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Abstract—Log files are available on every computer
system. They automatically record important run time
events of operating systems or software applications. They
are mainly used to find the root cause of failures. Analyzing
such log files allows us to detect anomalies, problems
and improve the system. Since the log files are usually
unstructured or semi-structured, the important task of
log analysis is to parse usually immense amount of log
message strings into the human readable and actionable
reports. In this paper, we propose an implementation of a
machine learning based log parsing system using Named
Entity Recognition which is the process of identifying and
categorizing entities in the text. Our approach make use of
Bidirectional Encoder Representations from Transformers
(BERT) to extract entities. The paper reports the results
of experiments on two benchmark; macOS and Linux OS
datasets.
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I. INTRODUCTION

Log files contain records of system states and events
from operating systems and software. Such log data is
available on practically every computer system and is
a valuable resource for monitoring the system status,
investigating system failures, anomaly detection, and
henceforth cybersecurity. Analyzing logs for different
purposes in an effective way is challenging. First, huge
amounts of logs are generated routinely by software sys-
tems, so it is usually impractical to manually inspect log
messages, for example for situational awareness. Second,
logs related to errors or anomalies usually constitutes
only a very small fraction of the data which makes train-
ing of the supervised machine learning systems difficult.
In addition, these errors and anomalies can be quite
system specific, which makes generalizations to other
systems and domains difficult. Third, logs are usually
in semi-structured form, they need to be converted to
structured form and their format can vary from system
to system.
Generally, system logs are a composition of constant
strings and variable values. To enable log analysis, the
first and essential step is log parsing. Event log parsing

is a process to split and label each field in a log
entry such that ”timestamp”, ”hostname”, ”IP address”,
”level”, ”server”, ”PID”, and ”log message”. Log parsing
can be categorized as rule-based, data-driven parsing,
and source code-based. Most current log management
tools support rule-based parsing. Since log file formats
differ, defining the set of rules for a new system is
time-consuming. Furthermore, the static rules can not
be easily updated or extended when version changes of
the same software happens.
In order to relax the inherent weaknesses of rule based
systems, in this study, we model log parsing as the
Named Entity Recognition problem (NER) and use Bidi-
rectional Encoder Representations from Transformers
(BERT) to extract entities for efficient, dynamic and
generalizable parsing of the logs.

The organization of this paper is as follows. Section II
summarizes the background and related work. Approach
for modeling the log parsing as NER is provided in
Section III. Section IV includes detailed information
about the experimental setup, and the results and
discussion can be found in Section V. Finally, the paper
concludes in Section VI.

II. BACKGROUND AND RELATED WORK

Logs are important in the development and mainte-
nance of computer systems. Log analysis can be used
for:
Usage analysis: User behaviour analysis, API profiling,
workload modeling can be listed as usage analysis ap-
plications and requires structured events as the input.
Anomaly detection is an essential task to construct a
trust-worthy computer system. Log parsing is required
by machine learning algorithms such as Principal Com-
ponent Analysis (PCA), Invariant Mining (IM), and Deep
Learning (DL) that use log entries for anomaly detection.
Performance modeling: Facebook has recently reported
a use case to apply logs to performance modeling. The
inputs of the performance model are structured event
sequences.
Duplicate issue identification: System issues are re-978-1-6654-3603-8/21/$31.00 ©2021 IEEE



ported repeatedly by different users, which leads to
duplicate problems. Structured data is required to au-
tomatically identify duplicates.
Failure diagnosis: Logs are enormous in volume and can
be quite messy. So, manually diagnosing the system is
time-consuming and challenging.

There are many studies using machine learning algo-
rithms for anomaly detection [1]. We focus detection of
anomalies in software logs. The recurrent neural network
(RNN) language models are presented for anomaly log
detection, and their performance is demonstrated on the
Los Alamos National Laboratory (LANL) cybersecurity
dataset [2]. LANL [3] consists of over one billion
log lines collected over 58 consecutive days. The logs
contain DNS, network flow, anonymized process, and
authentication information.

Min Du et al. [4] have suggested DeepLog, a data-
driven approach for anomaly detection. In this approach,
log entries are viewed as elements of a sequence that
follows specific patterns and grammar rules. DeepLog
is a deep neural network that utilizes Long Short-Term
Memory (LSTM) to model this log entry sequences [5].
Log entries are parsed into the log key and the parameter
value vector for anomaly detection.

The standard evaluation metrics such as recall, preci-
sion, and F-score are used to evaluate log key anomaly
detection methods of Principal Component Analysis
(PCA), Invariant Mining (IM), N-gram, and Deeplog
methods. Based on this comparison, DeepLog achieved
the best overall performance, with an F-score of 96%.
They note that PCA and IM are offline methods, so
they cannot be perform anomaly detection online for
incoming log entries.

Parsing unstructured log messages into a structured
format provides efficient searching, filtering, grouping,
counting, and log mining. There are certain methods
used by the log parsers:
Frequent Pattern Mining - A frequent pattern is a set of
frequently occurred items in a dataset. Examples of that
approach are SLCT, LogCluster, and LFA. Clustering –
LKE, LogMine, and LogSis are offline, SHISHO, LenMa
are online methods that use the clustering method.
Heuristics – Log messages contain some unique char-
acteristics. Drain, AEL, and IPLoM propose heuristics-
based log parsing methods.

Loghub (Figure 1) data repository is freely available
for research and contains 440 million log messages in
size of 77 GB [6]. The evaluation of 13 log parsers on
the loghub dataset is reported in terms of accuracy, ro-
bustness, and efficiency [7]. Drain automatic log parsing
tool outperforms the existing online log parsing methods
in terms of accuracy and efficiency.

Nerlogparser is an automatic event parsing tool that
uses Bidirectional Long Short-Term Memory (BiLSTM)

Fig. 1: The Summary of LogHub Datasets (from [7])

[8].
Pokharel [9] found that extracting useful information

from log messages is beneficial for real-time analysis and
detecting faults, anomalies, and security threats. Thus,
they proposed a model to extract information from the
log messages. The approach is used to extract named en-
tities by building classifiers based on Naı̈ve Bayes (NB)
and Support Vector Machines (SVM). Experiments were
conducted on Windows OS and Exchange Mail Server
logs. In comparison with the existing frequent item-set
approach, they say they outperformed as the numbers of
categories increase. They get 97% and 97.40% accuracy
on Windows OS and Exchange Mail Server datasets
respectively.

Named Entity Recognition (NER) is used in natural
language processing (NLP) applications such as ques-
tion answering, text understanding, and knowledge base
construction [10]. NER labels sequence of words as a
person, location, organization, etc [11]. There are four
main streams of approaches to NER:

1. Rule-based approaches rely on hand-crafted rules
designed based on domain-specific gazetteers [12], [13]
and, syntactic-lexical patterns [14].

2. Unsupervised learning approaches - clustering
is a typical approach to unsupervised learning [11].
Clustering-based NER systems employ context similarity
to extract named entities from the clustered groups of
terms.

3. Feature-based supervised learning approaches rely
on supervised learning algorithms. NER is transformed
into a multi-class classification or sequence labeling task.



Deep learning-based (DL-based) approaches automati-
cally discover hidden representations required for the
classification.

BiLSTM-CRF (Bidirectional LSTM-Conditional Ran-
dom Fields) [15] is the most common architecture
for DL-based NER and achieves state-of-the-art perfor-
mance (93.5%) on CoNLL03. BERT achieves state-of-
the-art performance (92.07%) on OntoNotes5.0.
CRF (Conditional Random Fields) is a powerful method
when used with non-contextualized language model
embeddings such as GloVe and Word2vec, but does
not always perform better when used with contextual
embeddings like ELMo and BERT [15], [16].

There are some key challenges in NER: 1) Supervised
NER systems require big annotated data for training.
That is a big challenge for the resource-poor languages;
2) The quality and consistency of the annotation are
important because of the language ambiguity; 3) In many
scenarios, NER deals with informal text and unseen
entities which is more challenging because of nosiness
and shortness.

ELK Stack is an abbreviation for three open-source
projects: Elasticsearch, Logstash, and Kibana. ELK
Stack is popular for log management and analysis.
Elasticsearch is a search engine used to store, search
large volumes of data. Logstash is a server-side data
processing pipeline. Logstash allows us to collect data
from different sources, transform, and send it to the
desired destination. Kibana is an open-source tool for
data visualization and exploration that used for log and
time-series analytics and application monitoring.

Modern log management includes the following key
abilities:
Aggregation – collecting and sending log data from
multiple sources.
Processing – transforming log messages into easily un-
derstandable data.
Storage – Storage – storing data for monitoring, and
analysis.
Analysis – creating visualizations and dashboards.

III. APPROACH

We model log parsing as a Named Entity Recognition
(NER) problem and use BERT to extract important
sections from log entries. We annotate a supervised
dataset for log files, by using two methods: 1) using
log entries in the output of the Drain log parser as tags;
2) manually tagging important sections using Tagtog
annotation tool.

A. Challenges

NER systems require big annotated data. Log files,
unlike ordinary text files, do not contain person, location,

organization entities. Therefore, the well-known datasets
and corpora for NER such as CoNLL 2003 [17], WNUT
17 Emerging Entities Dataset [18], Annotated GMB
Corpus [19] cannot be used as the training datasets for
log files. The other challenge is that BERT WordPiece
tokenizer splits tokens into subwords and it is challeng-
ing to get the corresponding labels for those subwords.

Our approach to addressing the above challenges is
described in this section.

B. Data Annotation

One of the most common tagging methods in NER
tasks is BIO tagging, which is short for (Beginning
Inside Other). Generally, entities are categorized into the
”Person”, ”Organization”, ”Location” (for instance, B-
Per, B-Loc, B-Org), etc. Since there is no tagged log
dataset, so in our project, we are using custom tags such
as ”Time”, ”User”, ”Component”, ”PID”, ”Level”,
”Content”. Here ”Content” is the log message which is
necessary for log analysis. An example of custom tags
for NER in the log entry is shown below:

Fig. 2: Custom tags for NER in the log entry

Drain is an online, heuristic-based, and open-source
log parsing method, and it is also based on regular
expressions [20]. Drain applies a fixed-depth tree struc-
ture to represent log messages and extracts common
templates effectively [7]. We choose Drain because of
its accuracy, efficiency, and robustness (Figure 3).

Fig. 3: Accuracy statistics of Log Parsers (from [7])

Tagtog is a collaborative text annotation platform
to find, create, and maintain NLP datasets efficiently
[21]. Tagtog also provides automatic text annotation
using pre-selections, dictionaries, and machine learning
models. Tagtog allows us to define our custom tags for
entity extraction. When the dataset size and number of
unique entities are large, using online annotation tools
such as Tagtog is labor-intensive and time-consuming.



C. BERT for Named Entity Recognition Task

BERT (Bidirectional Encoder Representations from
Transformers) is a Transformer-based machine learning
technique for NLP pre-training developed by Google.
BERT is designed to pre-train deep bidirectional repre-
sentations from the unlabeled text by jointly conditioning
the left and right context in all layers [22]. It scores
new state-of-the-art results on eleven natural language
processing tasks when it is introduced. The BERT frame-
work has two stages: pre-training and fine-tuning. During
pre-training, the model is trained on unlabeled data
over special pre-training tasks such as Masked Language
Modeling (MLM) [23], and Next Sentence Prediction
(NSP) [24], [25]. Then the BERT model is initialized
with the pre-trained parameters, and all parameters are
fine-tuned using tagged data from the downstream tasks.
In our case, this task is the NER task.

In this work, we use the bert-base-uncased model
that is pre-trained on the lower-cased English text using
a MLM objective. BERT base model has 12-encoder
layers (Transformer blocks [26]), 768-hidden units, 12-
attention-heads, 110M parameters.

Table I shows the BERT fine-tuning hyperparameters
used in this paper.

Hyperparameter Value
batch size 8

epochs 2
learning rate 3e-5

weight decay rate 0.01, 0.0
optimizer AdamW

TABLE I: Hyperparameters for BERT fine-tuning

D. ELK Stack

Logstash pipeline is created to transform the data
and send it to Elasticsearch. Kibana is used to build a
dashboard and explore the datasets. Visualizations on
the Kibana dashboard help to get information about
the most common events, servers, hostnames, and
IP addresses. We are planning to create a real-time
streaming dashboard using Kibana for log analysis.

IV. EXPERIMENTAL SETUP

We are working on Mac and Linux Operating Systems
log files obtained from the Loghub repository, which is
freely accessible for research. MacOS log file contains
102,786 log lines for a week from 1st July 09:00:55 to
8th July 08:52:05, while Linux OS (Operating System)
log file contains 25,567 entities from 9th June 06:06:20
to 28th Feb to 04:48:54 (Table II).

Mac Linux
The number of log lines 102786 25567

Size of the log file 16 MB 2.24 MB

TABLE II: The Size of Datasets

As we mentioned before, there is no tagged log
dataset on the internet to train our model, and manually
tagging logs is time-consuming and labor-intense.
Therefore, we used Drain online log parsing tool to
parse and get a structured dataset in CSV format and
then use column names as the labels. The Drain requires
a log file format to parse it based on that format. MacOS
log file follows-up the following form:

< Month >< Date >< Time >< User >< Component >
[< PID >] (< Address >): < Content >

Figure 4 shows MacOS log lines before and after
applying the Drain log parsing tool. Then we add a
“raw” named column, which consists of unstructured
raw log lines to use parsed entities as the labels. In
the pre-processing step, some columns like “Line ID”
is dropped, time entries (month, date, and time) are
merged, log entries such as timestamp, user, component,
address, and content (log message) are extracted from
Drain are defined as the labels, while a raw attribute is
defined as the log.

The sample of the log:
Jul 1 09:00:55 calvisitor-10-105-160-95

kernel[0]: AppleThunderboltGenericHAL::earlyWake

-complete - took 0 milliseconds

The corresponding tags for the above log:

[’Timestamp’, ’Timestamp’, ’Timestamp’, ’User’,

’other’, ’Content’, ’Content’, ’Content’,

’Content’, ’Content’, ’Content’, ’Content’,

’Content’, ’Content’]

Before the fine-tuning, we need to prepare the dataset
for PyTorch and the BERT. The log lines are tokenized
with a bert-base-uncased pre-trained tokenizer. BERT
tokenizer splits rare word, words with prefix and suffix
into the several pieces, and sign them with the “##”
symbol. However, we want to get exact labels for the log
lines, and we define the function that repeats the actual
label of the number of sub-words, instead of tagging
sub-words with “other” or “X”.

After that, string tags are encoded, and the attention
mask is used to ignore the paddings. Dataset is split into



(a) Before the log parsing

(b) After the log parsing

Fig. 4: MacOS log file before and after the parsing

training and validation sets, where encoded labels are
inputs, and 10% of the dataset is used for validation.

BertForTokenClassification class and AdamW opti-
mizer is used to set up the BERT model for the fine-
tuning (Table I).

The next step is fitting the model for NER. The paper
[22] suggests using 2-4 epochs to reduce the learning rate
linearly, and we use two epochs in the neural networks.
We evaluate and plot the performance on the validation
set.

Finally, we apply the model to extract the named
entities from the new raw log lines.

We do the same procedures for the Linux OS log file
to implement BERT for NER. Preprocessing is different
as we are using the Tagtog annotation tool to tag the log
file (Figure 5).

Fig. 5: An example of log labeling with Tagtog

After some preprocessing steps, we get the dataset
with the columns of ”line Id”, ”log”, and ”tag”. The
class is created to get the log lines based on line id; and
take log entities and their corresponding labels from
these loglines.

V. RESULTS AND DISCUSSION

In this section, we discuss the results of the experi-
mental setup.

A. Evaluation Metrics

The standard metrics such as Precision, Recall, F1-
Score, and Accuracy Score are used. Precision shows
the percentage of true labels among all the classifications
into that class; Recall measures the percentage of true
labels in the dataset that actually belongs to that label;

F1-Score is the harmonic mean of the precision and
recall.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

F1 =
2 ∗ precision ∗ recall
precision+ recall

B. Experimental Results

The datasets are split into the train and validation
sets, and 90% of them are used for training, while the
remaining 10% are used for the validation. BERT model
achieves a 99% accuracy score and 98% F1-score on
the MacOS log file. The validation accuracy is 99%,
validation loss is 1%, and the accuracy score is 98%
for the BERT model on the Linux OS dataset. The
classification report is described in Figure 6, and the
learning curves are shown in Figure 7.

Then we randomly pick the logline from the Linux OS
dataset and want our model to identify named entities
(Table III):

Jun 11 04:03:19 combo su(pam_unix)[4718]:

session closed for user cyrus

Then the result of each log entry is formatted as
follows (Figure 8).

Generally, the BERT model achieves good results
even with small datasets. Log files are records of a
particular system or application. Therefore, they follow



Fig. 6: Classification report of BERT on MacOS log file

(a) The Learning Curve of BERT model on MacOS log file

(b) The Learning Curve of BERT model on Linux OS log file

Fig. 7: Learning curves

a specific log format, and often entities such as the same
component, hostname, timestamp fields are repeated in
a log file. It is clear from Table III that we successfully
extract named entities with the BERT model.

VI. CONCLUSION

Log files are valuable sources for real-time analy-
sis and security thread detection. However, as a semi-
structured data source, it first needs to be converted
into a structured format. Although this can be done
using regex expressions, they are highly domain specific
and not easy to adapt other systems. We approach this
problem by employing deep learning models for Named
Entity Recognition (NER). Our results show that we can

Label Token
TIM [CLS]
TIM Jun
TIM 11
TIM 04
TIM :
TIM 03
TIM :
TIM 19

LEVEL combo
SER su
SER (
SER pam
SER
SER unix
SER )
PID [
PID 4718
PID ]
PID :
O session
O closed
O for
O user
O cyrus

SER [SEP]

TABLE III: The named entities of the log line

Fig. 8: The result of the BERT model

successfully extract entities from macOS, and Linux OS
log files using the BERT model with 99% accuracy.
Furthermore, using machine learning algorithms allow us
to adapt our solution to different systems by transferring
or re-training the models.

Future work includes training BERT model on more
datasets and building an annotation tool for real-time
streaming log entries.
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