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Abstract- A major natural language processing problem, 

word sense disambiguation is the task of identifying the correct 

sense of a polysemous word based on its context. In terms of 

machine learning, this can be considered as a supervised 

classification problem. A better alternative can be the use of 

semi-supervised classifiers since labeled data is usually scarce 

yet we can access large quantities of unlabeled textual data. We 

propose an improvement to Label Propagation which is a well-

known transductive classification algorithm for word sense 

disambiguation. Our approach make use of a semantic diffusion 

kernel. We name this new algorithm as diffused label 

propagation algorithm (DILP). We evaluate our proposed   

algorithm with experiments utilizing various sizes of training 

sets of disambiguated corpora.  With these experiments we try 

to answer the following questions: 1. Does our algorithm with 

semantic kernel formulation yield higher classification 

performance than the popular kernels? 2. Under which 

conditions does a kernel design perform better than  others? 3. 

What kind of regularization methods result with better 

performance? Our experiments demonstrate that our approach 

can outperform baseline in terms of accuracy in several   

conditions. 

Keywords—natural language processing, word sense 

disambiguation, machine learning, transductive inference, label 

propagation, semantic diffusion kernel 

I. INTRODUCTION 

In every language there are some words which have more 

than one meaning. For example, the noun nail represents a 

part on our fingers and toes which is called fingernail and 

toenail, more specifically. Moreover, nails represent thin, 

sharp metal pieces used in construction. Another example of 

a word with more than one meaning is jam. One possible 

sense of the word jam could be a sweet paste made out of 

fruit. When used as a verb jam means to put something into a 

space that is too small for it. Another meaning of the word 

jam is when the cars on the road are very slow or stopped, 

which is called a traffic jam. 

Humans subconsciously understand the right meaning 

easily by observing the context. On the other hand to 

computationally identify the suitable sense of the word is not 

a trivial task. Word sense disambiguation (WSD) is the 

problem of automatically finding which sense is the correct 

sense of a given word according to its context [1]. 

WSD is a very popular task in both academic and non-

academic platforms. There is an extensive bibliography for 

resolving ambiguity of polysemous words. There are two 

variants of WSD tasks [2],  lexical-sample task and all-words 

task. The main difference between lexical-sample task and 

all-words task is that the latter attempts to disambiguate all 

types of words (i.e., nouns, adjectives, verbs, adverbs…etc.) 

in the entire corpus while lexical-sample task deals with only 

pre-selected types of target words. 

In order to resolve ambiguity several algorithms have 

been developed. It Makes Sense (IMS) is a supervised 

English all-words WSD system. Zhi and Ng [3] attempt to 

handle the WSD task with the IMS framework using the 

support vector machine (SVM) classifier and integrating 

multiple features such as part-of-speech (POS), surrounding 

words and local collocations. Taghipour and Ng [4] aim to 

incorporate word embeddings in a continuous space [5] to 

IMS framework in a WSD system. Iacobacci et al. [6], also 

use IMS framework and word embeddings as features and 

report that significant performance improvements are 

achieved. Melamud et al. [7] use context2vec with   

bidirectional long short-term memory (Bi-LSTM) to train   

word vectors. According to the experimental results, they get 

better results on the WSD task. Other efforts including LSTM 

and bi-LSTM are [8, 9, 10]. For instance the methodology in 

[8] has three layers; the softmax layer, a hidden layer and a 

Bi-LSTM layer. Bi-LSTM and hidden layer share parameters 

over all word types and senses. The output of the model is the 

concatenation of the outputs of left pass vector and right pass 

vector of LSTM. There is another model called gloss 

augmented WSD neural network (GAS) is introduced by 

[11].  

We consider the WSD as a transductive classification 

problem and propose an improvement to Label Propagation 

which is a well-known transductive inference algorithm. Our 

approach make use of a semantic diffusion kernel. We name 

this new algorithm as diffused label propagation algorithm 

(DILP). We evaluate our proposed algorithm  with 

experiments utilizing various sizes of training sets of 

disambiguated corpora accompanied with unlabeled data.  

With these experiments we try to answer the following 

questions: 1. Does our algorithm with semantic kernel 

formulation yield higher classification performance than the 

popular kernels? 2. Under which conditions does a kernel 

design perform better than  others? 3. What kind of 

regularization methods result in better performance?. Our 

experiments demonstrate that our approach can  outperform 

baseline methods in terms of accuracy under we describe 

below. 
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II. BACKGROUND  

A. Word sense disambiguation 

Word Sense Disambiguation (WSD) actually is a 

classification problem since it attempts to find the most 

suitable sense of a word among its possible senses defined by 

a dictionary based on its context. There are two variants of 

WSD tasks [2]. One is the Lexical sample task. In the Lexical 

sample task, there are only a small number of pre-selected 

types of target words. There is an inventory of senses of each 

word. Supervised machine learning approaches are used to 

train a classifier for each word. The second type of WSD task 

is the All-words task. The main difference between lexical 

sample task and all-words-task is that the All-words task 

attempts to disambiguate all types of words (i.e., nouns, 

adjectives, verbs, adverbs…etc.) in the entire corpus. This 

task generally needs wide-coverage systems [2]. 

    

B. Label Propagation Algorithm  

Label Propagation (LP) [12] is a graph based semi-
supervised  transductive learning  method. That means 
learning is limited to the given data. There are inductive 
methods which aims to model the whole sample space [13, 
14]. 

There are two main assumptions behind the LP algorithm. 
First, closer data points tend to have similar class labels, 
which is the main logic behind K-Nearest Neighbour (KNN). 
Second, points on the same cluster are likely to have the same 
label [15].  The first assumption is a local assumption 
whereas the second is a global one. These two assumptions 
together are called the cluster assumption [16, 17].  

The algorithm propagates the class label of a node in a 
graph to neighboring nodes by using weighted edges and 
proximity. This process is repeated until convergence to a 
unique solution is achieved, which is guaranteed [12]. Thus, 
the labeled data is used in a classification model to assign 
labels to the unlabeled data.  

In this study, we employed the well-known LP algorithm 
[12], which is implemented in the Scikit-Learn Library1.  Let 
us explain the problem setup and the steps of the algorithm.   

For  𝑙, 𝑢 ∈ ℕ+  with  𝑙 < 𝑢   and  𝑙 + 𝑢 = 𝑛  we let 𝑋 =
{𝑥1 … 𝑥𝑛} denote the array of contexts (documents) and each 
𝑥𝑖 is a vector of dimension 𝑡  where 𝑡 denotes the number of 
terms. Hence X is a  𝑡𝑒𝑟𝑚 × 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  matrix. We let 
class labels to denote senses of words to be disambiguated 
where 𝑌𝐿 = {𝑦1 … 𝑦𝑙} denotes the known senses (class 
labels),  𝑌𝑈 = {𝑦𝑙+1 … 𝑦𝑙+𝑢}  denotes the unknown senses 
and 𝑌 = 𝑌𝐿 ∪ 𝑌𝑈.  

First, we form a fully connected graph whose vertices 
are (𝑥1, 𝑦1) … (𝑥𝑙+𝑢, 𝑦𝑙+𝑢). The edges between the vertices, 
say 𝑖, 𝑗  are weighted by using similarity score between the 
vectors 𝑥𝑖  and 𝑥𝑗,  which is denoted by  𝑤𝑖𝑗 . The simplest 

similarity score is the dot product of the vectors.  Another 
popular way of computing the similarity is the radial basis 
function. 

                             𝑤𝑖𝑗 = 𝑒
−

||𝑥𝑖−𝑥𝑗||2

2𝜎2                                

 

                                                 
1 https://scikit-learn.org/stable/# 

      It results in larger weights when the distance between two 
vectors is closer. Radial Basis Function (RBF) is commonly  
used among other graph-based methods [12, 15, 18, 19]. 

The sigma parameter controls the weights. During the 
testing phase of this work we observed that the change in 
𝜎 effects the model substantially, this is a well-observed 
phenomenon [17].   

      The LP model learns in two steps. In the first step, we use 
the similarity scores of the vectors in order to assign weights 
between nodes. Then we form the diagonal degree matrix, D 
as follows. 

𝐷𝑖𝑖 =  ∑ 𝑊𝑖𝑗𝑗     

Bengio et al. claim that the algorithm works better if the 
diagonal elements of W are set to zero [20]. In the second 
part, the labels (senses in our case) are propagated until 
convergence.  The initialization of  𝑌𝑈  is not important but 
for  𝑌𝐿 , we used two senses as labels. We choose the 
initialization of Y as 𝑌0 = {𝑦1 … 𝑦𝑙 , 0, … ,0} .  After the 
initialization, the algorithm is as follows. 

 
Fig. 1.    Label Propagation Algorithm 

        Algorithm 1 returns the propagated labels which are 
then used to label the points in X. The matrix 𝑌  can be 
constructed differently when there are more than two classes 
as in [21]. For WSD, Niu et. al. 2005 used a 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ×
𝑐𝑙𝑎𝑠𝑠 matrix with  𝑌𝑖𝑗 = 1 if 𝑦𝑖  is in sense tag  𝑠𝑗   and 𝑌𝑖𝑗 =
0 otherwise.   Then they use the same algorithm in a one-
versus-rest fashion. 

Some other graph-based learning methods that are well-
known are as follows: [19] is based on Markov random 
walks,  [22] iteratively computes the distributions of labels 
(MAD algorithm),  [23] is similar to Markov random walks, 
[17] computes local structure and combines them to get a 
better global learner. 

They generally have similar graph constructions but 

different regularizing methods or loss function.  For an 

extensive survey on the topic one can refer to [20] or [24]. 

There are exceptions that focus on graph connectivity, for 

example, [1] studies extensively the structure of a given 

graph for unsupervised learning, but they are beyond the 

scope of his work.   

III. RELATED WORK 

A. Approaches  for WSD  

There are several types of algorithms developed for WSD in 

the literature.  

The IMS Framework: It Makes Sense (IMS) is a supervised 

English all-words WSD system. Zhi and Ng [3] present the 

IMS framework with the default support vector machine 

(SVM) classifier. Moreover, they integrate multiple features 

such as part-of-speech (POS), surrounding words and local 
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collocations. It is a fexible framework which allows users to 

choose different features, classifiers and preprocessing tools. 

 
IMS+emb: Taghipour and Ng [4] aim to incorporate word 
embeddings which are representation of words in a 
continuous space [5] in a WSD system. In their work they 
choose to work with the word embedding that is created by 
Collobert and Weston [26] which they name as CW. To 
produce a word representation using CW embedding, they 
use a feed forward neural network with stochastic gradient 
descent as the training algorithm. The WSD framework in use 
is IMS and they also construct the default settings of IMS as 
baseline. The idea behind using word embeddings in the 
WSD task is to add the distribution of the representation of 
the words to the system which leads the classifier to take the 
similarity of the words into account.  

 One other IMS based WSD method is  Iacobacci et al. [6], 
who show that by designing IMS properly and employing 
word embeddings as features gives significant performance 
improvements which are hard to beat [11].  

context2vec: Melamud et al. [7] introduce a different word 

embedding which they call context2vec. Their basic idea is 

to use bidirectional LSTM (Bi-LSTM) to train a word vector. 

Their model is based on word2vec's CBOW architecture [5] 

but they use Bi-LSTM instead of averaged word 

embeddings(AWE). They outperform AWE and they get 

similar or better results on WSD task (and some other tasks 

such as sentence completion and lexical substitution). 

 
LSTM and Bi-LSTM: Long Short-Term Memory (LSTM) 
is a type of gated recurrent neural network [27] which is 
introduced for sequence models to make use of the long term 
dependencies, i.e. it preserves information from the 
preceding inputs(past). The bidirectional LSTM (Bi-LSTM) 
[28] is an adaptation of the LSTM which runs inputs both 
from the past and the future. As humans understand the sense 
of a word by observing the context, this WSD technique uses 
information about both preceding and succeeding words [8].  
Their model has three layers; the softmax layer, a hidden 
layer and a Bi-LSTM layer. Bi-LSTM and hidden layer share 
parameters over all word types and senses. The output of the 
model is the concatenations of the outputs of left pass vector 
and right pass vector of LSTM. Furthermore, there is an 
embedding layer that provides out the word embedding, 
which is GloVe [5] in their case. In order to decrease the 
dependency on individual word in the training set, they use 
the regularization technique [29]. Compared to IMS+adapted 
CW and other naive Bi-LSTM methods, their model achieves 
state-of-the-art level improvements. One of the most 
important advantages of this model is that it is independent 
of the chosen language.  

The model gloss augmented WSD neural network (GAS) 
is introduced by Luo et al. [11]. The main differences 
between this model and the Bi-LSTM model of [8] are the 
gloss module and the memory module of GAS. The gloss 
module makes use of the glosses (sense definitions) which is 
ignored by previous neural network models. This module can 
be seen as an embedding module of glosses which is trained 
by a Bi-LSTM. The aim of the memory module is to model 
the relationship between the glosses and the context. 
Experiments show that their model outperforms Raganata et 
al. [9], Kägeback and Salomonsson [8] and Iacobacci et al. 
[6]. 

B. Label Propagation Algorithms  

 Generally, in graph based learning algorithms, the graph 
constructions are similar [24] as we mentioned before.  If we 
consider the given graph method as estimating a 
classification function  𝑓 , then the graph based algorithms 
differ by their loss function (how close 𝑓 estimates labels to 
the given ones) or regularizers (how smooth is 𝑓 on the whole 
graph).   

 For example, the methods with combinatorial graph 
Laplacian ℒ, are MinCuts [23], label propagation [12],  and 
Gaussian random fields [12, 18]. The method that employs 
usage of kernels on graphs is manifold regularization [13]. 
Discrete regularization [15] uses normalized graph 
Laplacian. Interpolated and Tikhonov regularization employ 
𝐿𝑝 regularization [14].   

  In our work we also focus on regularization of our graph 
based method by using a Kernel and a regularization method 
based of graph Laplacian.  Before explaining graph 
Laplacian, let us discuss why such regularization is needed. 
As mentioned in several studies [13, 14, 15, 24], the classifier 
learned by the graph-based method has to be consistent with 
both the initial labeling and the geometry of the data. Rapid 
changes between close points cause the model to fail to fulfill 
the cluster assumption and it has to be punished for that.  

         One common way is to normalize the graph Laplacian 

as given in [15]. We add a regularization step in the 

initialization. 

                                                     

         

 

        Then we iterate the following equation in the label 

propagation algorithm where 𝑌0
 is the initialization and t 

denotes the iteration steps [12]. 

 

                       𝑌𝑡+1 ← 𝛼ℒ𝑌𝑡 + (1 − 𝛼)𝑌0                      
 
        This new regularized algorithm is called label spreading 
[15, 20].  For a proof of the convergence of this algorithm, 
one can refer to [15]. Note that the eigenvalues of  𝛼ℒ are 
in (−1,1).  

       Another method that we mention here is the Kernel 
method. Kernels among nodes are referred to as kernels on 
graphs and it should not be mixed with graph kernels [30].  
The most popular kernel used for label propagation is the 
radial basis kernel or Gaussian kernel, 

                   𝐾(𝑥, 𝑥′) =
1

2𝜋𝜎2 exp (
−||𝑥−𝑥′||2

2𝜎2 )                     

 

where  𝜎  is the scaling parameter.  By some parameters 

change, it is the solution of the diffusion equation (Kondor et. 

al. 2004). In physics, the diffusion equation describes how 

heat and gas diffuse in homogenous environment with time.  

Intuitively, in graph based learning methods, we want the 

given labels to diffuse over the whole graph. This intuition 

explains why Gaussian kernels are very popular in graph 

based learning methods. For a formal proof, one can refer to 

[13, 15, 31]. The heat or gas equations are all in a continuous 

setting, but our problem is a discrete one. In [31, 32] a 

discretization of a Gaussian kernel by using the graph 

Laplacian is introduced that is called the diffusion kernel 

 

ℒ ← 𝐷−1/2𝑊𝐷−1/2                                (2) 
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 𝐾𝜆 = 𝑒𝑥𝑝(𝜆ℒ) 

                    = 𝑙𝑖𝑚
𝑠→∞

(𝐼 +
𝜆ℒ

𝑠
)𝑠 = 𝐼 + 𝜆ℒ +

𝜆2ℒ2

2
+ ⋯           

  
where ℒ is the graph Laplacian of the graph and 𝜆 is control 
parameter. Note that, the powers of positive semi definite 
matrices are positive semi-definite and this way positive 
definiteness is assured.  

Semantic Diffusion Kernel: This idea of using the diffusion 

kernel in a discrete setting such as text classification and 

particularly in word sense disambiguation is not new.  Very 

recently, Wang et al. [25] proposed a semantic diffusion 

kernel which uses semantic similarities as a diffusion process 

in a graph whose nodes represent the contexts and edges 

represent the first-order similarities.  

        Diffusion considers all possible paths connecting two 

nodes in the graph. The basic idea of the algorithm is to 

construct an augmented term-document matrix. Then by 

applying the "Diffusion" process to this matrix so that the 

words which are in the same class become closer to each 

other.  
             In [25, 33] they used this technique with support 
vector machines to capture the higher order correlations 
between terms.   Let us explain how they created their 
diffusion matrix in detail.  First, they get a 𝑡𝑒𝑟𝑚 × 𝑡𝑒𝑟𝑚 
matrix 𝐺 = 𝑋𝑋𝑇 and compute the following.  

              𝑆 = exp (
𝜆

2
𝐺) =

1

2
(2𝐼 + 𝜆𝐺 +

𝜆2𝐺2

2!
+ ⋯ )          (6) 

 

      The matrix 𝑆 is called a semantic similarity matrix. Then 

they compute 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 × 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  semantic diffusion 

kernel   𝐾𝜆 = 𝑋𝑇𝑆𝑇𝑆𝑋,  which they used for SVM.           

According to their experiments their diffusion kernel is 

superior to LSI and linear kernel with several SensEval 

disambiguation tasks such as interest, line, hard and serve. 

The Diffusion algorithm is shown in the following Figure. 
  

 

Fig. 2. Diffusion Kernel Algorithm 

 Other semi-supervised WSD studies with LP are [21] that 
uses label propagation with similarities (cosine, Jensen-
Shannon divergence) and get very good results, [34], which 
uses basic dot product with LP, on parallel corpora and 
applies on Chinese data sets. Recent works generally focus 
more on merging label propagation method with deep 
learning methods such as LSTM [35].  As far as we know, 
none of them used semantic diffusion kernels in their work. 

IV. APPROACH  

In our work, we apply label propagation for the WSD task. 

The Laplacian regularization method is employed to keep the 

local global consistency. Then we used the DILP instead of 

RBF kernel to capture the semantic similarities and to get a 

smooth decision surface. Finally, we compared our results 

with the RBF kernel. According to the experimental results 

on WSD task, DILP gives higher classification accuracy in 

compare to RBF. Following figure shows the detail about 

DILP.  

 

 
Fig. 3. Diffused Label Propagation (DILP) Algorithm 

V. EXPERIMENTS AND RESULTS  

A. Datasets  

TABLE I.  DATASETS 

Name No Sense Frequency 

 
 

Hard 

1 not easy (difficult) 3455 

2 not soft (metaphoric) 502 
3 not soft (physical) 376 

 

 
 

 

Line 

1 Stand in line 349 

2 A nylon line 373 

3 A line between good and evil 374 

4 A line from Shakespeare 404 

5 The line went dead 429 

6 A new line of workstations 2217 

 

 

 
Serve 

1 Function as something 853 

2 Provide a service 439 

3 Supply with food 1814 

4 Hold an office 1272 

 

 
 

 

 
Interest 

1 Readiness to give attention 361 

2 Quality of causing attention to be given 11 

3 Activity, etc. That one gives attention to 66 

4 Advantage, advancement or favor 177 

5 A share in a company or business 500 

6 Money paid for the use of money 1252 

 

In order to evaluate our algorithm we select the datasets 

namely hard, line, serve and interest from SensEval. This 

dataset is used in the studies of WSD. Word occurences in all 

dataset were manually tagged with a WordNet sense. 

Hard Data: There are 4333 instances in hard data. These 

instances are labeled as HARD1, HARD2 and HARD3.  

Line Data: The line data contains 4146 instances. Six 

different senses and frequencies are shown on Table 1. 

Serve Data: 4378 instances occur in this dataset. Moreover 

Table 1 shows four different senses and their frequencies. 



 

  

Interest Data: It has 2367 instances. There are six senses in 

this dataset and their details are shown on Table 1. 

B. Experimental Setup 

      In order to observe the behavior of our approach under 

different training set size conditions we vary the labeled data 

percentage and report 40%, 50% and 60% where the 

performance difference of DILP is most visible. During 

experiments we optimized the parameters of DILP. For 

instance as similarity metric we use dot product and cosine 

similarity, and we choose dot product since it performs better.  

      For DILP there are three main parts, calculation the 

affinity matrix for dot product, normalization the graph 

Laplacian and Taylor expansion. We make some 

combinations for these three calculations and get crucial 

results. For example we use dot product with normalization, 

dot product with Taylor expansion, only Taylor expansion, 

only normalization etc.  

      Our approach works best in the binary classification 

scenario. Therefore, for each dataset we select two of the 

largest senses (classes) whose sizes are similar. For interest 

dataset we chose senses 1 and 5, that are the second and third 

largest classes. For line dataset we choose senses 4 and 5, 

again second and third largest senses with similar number of 

instances. Using a similar approach, we select senses 2 and 3 

for Hard dataset, and senses 2 and 6 for Serve dataset for our 

binary classification experiments.  

 

C. Evaluation Results and Discussions 

      Table II. represents the accuracy of each kernel for 

different training ratio of datasets.  For each dataset we run 

experiments for 40, 50, and 60 training ratio. Our aim is 

presenting the higher accuracy of DILP opposed to other 

algorithms especially RBF. RBF is the baseline algorithm 

because for label propagation it gives the highest accuracy. 

Especially this accuracy can be seen in scikit learn framework 

with optimized parameters. For interest data we can infer that 

40% training data DILP gives the highest results. For 50% 

training data the result of RBF is 73.8% and DILP’s result is 

88.0%. But on the below row which has 50% training data, 

the result of DILP rises to 91.4% and the closest one is 86.1% 

.Other datasets, line, hard and serve also give the similar 

results. On serve data the results of RBF and DILP are very 

closed but the highest score still remains the same algorithm 

which is DILP. However performance gain between baseline 

algorithm  and DILP is calculated as: 

 

GainDILP = (PDILP – Px) / Px                                                    (7) 

 

where PDILP is the classification accuracy of DILP and Px 

represents the classification accuracy of RBF. Experimental 

results are also shown in Table II. The gain column which is 

the last column in Table II, demonstrates the (%) of DILP 

over RBF computed as in Eq. (7).   

 

      As a result DILP became more successful than RBF 

(baseline kernel) with high labeled ratio such as on below 

table. On the other hand linear and polynomial kernels can 

exceed the RBF but not the DILP. Table II shows the results 

of RBF, linear, polynomial and DILP kernels on serve data 

with different size of training data. Furthermore it shows 

that DILP gives the best result. In the below table L. 

represents linear kernel, and Poly. shows the polynomial 

kernel. The last column Gain is the percentage gain of DILP 

over RBF. Moreover the stars near gain values show the 

positive gain of DILP over RBF.  In the training sets, where 

DILP significantly differs over RBF kernel based on 

Students t-Tests, we indicate this with “*”.     

 

TABLE II.  CLASSIFICATION ACCURACY RESULTS ON INTEREST, LINE,                                                      
HARD AND SERVE DATASETS 

Dataset 
Labeled 

Data % 
RBF L. Poly. DILP Gain 

Interest 

1vs5 

40 67.5 73.9 76.0 83.5 23.7* 

50 73.8 78.3 81.4 88.0 19.2* 

60 79.3 81.1 86.1 91.4 15.2* 

Line 

4vs5 

40 83.4 69.6 70.9 88.2 5.7* 

50 86.3 78.3 78.9 90.8 5.2* 

60 87.9 84.6 87.5 92.1 4.8* 

Hard 
2vs3 

40 87.6 83.0 78.3 88.8 1.4* 

50 79.2 88.2 84.5 92.5 16.8* 

60 83.5 91.0 89.1 94.8 13.5* 

Serve  

2vs6 

40 93.7 89.7 80.1 94.9 1.3* 

50 94.9 91.3 86.1 96.4 1.6* 

60 95.9 92.9 91.2 97.1 1.2* 

             

VI. CONCLUSIONS AND FUTURE DIRECTIONS 

 

      Experimental results show that our approach, the DILP 

algorithm performs considerably better than the baselines 

RBF, linear and polynomial in labeled data percentages of 

%40, %50 and %60 in binary classification scenario. One of 

the conclusions driven from this study is that dot similarity 

affects the score better than the cosine similarity. Another 

affect is about the Taylor step. Detecting the most efficient 

step has a crucial role on getting high score. The gamma value 

optimization also helps the score getting higher. One of the 

most effective optimization is using normalization with 

Taylor expansion. So these above optimization parameters  

make DILP, gives the best result in compare to RBF, linear 

and polynomial kernel.  

     As a future work, we extend DILP algorithm to perform 

multi-class classification using an appropriate method such 

as one versus all or one versus one approaches. Additionally, 

we aim to perform more experiments on other larger scale 

WSD corpora. We will also analyze how the other 

regularization methodologies with DILP improve 

classification accuracy in WSD in some test cases. An 

additional item   in our agenda is to expand our approaches 

by adding further semantic-information and investigate how 

the construction of the used graph can affect the performance. 
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