taking higher order paths as our base unit of “semantics”
—our “documents,” if you will—we reveal the latent
semantics that distinguish instances of different classes.
These results also support our hypothesis that we can
capture class-specific latent information in a generative
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classification model like NB under certain sparse data
conditions. Indeed, for some applications all one can get is a
very small number of labeled examples: precisely the
conditions under which HONB performs well.

One of the limitations of HONB is the constraint to binary
data, which indicates only the presence or absence of a word
in a document. In consequence, our results may not general-
ize to multinomial data, which includes word frequency

information. However, one direction of our future work is to
adapt HONB to use a multinomial model instead of a
multivariate model. It may be possible to incorporate word
frequency information in a higher order path. For example,
in the second-order path w1 � Dx � w2 � Dy � w3, the word
frequencies in Dx and Dy could be used, respectively, for w1

and w3. w2 poses a problem because it occurs in two
documents: Dx and Dy, and we could choose to use either
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frequency or some combination. In any case, by leveraging
word frequency information in higher order paths it may be
possible to exploit more information and obtain improve-
ments on nonbinary data sets. This is especially interesting
given the observations of the difference in performance of
multivariate versus multinomial models in [17].

7 CONCLUSIONS

In prior work [9], we gave a mathematical proof supported
by empirical results of the dependence of LSI on higher
order paths. In this work, a general approach to leveraging
higher order dependencies for supervised learning was
developed. We presented a novel classification method
termed HONB.

Higher order paths allow a classifier to operate on a much
richer data representation than the conventional feature
vector form. This is especially important when working with
small training sets, where accurate parameter estimation
becomes very challenging for traditional IID approaches
[11]. Experimental results affirmed the value of leveraging
higher order paths on binary data, resulting in significant
improvements in classification accuracies on benchmark
text corpora across a wide range of training set sizes.

Based on these and other similar results, we conclude
that for binary data sets, higher order paths provide
valuable information that can improve model performance
over traditional models. This work moves the field a step
closer to understanding how higher order information
should be leveraged in a systematic way for greatest impact.
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