
Random Questions and Answers

Please send mistakes and comments to taylan.sengul@marmara.edu.tr

2019-08-21

1. Compare Eulerian Jacobian equation

D

Dt
j(x, t) = j(x, t) div u(x, t)

with continuity equation

D

Dt
ρ(x, t) = −ρ(x, t) div u(x, t)

Why are they so similar?

answer. ?

2. Newton’s Second Law with Einstein’s correction?

answer.
F = d(mv)/dt

with
m =

m0√
1− v2/c2

where m0 is the “rest mass”.

2019-08-18

3. If CR equations are satisfied at a point, is it true that the function is
complex differentiable at that point?

answer. No! See my complex analysis notes.

4. What additional conditions to put so that CR equations imply the complex
differentiability?

answer. If in addition, the real and imaginary parts are real differentiable.
See my complex analysis notes.

5. How to recall Cauchy-Riemann equations?

answer. The Jacobian matrix is

∂(u, v)

∂(x, y)
=

[
ux uy
vx vy

]
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Let
J = uxvy − uyvx

If CR equations
vy = ux, vx = −uy

are satisfied then the Jacobian determinant

J = u2
x + u2

y

is always non-zero if f ′(z) = 0.

6. Prove that L’hopital’s rule carries to the complex functions. That is if f
and g are two complex-valued functions differentiable at z = a such that
f(a) = g(a) = 0 and g′(a) 6= 0 then

lim
z→a

f(z)

g(z)
=
f ′(a)

g′(a)
.

answer.

lim
z→a

f(z)− f(a)

z − a
z − a

g(z)− g(a)

7. Which of the following are complex differentiable? z, Re(z), Im(z)

answer. None.

8. What are the differences/similarities between a tornado and a hurricane?

answer. - Both have cyclonic rotation (although on some rare occasions
anti-cyclonic tornadoes may occur)

- Most obvious difference is they have drastically different length scales.

9. What is the typical scales for tornadoes?

answer. Most tornadoes have wind speeds less than 180 km/h, are about
80 m across, and travel a few miles (several kilometers) before dissipating.
Typical life time is in minutes.

10. What is the time derivative of the deformation gradient? Prove it.

answer. dF(a,t)
dt = L(ϕ(a, t), t)F(a, t).

Proof.

dF

dt
=
∂F

∂t
(a, t) = ∇a

∂ϕ(a, t)

∂t
= ∇aU(a, t) = ∇au(ϕ(a, t), t)

=

(
∂ui
∂xk

∂ϕk
∂aj

)
= LF
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Easier Notation.

Ḟ =
d

dt

∂x

∂X
=

∂

∂X

dx

dt
=
∂v

∂X
=
∂v

∂x

∂x

∂X
= LF

11. Make sense of
Jf−1 ◦ f = J−1

f

answer. According to the inverse function theorem, the matrix inverse of
the Jacobian matrix of an invertible function is the Jacobian matrix of the
inverse function. That is, if the Jacobian of the function f : Rn → Rn is
continuous and nonsingular at the point p in Rn, then f is invertible when
restricted to some neighborhood of p.

Conversely, if the Jacobian determinant is not zero at a point, then the
function is locally invertible near this point, that is, there is a neighborhood
of this point in which the function is invertible.

2019-08-17

12. A nondegenerate singular point of a smooth vector field is isolated. Why?

answer. By inverse function theorem, locally u(p) = 0 is the unique solu-
tion since detDu(p) 6= 0.

13. To define the index of a singular point of a smooth vector field, what is
the requirement?

answer. The singular point must be isolated. Then any sufficiently small
curve around that singular point contains only that isolated point.

14. What is the homotopy invariance property of topological degree?

answer. Let t 7→ ft, t ∈ [0, 1] be a continuous path in C1(Ω), with p /∈
ft(∂Ω) for all t ∈ [0, 1]. Suppose p is a regular value for both f0 and f1,
then deg (f0,Ω, p) = deg (f1,Ω, p).

2019-08-14

15. Define sectorial operator.

answer. We call a linear operator A in a Banach space X a sectorial
operator if

• it is closed and densely defined,

• Location of resolvent: for some φ ∈ (0, π/2) and real a, the sector

Sa,φ = {λ | φ ≤ |λ− a| ≤ π, λ 6= a}

is in the resolvent set of A
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• Bound on the norm of the resolvent: For some M ≥ 1∥∥(λ−A)−1
∥∥ ≤ M

|λ− a|
∀λ ∈ Sa,φ

16. Are linear bounded operators on Banach spaces sectorial?

answer. Yes.

17. If A is densely defined operator in a Hilbert space what is a condition on
A so that it is sectorial?

answer. Bounded from below.

18. Define analytic semigroup on a Banach space.

answer. It is a semigroup of bounded linear operators on X such that
t→ T (t)x is real analytic on 0 < t <∞ for each x ∈ X.

19. Define the infinitesimal generator of a semigroup {T (t)}t≥0. answer. Ax =

limt→0+
T (t)x−x

t with domain D(A) consisting of all x ∈ X for which this
limit exists. We usually write T (t) = eAt.

It is the right derivative of the semigroup at the identity.

20. In a sentence, what is the relation between sectorial operators and analytic
semigroups?

answer. If A is a sectorial operator then −A is the infinitesimal generator
of an analytic semigroup {e−tA}t≥0.

21. Formal definition of a power of a sectorial operator?

answer. If A is sectorial and Reσ(A) > 0 then for any α > 0

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−Atdt

22. How to define fractional powers of a Banach space which is the domain of
a sectorial operator?

answer. Xα = D(Aα1 ) with the graph norm ‖x‖α = ‖Aα1x‖ where A1 =
A + aI with a chosen so that Reσ(A1) > 0. Different choices of a give
equivalent norms.

23. Extend the operator

Aφ(x) = −Kd2φ

dx2
(x), 0 < x < `

whenever φ is a smooth function on [0, `] with φ(0) = 0, φ(`) = 0 to a
linear operator on L2(0, `).
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answer. Since A is positive definite

(Aφ, φ) = −K
∫ `

0

φ′′(x)φ(x)dx = K

∫ `

0

(φ′(x))
2
dx ≥ 0

and symmetric

(Aφ, ψ) = −K

∫ `

0

φ′′(x)ψ(x)dx = (φ,Aψ)

for smooth functions, using Friedrichs theorem, it extends to a self-adjoint,
densely defined operator on L2(0, `) with domain

D(A) =
{
φ ∈ L2(0, `)|Aφ ∈ L2(0, `)

}
= H1

0 (0, `) ∩H2(0, `)

2019-08-12

24. Chafee and Infante equation? Well-posedness of the IVP? Long time be-
havior? How many equilibria? Stability of equilibria?

answer.
∂u

∂t
=
∂2u

∂x2
+ au− bu3, (0 < x < π, t > 0)

u(0, t) = 0, u(π, t) = 0

where a, b are positive constants.

IVP is well-posed in H1
0 (0, π) and a global solution exists.

Further, as t → +∞, u(·, t) converges in H1
0 (0, π) to some equillibrium

φ
d2φ
dx2 (x) + aφ(x)− bφ3(x) = 0, 0 < x < π

φ(0) = 0, φ(π) = 0

Chafee and Infante prove there are only a finite number of such equilibria -
precisely 2n+1 if n2 < a ≤ (n+1)2 for some integer n ≥ 0. If 0 < a ≤ 1,
the zero solution is thus globally asymptotically stable. If a > 1, the zero
solution is unstable, as are all other equilibrium points except for two,
denoted φ+

1 , φ
−
1 , which both have a dense basin of attraction.

There is a global attractor which is n dimensional if n2 < a ≤ (n + 1)2.
See pg.5 in Henry.

2019-08-08

25. Define the material derivative of f(x, t) in terms of the motion.

answer. D
Dtf(x, t) = ∂

∂tf(φ(a, t), t)
∣∣
φ(a,t)=x

.
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2019-08-06

26. What is f plane approximation?

answer. The variation of the Coriolis parameter f w.r.t. the latitude is
ignored, a value of f appropriate for a particular latitude is used throughout
the domain.

27. Derive the beta plane approximation.

answer. Taylor approximation of the Coriolis parameter f at a given
latitude φ0 is

f = 2Ω sinφ ≈ f0 + βy

where y is the meridional distance, Ω is the angular rotation rate of the
Earth

f0 = 2Ω sinφ0

and
β = (df/dy)|φ0

= 2Ω cos (φ0) /a

a is the Earth’s radius and β is called the Rossby parameter.

Here we use the fact that θ = y
a since angle is the arc length over radius.

28. Define convective instability in words.

answer. Instability arising from cold/dense fluid over warm/light fluid.

29. Define the origin of the word baroclinic.

answer. baro (pressure) + cline (slope):

baroclinic instability = instability arising from sloped pressure contours

30. Why is baroclinic instability the most important hydrodynamic instability?

answer. It is the instability that gives rise to the large-scale and mesoscale
motion in the atmosphere and ocean - it produces atmospheric weather
systems, for example - and so is, perhaps, the form of hydrodynamic in-
stability that most affects the human condition” G.K. Vallis

2019-08-05

31. What is the vortex stretching term?

answer. (~ω · ~∇)~v

32. For
D~ω

Dt
= (~ω · ~∇)~v

how does the vortex stretching term effect the dynamics?

answer. It amplifies the vorticity ~ω when the velocity is diverging in the
direction of ~ω.
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33. What is the importance of vortex stretching?

answer. Vortex stretching is at the core of the description of the turbulence
energy cascade from the large scales to the small scales in turbulence.

2019-08-04

34. Is it possible for a non-holomorphic function to have a primitive?

answer. No because the primitive is always holomorphic and the derivative
of a holomorphic function is always holomorphic.

35. Is it possible that a holomorphic function does not have a primitive?

answer. If the domain is simply-connected it is not possible since a prim-
itive can be constructed by Green’s Theorem.

Otherwise it is possible. For example the function 1/z has no primitive on
the punctured complex plane as its path integral around the origin on any
closed curve is non-zero.

36. Can a discontinuous real valued function have a primitive? Prove or give
a counterexample.

answer. Yes there are everywhere differentiable functions with discontin-
uous derivatives at a point such as

f(x) =

{
x2 sin(1/x) if x 6= 0
0 if x = 0

with derivative

f ′(x) =

{
2x sin

(
1
x

)
− cos

(
1
x

)
if x 6= 0

0 if x = 0

which is discontinuous at x = 0. The derivative may behave much worse,
see (HDCADB).

37. (HDCADB) How discontinuous can the derivative of f : R→ R be?

answer. There is a well-known result in elementary analysis due to Dar-
boux which says if the derivative of a function satisfies the intermediate
value property.

The continuity set is dense and has cardinality c. On the other the disconti-
nuity set can also be dense, have cardinality c and have positive (even full)
measure (hence the function can fail to have Riemann integral). https://
math.stackexchange.com/questions/112067/how-discontinuous-can-a-derivative-be

38. Why is dθ not exact on the punctured plane?

answer. Because θ is not continuous there.
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2019-08-03

39. If Coriolis force pushes the trajectories to right then why cyclones spin
counter clockwise in the northern hemisphere?

answer. Wind is trying to get into the low pressure center from all direc-
tions.

40. Find a basis for H1
dR(R2 \ {0}).

answer. v = (−y/r2, x/r2).

41. Write dimension d of H2
dR(X), X ⊂ R3 in terms of vector calculus?

answer.
V = {F : X → R3 : ∇× F = 0}

W = {F : X → R3 : F = ∇g}

d = dim(V/W )

42. Geometrically the structure of gradient fields vs that of irrotational fields
is related to *

answer. the number of ”holes” in the space.

43. What is the aspect ratio (height/length), for surface waves in deep water
or convection cells?

answer. O(1).

44. What is data assimilation?

answer. Combined observational/numerical modeling simulations

45. At which latitudes there is only water?

answer. Between 85-90 degrees N and between 55-60 degrees S.

46. At which latitudes there is only land?

answer. At latitudes 70-90S (Antarctica).

47. What is ocean/earth ratio?

answer. 0.71

48. What are the x=east, y=north, z=vertical components of the rotation
vector in terms of latitude?

answer.

Ω = Ω

 0
cosϕ
sinϕ
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49. Which non-zero components (east-west, north-south, up-down) does the
Coriolis force have?

answer. All when the velocity field has all non-zero components.

See https://en.wikipedia.org/wiki/File:Earth_coordinates.svg

Ω = Ω

 0
cosϕ
sinϕ

 , v =

 ve
vn
vu


aC = −2Ω× v = 2Ω

 vn sinϕ− vu cosϕ
−ve sinϕ
ve cosϕ


At the equator, sinϕ = 0 and aC = 0 if ve = vu = 0. At the poles, aC = 0
if ve = vn = 0.

50. Given

Ω = Ω

 0
cosϕ
sinϕ

 , v =

 ve
vn
vu


aC = −2Ω× v = 2Ω

 vn sinϕ− vu cosϕ
−ve sinϕ
ve cosϕ


Approximate the Coriolis force in the GFD case.

answer. In the GFD setting, (1) the vertical velocity vu is small, and
(2) the vertical component ve cosϕ of the Coriolis acceleration is small
compared to gravity.

For such cases, only the horizontal (east and north) components matter.
The restriction of the above to the horizontal plane is (setting vu = 0

v =

(
ve
vn

)
, ac =

(
vn
−ve

)
f

where f = 2Ω sinϕ is called the Coriolis parameter.

51. In the GFD setting, the Coriolis acceleration in the horizontal directions
is

v =

(
ve
vn

)
, ac =

(
vn
−ve

)
f

where f = 2Ω sinϕ is called the Coriolis parameter. Discuss the case of
eastward motion and northward motion in the north hemisphere.

answer. ve = 1 and vn = 0 implies ae = 0 and an = −1, that is the
Coriolis acceleration is due south.
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ve = 0 and vn = 1 implies ae = 1 and an = 0, that is the Coriolis
acceleration is due east.

The Coriolis acceleration always points 90◦ to the right of the velocity and
is of the same size as the velocity.

52. What is the equatorial speed of earth’s rotation?

answer. 1670 km/hr.

53. Are there currents or winds with comparable speeds to earth’s rotation?

answer. Earth rotates at 1675 km/h. There is no current or wind system
on the Earth that approaches speeds of that magnitude. Typical wind
speeds in the US are 10-20 km/h. Max wind speed ever measured is 400
km/h.

For this reason, we describe the winds and currents that we see from within
a coordinate frame that removes the basic rotation and shares with us the
observational platform of the rotating Earth.

2019-08-01

54. Why is the integral of an arbitrary function of vorticity is conserved for
the incompressible barotropic 2D Euler equations?

answer.

d

dt

∫
Ω

f(ω)dV =

∫
Ω

∂

∂t
(f(ω)) +∇ · (uf(ω)) dV =

∫
Ω

f ′(ω)
Dω

Dt
dV = 0

since Dω
Dt = 0.

For example,
d

dt

∫
Ω

|ω|p dV = 0

55. List 3 (4) conserved quantity of 3D (2D) Euler’s equations.

56. Kinetic energy
∫
R3 |u(x, t)|2dx =

∫
|u0(x)|2 dx.

Helicity.
∫
R3 u(x, t) · ω(x, t)dx =

∫
R3 u0(x) · ω0(x)dx

Circulation.
∮
X(γ,t)

u(x, t) · dx =
∮
γ
u0(a) · da

In 2D, in addition, integrals of arbitrary functions of the vorticity are
conserved. In particular the enstrophy

∫
R2 |ω(x, t)|2dx is conserved.

57. What is Beale-Kato-Majda criterion?

answer. For the Euler Equations∫ T

0

‖ω(t)‖L∞(dx)dt
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controls blow up or its absence. If the integral is finite and if the initial
velocity is in a Sobolev space Hs with large enough exponent (s > 5/2) or
in a Cs space with s > 1 (and some decay in physical space, for instance
ω0 ∈ Lp with p > 1) then the solution remains smooth on the time interval
[0, T ]. Of course, if the integral is infinite, then there is finite time blowup.

58. What is the solution to incompressible Euler’s equation in 3D?

answer. ω(x, t) = (∇aφ) (φ−1(x, t), t)ω0(φ−1(x, t)).

This means that the integral curves of the vorticity, the vortex lines, are
carried by the flow.

59. Show that Lp norm of vorticity is controlled for barotropic incompressible
2D Euler equations?

answer. Since ω(x, t) = ω0(φ−1(x, t)) and the “back to labels” map φ−1

preserves volume it follows that ‖ω(x, t)‖Lp(dx) = ‖ω0‖Lp(dx) for any 1 ≤
p ≤ ∞

60. In 2D, what is the relation between ω, ∇⊥, u?

answer. ω = ∇⊥ · u.

61. Diffusion term in NSE correspond to *

answer. internal processes that lead to energy dissipation.

62. What are nonlocal PDEs?

answer. To check a LOCAL PDE at a particular point, only the values of
the function in an arbitrarily small neighborhood are needed, so that all
derivatives can be computed. To check a NONLOCAL PDE at a point,
information about the values of the function far from that point is needed.
Most of the times, this is because the equation involves integral operators.

2019-07-27

63. The relation between Helmholtz-Hodge and Biot-Savart. ToDo.

2019-07-26

64. Show that for barotropic flows, isobaric (constant pressure) surfaces coin-
cide with constant-density surfaces.

answer. Since density is a function of pressure only, ρ = ρ(p). If p is
constant on a surface S so is ρ. If ρ is constant on S and p is not constant
on S then ρ′(p) = 0 for p values on S. That means ρ is constant for p
values on S, a contradiction.
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65. Stress tensor for Newtonian fluids?

answer.

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

(
∂ul
∂xl

)
δij

Explanation. The stress tensor in general

σij = −pδij + τij

For Newtonian fluids, the deviatoric part is a linear function of velocity
gradient (rate of strain), that is

τij = αijkm
∂uk
∂xm

, i, j, k,m = 1, 2, 3

There are a total of 34 = 81 coefficients.

In the isotropic (no preferred directions in the fluid, so the fluid properties
are point properties) case and the assumption that no shear stress may act
during solid body rotation, this reduces to

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

(
∂ul
∂xl

)
︸ ︷︷ ︸
∇·~v

66. For a Newtonian fluid, the stress tensor is

σ = −pI + 2µE + λ(∇ · u)I

where E = 1
2

(
∇u +∇uT

)
.

Obtain the momentum equation for an incompressible Newtonian fluid.

answer.

ρ
Du

Dt
= ∇ · σ = −∇p+ µ∆u

Note that for an incompressible fluid

∇ · (∇u)T = ∂i(∂jui) = ∂j∂iui = 0

67. If a vector field with no singular points exist on a manifold, what can be
said about the manifold itself?

answer. The Euler-Poincare characteristic of that manifold is zero.

68. What does a vector field tell about the underlying manifold?

answer. The sum of all the indices of a chosen vector field on a compact
differentiable manifold M equals the Euler–Poincare characteristic of M.
This sum is ultimately independent of the field which has been chosen —
it depends only on the underlying topology of the manifold.
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69. Do still objects have vorticity on earth?

answer. Yes they have due to planetary rotation. It is maximum on poles
and zero at the equator.

2019-07-25

70. What length scales do turbulence operate?

answer. Turbulence operates on all scales down to millimeters.

71. Why on smaller scales, GFD turns into classical fluid dynamics?

answer. Because effects of planetary rotation and vertical stratification
weaken.

72. What are the characteristics of tropical cyclones?

answer. Tropical cyclones (hurricanes and typhoons) are a coupled ocean-
atmosphere phenomenon. These are powerful storm systems characterized
by low-pressure center, strong winds, heavy rain, and numerous thunder-
storms.

73. What do ocean and atmosphere exchange?

answer. Momentum, heat, water, radiation, aerosols, and greenhouse
gases.

74. Derive the time derivative of the Jacobian in Eulerian coordinates using
the formula for Lagrangian coordinates.

answer.
Dj(x, t)

Dt
= j(x, t) (∇x · u(x, t))

where j(φ(a, t), t) = J(a, t) and u(φ(a, t), t) = U(a, t).

proof. Combining
∂J(a, t)

∂t
=

D

Dt
j(φ(a, t), t)

.
∇a · U(a, t) = ∇x · u(φ(a, t), t)

∂J(a, t)

∂t
= J(a, t)∇a · U(a, t)

gives
D

Dt
j(φ(a, t), t) = j(φ(a, t), t) (∇x · u(φ(a, t), t))

13



75. Derive the time derivative of the Jacobian in Lagrangian coordinates.

answer.
∂J(a, t)

∂t
= J(a, t)∇a · U(a, t)

proof. Define the velocity gradient L(x, t) = ∇xu(x, t) (an Eulerian quan-
tity).

∂F (a, t)

∂t
=

∂

∂t
∇aφ(a, t) = ∇aU(a, t) = ∇au(φ(a, t), t)

= L(φ(a, t), t)F (a, t)

∂J(a, t)

∂t
= J(a, t) tr

(
∂F (a, t)

∂t
F−1(a, t)

)
= J(a, t) tr (L(x, t))

= J(a, t)∇x · u(x, t)

2019-07-24

76. Shallow water approximation.

answer. ToDO.

∂u

∂x︸︷︷︸
U
L

+
∂v

∂y︸︷︷︸
U
L

+
∂w

∂z︸︷︷︸
W
D

= 0

Assume
D

L
� 1

We have

W =
DU

L
� U

Horizontal momentum conservation reads

∂u

∂t︸︷︷︸
U
T

+

(
u
∂u

∂x︸ ︷︷ ︸
U2

L

+ v
∂u

∂y︸︷︷︸
U2

L

+w
∂u

∂z︸ ︷︷ ︸
U2

L

)− fv︸︷︷︸
fU

=
1

ρ

∂pd
∂x︸ ︷︷ ︸
P
ρL

where pd stands for the dynamic pressure

p = −ρgz + pd

The scale of pressure is

P =
ρUL

T
, or ρUfL
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Vertical momentum balance is

∂w

∂t︸︷︷︸
W
T

+

(
u
∂w

∂x︸ ︷︷ ︸
UW
L

+ v
∂w

∂y︸ ︷︷ ︸
UW
L

+w
∂w

∂z︸ ︷︷ ︸
L

) =
1

ρ

∂pd
∂z︸ ︷︷ ︸
P
ρD

Then either
∂w
∂t

1
ρ
∂pd
∂z

∼
DU
LT

ρUL/T
ρD

∼ D2

L2

or
∂w
∂t

1
ρ
∂pd
∂z

∼
DU
LT
UfL
ρD

∼ D2

L2

1

Tf

since the time scale of interest is of a day or so, fT = O(1). We conclude
that the vertical pressure gradient is practically zero with error of order
D2/L2 � 1, implying that

pd ' ρgη

or the total pressure is hydrostatic

p total ' ρg(η − z)

Thus
∂pd
∂x

= ρg
∂η

∂x

∂pd
∂y

= ρg
∂η

∂y

We now show by a formal perturbation scheme for horizontal bottom, that
u, v are independent of z to the leading order or approximation

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

77. Compare the trajectories, fixed points and the type of fixed points for

ẋ = P (x, y)

ẏ = Q(x, y)

and
ẋ = Q(x, y)
ẏ = −P (x, y)

answer. The trajectories are orthogonal since the vector fields are orthogo-
nal since (P,Q) · (Q,−P ) = 0. The critical points are the same. Centers of
one correspond to nodes for the other, saddles of one correspond to saddles
of the other, and foci correspond to foci.
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78. (1)
ẋ = P (x, y)

ẏ = Q(x, y)

(2)
ẋ = Q(x, y)
ẏ = −P (x, y)

Show that if one of them is a Hamiltonian system, then the other is a
gradient system and vice versa.

answer. For instance, suppose (1) is Hamiltonian, then there exists H(x, y)
such that Hy = P and Hx = −Q. Then (2) is a gradient system with
V (x, y) = H(x, y)

79. If the first de Rham cohomology vanishes, is the space simply connected?

answer. Yes if Ω ⊂ Rn with n = 2. In general no. See https://www.

csun.edu/~vcmth02i/Forms.pdf.

80. If h : X → Y with h(x0) = y0 is a homeomorphism then prove that
π1(X,x0) ∼= π1(Y, y0).

answer. A continuous map h : X → Y with h(x0) = y0 defines an induced
map h∗ : π1(X,x0) → π1(Y, y0) by h∗([c]) = [h ◦ c] for any loop c in X
centered at x0.

• The map is well defined. If c and c′ are homotopic paths, i.e. H(t, 0) =
c(t) and H(t, 1) = c′(t) then h ◦H(t, 0) = h ◦ c(t) and h ◦H(t, 1) =
h ◦ c′(t), i.e. h∗[c] = h∗[c

′].

• This induced map is a homomorphism since h∗[c]
−1 = (h∗[c])

−1

where c−1 is the loop at x0 traversing inversely and h∗ ([c1][c2]) =
h∗[c1]h∗[c2].

• h∗ is injective since h∗[c1] = h∗[c2] implies (h−1)∗h∗[c1] = (h−1)∗h∗[c2]
which implies [c1] = [c2].

• h∗ is surjective since [d] = h∗
(
(h−1)∗[d]

)
.

81. Show that torus is not homeomorphic to R2.

answer. One is simply connected and the other is not.

82. If two spaces are homeomorphic then they have isomorphic fundamental
groups. Is the converse true?

answer. No. Take R2 and R3 for example.

83. At a critical rotation period Tc, centrifugal force and gravitational force
cancels each other at the equator. What does Tc depend on?

answer. It depends on the density as 1√
ρ of the object.
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GM
R2 = Ω2R. Letting T = 2π

Ω gives Tc = 2π
(
R3

GM

)1/2

=
(

3π
Gρ

)1/2

. If

T < Tc then the object will be torn apart.

84. What is the critical rotation period for Earth, Jupiter and sun where cen-
trifugal and gravitational force cancels each other?

answer. For Earth, Tc is 1.4 hours, for Jupiter it is 2.8 hours (actual
period is 10 hours), for sun it is also 2.8 hours (sun and Jupiter have
approximately equal densities).

Since earth has almost 4 times the density of sun (or Jupiter) Teρ
1/2
e =

Tjρ
1/2
j so that 2Te = Tj .

85. Densities of solar system bodies?

answer. Earth is densest planet in the solar system. In kg/m3 densities are
Sun 1.4, Mercury 5.4, Venus 5.2, Earth 5.5, Mars 3.9, Jupiter 1.3, Saturn
0.7, Uranus 1.3, Neptune 1.6

86. Write u in terms of motion φ? Is u(x, t) = ∂φ−1(x,t)
∂t ?

answer. No! u(x, t) = U(φ−1(x, t), t) = ∂φ(a,t)
∂t

∣∣∣
a=φ−1(x,t)

.

87. What is the material derivative in Lagrangian coordinates?

answer. Let f(φ(a, t), t) = F (a, t). Then

∂F (a, t)

∂t
=
Df(x, t)

Dt

∣∣∣∣
x=φ(a,t)

.

Thus if a property does not change in time following the fluid parcel (such
as density), i.e. F (a, t) = F (a) then Df/Dt = 0.

2019-07-23

88. When is 3D baroclinic instability discovered and by who?

answer. Jule G. Charney (1947) and, independently, by Eric T. Eady
(1949).

89. What is the reason for parallel cloud streaks in the sky?

answer. Either Rayleigh-Bénard or Kelvin-Helmholtz instability.

90. In which latitudes is the planetary rotation more important?

answer. In higher latitudes.
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91. What is the derivative of a map between two manifolds, f : M → N at a
point M? Use derivation definition.

answer. Let X be a vector field on M and g : N → R. Then define

df(X)(g) = X(f∗g) = X(g ◦ f)

92. What is the derivative of a map between two manifolds, f : M → N at a
point M? Use curve definition of tangent vector.

answer. It is the linear map df : TM → TN constructed such that
df(dγdt (0)) = d

dt (f ◦ γ)(0) where γ is a curve γ(0) = m and dγ
dt (0) is its

tangent vector at m.

2019-07-22

93. How can Morse Lemma be used to analyze the stability of non-degenerate
equilibria of conservative systems?

answer. Dynamics of conservative systems take place on level sets of con-
served quantity H. Local level sets of H can be analyzed by Morse Lemma.
If the quadratic part has full or zero index then level sets are closed and
the equilibrium is a center. Otherwise the equilibrium is a saddle.

94. Taylor Theorem and Morse Lemma?

answer. Near a non-degenerate critical point of a function f : M → R, the
behavior of the function is determined by the quadratic part of the Taylor
expansion.

95. Describe Cauchy’s stress theorem in words.

answer. The state of stress at a point in the body is then defined by all
the stress vectors associated with all planes (infinite in number) that pass
through that point. However, according to Cauchy’s fundamental theo-
rem,[11] also called Cauchy’s stress theorem, merely by knowing the stress
vectors on three mutually perpendicular planes, the stress vector on any
other plane passing through that point can be found through coordinate
transformation equations.

Cauchy’s stress theorem states that there exists a second-order tensor field
σ(x, t), called the Cauchy stress tensor, independent of n, such that T is
a linear function of n:

T(n) = n · σ or T
(n)
j = σijni

96. Show that the stress is linear in the normal. This is called Cauchy stress
principle.

18



answer. Consider a small tetrahedral parcel of fluid with three faces normal
to the coordinate axes and the fourth face with normal n. Across each face,
the fluid outside the tetrahedron exerts a force, or traction, on the fluid
inside; call the forces AxT x, AyT y, AzT z, and An respectively where Ai is
the area of the i th face and T i are the stresses.

ρV
dq

dt
= AxT x +AyT y +AzT z +AnT n

where V is the volume of the tetrahedron. Hence, crudely, the acceleration
must be proportional to (surface area)/(volume) which becomes infinite for
arbitrarily small volumes. Such infinite acceleration cannot be permitted,
and hence there cannot be any net imbalance of the forces on the tetrahe-
dron. Thus

T n = −Ax
An
T x −

Ay
An
T y −

Ay
An
T z

by projection of areas

= (n̂ · i)T x + (n̂ · j)T y + (n̂ · k)T z

From this we see that the stress across a plane with any normal n̂ is linear
in n̂ : for some stress tensor σ

T n = n̂ · σ

Indeed, in a matrix representation T x,T y and T z form the ”rows” of the
stress tensor:

σ =

 σxx σxy σxz
σyx σyy σyz
σzx σzy σzz


where σij is the component of the stress in the j th coordinate direction
upon a plane with normal in the direction of the i th coordinate.

97. Consider a small tetrahedral parcel of fluid with three faces normal to the
coordinate axes and the fourth face with normal n. Let the surface areas
be Ax, Ay, Az and An. What is Ax

An
?

answer. −n̂ · i.

2019-07-21

98. (A) When does f : D ⊂ C → C have a primitive? (B) PROVE it! (C) Is
primitive unique?

answer. (A) If D is simply connected and f is holomorphic on D (both
conditions are necessary, think f(z) = 1/z for simply-connectedness and
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the fact that derivative of a holomorphic function (the primitive) is holo-
morphic). (B) In this case define

F (z) =

∮ z

z0

f(ζ)dζ, z ∈ D

where z0 ∈ D is fixed point and the integral can be taken along any path
in D from z0 to z. By Cauchy’s integral theorem, the integral does not
depend on the curve but only on the endpoints. Hence F is well-defined.

To show that F ′(z) = f(z), let h > 0. Then∣∣∣∣F (z + h)− F (z)

h

∣∣∣∣ ≤ ∫ z+h

z

|f(ζ)| dζ ≤ sup
ζ∈[z,z+h]

|f(ζ)| |h| → 0

as h→ 0 by continuity. Here [z, z+h] is the line segment. Similar argument
holds for h < 0.

(C) The solution is unique up to a constant. (The choice of z0).

99. If f(z) is continuous on a domain D, and if F (z) is a primitive for f(z),∫ B

A

f(z)dz = F (B)− F (A)

where the integral can be taken over any path in D from A to B. Prove
it!

answer. ∫
γ(t)

f(z)dz =

∫ 1

0

f(γ(t))γ′(t)dt =

∫ 1

0

d

dt
F (γ(t))dt

2nd way.

F ′(z) =
∂F

∂x
=

1

i

∂F

∂y

so that

F (B)− F (A) =

∫ B

A

dF =

∫ B

A

∂F

∂x
dx+

∂F

∂y
dy

=

∫ B

A

F ′(z)(dx+ idy) =

∫ B

A

f(z)dz

100. The proof of Green’s theorem is very interesting. See Gamelin pg. 90.
ToDO.

101. Pullback the the line integral
∫
S1 xydy to [0, 2π]

answer.
∫ 2π

0
cos t sin t cos tdt.
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102. Intuitively what can be said about the isolated local minima/maxima of
V for the gradient system ẋ = − gradV (x)?

answer. Isolated local minima are locally asymptotically stable, isolated
local maxima are unstable. The system is pushing toward where V is most
decreasing, seeking the minima and getting away from the maxima of V .

103. Show that the isolated local minima of V for the gradient system ẋ =
− gradV (x) are locally asymptotically stable.

answer. Suppose V (a) is a local isolated minimum. Then L(x) = V (x)−
V (a) is a local strict Lyapunov function.

• d
dt (V (x(t)) = gradV (x)ẋ < 0 (since ẋ 6= 0), for x 6= a (locally)

• L(x) > 0 (locally)

• L(a) = 0

104. Show that the isolated local maxima of V for the gradient system ẋ =
− gradV (x) are unstable using the fact that local isolated minima are
locally asymptotically stable.

answer. Do time reversal s = −t. Then x′ = − gradW (x) where W (x) =
−V (x). If V (a) is a local isolated maxima then W (a) is local isolated
minima.

105. a× (b× c) =?

answer. (a · c)b− (a · b)c

2019-07-20

106. What is the index of a non-degenerate singular point of a vector field?

answer. ±1.

107. Why is the index of a nondegenerate singular point of vector field u ±1?

answer. Let D = det(Du(p)). Since u is nondegenerate at p, D 6= 0. By
inverse function theorem, locally, p is the unique solution to u(x) = 0.
Hence by the topological degree, index of p is sign(D) which is ±1.

2019-07-19

108. What is inertial period? ToDO.

109. What is the range of numerical values of Coriolis parameter?

answer.
1.4× 10−4s−1 ≤ 2Ω sinφ ≤ 0s−1

Here Ω ≈ 7 × 10−5s−1 and φ is the latitude (1 at the poles, 0 at the
equator).
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110. Show that the Euler characteristic of the torus is 0 by the Morse theory.

answer. Take the z-height function on the torus. There are four non-
degenerate critical points, a max with index 2, a min with index 0 and two
saddles with index 1.

χ(N) =

n∑
i=0

(−)knk = (−1)2 + (−1)1 × 2 + (−1)0 = 0

where nk denotes the number of critical points with index k.

111. How does effective gravity work?

answer. The true gravitational acceleration (g* ) pulls an object towards
the center of mass of the earth. However, the centrifugal force pushes all
objects outward from the axis of planetary rotation. The effective gravity
(g) is the vector sum of these two forces. It does not point directly at the
center of earth mass.

112. What is the relative strength of centrifugal force to gravitational force on
earth?

answer. Within the earth’s atmosphere the magnitude of the centrifugal
force is less than 0.03 percent of g.

113. Does Rossby number control whether relative vorticity vs planetary vor-
ticity dominates?

answer. I think this. ToDo

114. For a fast current such as Gulf stream, what is the order of magnitude
comparison of relative vs planetary vorticity?

answer. ζ � f , where ζ is the relative, f is the planetary vorticity. ζ is
usually much smaller than f, and it is greatest at the edge of fast currents
such as the Gulf Stream. To obtain some understanding of the size of ζ,
consider the edge of the Gulf Stream off Cape Hatteras where the velocity
decreases by 1 m/s in 100 km at the boundary. The curl of the current is
approximately (1m/s)/(100 km) = 0.14 cycles/day = 1 cycle/week. Hence
even this large relative vorticity is still almost seven times smaller than f.
A more typical values of relative vorticity, such as the vorticity of eddies,
is a cycle per month.

115. In 2D, classify the linear stability of non-degenerate equilibria of divergence
free (for example Hamiltonian) systems.

answer. Nondegenerate equilibria can only be saddle or center. Degenerate
equilibria is harder to describe.
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Let f : R2 → R2, ẋ = f(x) with ∇ · f(x) = 0. Then

tr(Df(x)) = ∇ · f(x) = 0, d = det(Df(x)) 6= 0

by non-degeneracy. Thus eigenvalues are ±
√
d which correspond to a sad-

dle if d > 0 and a center if d < 0.

2019-07-16

116. Cauchy’s integral formula
∫
C

?f(z)dz = f (z0)

answer.
1

2πi(z − z0)

Here f is complex-differentiable in an open region U ⊂ C which contains
a simple counterclockwise loop C and the region bounded by Cand z0 is
arbitrary in the interior of the region bounded by C.

117. What is the intution behind

1

2πi

∫
C

f(z)

z − z0
dz = f (z0)

answer.∫
C

f(z)

z − z0
dz =

∫
C

1

z − z0
(f(z0) + f ′(z0)(z − z0) + · · · ) = f(z0)

∫
C

1

z − z0

The last integral is 2πi for unit circle. And by homotopy, for any curve
homotopic to unit circle.

118. Define cross product using determinant.

answer. u× v = det

 u1 v1 e1

u2 v2 e2

u3 v3 e3

 =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1


119. Can isolated critical points be degenerate?

answer. Yes. Take f(x, y) = x2 + y4.

120. What are the possibilities of the character of non-degenerate equilibrium
points of a conservative system?

answer. By Morse Theorem, they can be either centers (Morse index full
or zero), or saddles (Morse index between full and zero).

121. Can non-degenerate critical points of a scalar function f : Rn → R be
non-isolated? Why?

answer. No. By Morse Lemma, near a non-degenerate critical point, the
function behaves like a quadratic polynomial whose gradient field is non-
vanishing except at the singular point.
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122. Can non-degenerate singular points f(p) = 0 of a vector field f : Rn → Rn
be non-isolated? Why?

answer. No. By the inverse function theorem, near p, f is locally invertible.

123. Suppose a first integral E of an ODE has an nondegenerate critical point
x0. (1) Show that x0 is an equilibrium point. (2) What can be said about
the character of the fixed point?

answer. (1) Note that solutions of ODE lie on the level sets of E. Since
the singleton {x0} is a level set, it must be an equilibrium point.

(2) x0 is a center of the ODE if it is a strict minimum/maximum of E and
it is a saddle of the ODE if it is a saddle of E.

To see, in a small neighborhood of x0 there is a coordinate transformation
which takes E to a quadratic function. If x0 is an isolated min or max
then level surfaces are spheres. If x0 is an isolated saddle of E then it is a
saddle of the ODE.

What if x0 is a degenerate isolated point? We can not use Morse Lemma.
ToDO.

2019-07-15

124. How to define index of a vector field on a manifold?

answer. ToDO.

125. Compute
∮
γ
zndz where γ is the unit circle.

answer. Put z = eiθ. Then∮
γ

zndz =

∫ 2π

0

einθeiθidθ =

∫ 2π

0

ei(n+1)θdθ =

{
2πi, n = −1

0, n 6= −1

126. State
∮
γ
zndz for a simple closed loop γ around the origin and n ∈ Z.

answer. {
2πi, n = −1

0, n 6= −1

127. Under which conditions
∫
C1
f(z)dz =

∫
C2
f(z)dz?

answer. When Ci are homotopic paths in a region D and f : D → C is
holomorphic.
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128. When Ci are homotopic paths with fixed endpoints in a region D and
f : D → C is holomorphic, PROVE that

∫
C1
f(z)dz =

∫
C2
f(z)dz.

answer. Let H(t, s) be a smooth homotopy between smooth C1 and C2,
fixing the For each s, the function γs(t) describes a closed curve Cs in D.
Let I(s) be given by

I(s) =

∫
Cs

f(z)dz =

∫ 1

0

f(H(t, s))
∂H(t, s)

∂t
dt

Using
∂

∂s

[
f(H(t, s))

∂H(t, s)

∂s

]
=

∂

∂t

[
f(H(t, s))

∂H(t, s)

∂s

]
d

ds
I(s) =

∫ 1

0

∂

∂t

[
f(H(t, s))

∂H(t, s)

∂s

]
dt

= 0

since ∂H(1,s)
∂s = ∂H(0,s)

∂s = 0 because the endpoints of the homotopy are
fixed.

Smoothness assumption can be dropped by approximation.

129. A good mathematics trick.

∂

∂s

(
f(H(t, s))

∂H(t, s)

∂t

)
=

∂

∂t

(
f(H(t, s))

∂H(t, s)

∂s

)
How to generalize and recall this?

answer. F ′ = f exists since f is differentiable (hence continuous). Then
LHS is ∂

∂s
∂
∂tF (H(t, s)) and RHS is ∂

∂t
∂
∂sF (H(t, s)).

130. Which real valued functions have a primitive?

answer. A sufficient but not necessary condition is that continuous func-
tions have primitives.

Discontinuous ones can also have anti derivative. Wikipedia’s page on anti
derivative says there are open problems in this question.

A necessary but not sufficient condition is that the function should have
the intermediate value property.

131. State the Cauchy’s integral theorem.

answer. If f : D → C is holomorphic and the open set D is simply-
connected then ∫

γ

f(z)dz = 0

for any rectifiable (having finite length) closed path in D.
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132. Prove the Cauchy’s integral theorem. If f : D → C is holomorphic and
the open set D is simply-connected then∫

γ

f(z)dz = 0

for any rectifiable (having finite length) closed path in D.

answer.

f(z)dz = (u+ iv)(dx+ idy) = (udx− vdy) + i(vdx+ udy)

Both real forms are closed, thanks to Cauchy-Riemann equations. On
a simply connected domain, closed 1-forms are exact. Hence their line
integrals on closed paths are always zero. The result follows.

133. What is the sign of Green’s function to Laplace operator in R3? Why?

answer. G = − 1

4πr
. Reason: ∇G must have positive outward flux on any

sphere around origin. For G = − 1

4πr
, ∇G points outward as G is radially

increasing from origin.
∫
Br(0)

∇ · ∇GdV =
∫
Sr(0)

∇G · r̂dS > 0.

2019-07-14

134. Define cyclonic rotation.

answer. Counter clockwise in the Northern Hemisphere and clockwise in
the Southern Hemisphere

135. In a Hamiltonian system, what is a necessary requirement on the spectrum
of the linearized operator for the nonlinear stability of equilibrium?

answer. The spectrum must lie entirely on the imaginary axis. Otherwise
since eigenvalues come in pairs ±λ, the equilibrium is always unstable.

136. What are the eigenvalues of an Hamiltonian matrix?

answer. If λ ∈ C is an eigenvalue so are ±λ, ±λ.

Thus eigenvalues occur in the following configurations: (a) imaginary pairs
±iω, ω ∈ R+, (b) real pairs ±σ, σ ∈ R+, (c) complex quadruplets ±a ±
ib, a, b ∈ R+, (d) σ = 0.

Moreover, ±σ, and the complex conjugates ±σ∗ all have the same multi-
plicity and Jordan block structure, while a zero eigenvalue has even mul-
tiplicity.

To see, note that characteristic polynomial of a Hamiltonian matrix is real
and even. Thus if p(λ) = 0 then p(−λ) = 0 and p(λ) = p(λ) = 0.
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137. What is the property of the characteristic polynomial of a Hamiltonian
matrix?

answer. It is an even polynomial, pA(−x) = pA(x).

138. Suppose A is Hamiltonian, i.e. A = JATJ where J2 = −I. Show that its
characteristic polynomial is even.

answer.

pA(x) = det (A− xI) = det
(
JATJ + xJIJ

)
= (det J)

2
det(AT+xI) = pA(−x)

since (det J)
2

= det(−I2n) = 1 and det(AT + xI) = det(AT − (−x)I) =
pAT (−x) = pA(−x).

139. Hamiltonian matrices and Lie algebra/group structure?

answer. Hamiltonian matrices (matrices of the form JS with S symmetric
and J nonsingular skew-symmetric) are closed under addition, scalar prod-
uct and matrix commutator hence form a Lie algebra. The corresponding
Lie group is the symplectic group Sp(2n, F ) of 2n×2n symplectic matrices.

140. What is a Hamiltonian matrix and where does it arise?

answer. A Hamiltonian matrix is a matrix of the form JS where J =[
0 In
−In 0

]
and S is symmetric.

They arise in the linearizations of the Hamiltonian systems. If

ż = JDH

then the linearized system around z = z0 is

ẏ = JD2H(z0)y

141. Find ADf(x) where A : Rn → Rm is constant and linear and f : Rk → Rn.

answer. ADf(x) = DAf(x). To see,

[ADf(x)]ik = aijfj,k = ∂k(aijfj) = [DAf(x)]ik

since (Df)jk = fj,k = ∂kfj .

142. If A : Rn → Rm is linear, what is the size of the matrix?

answer. Am×nxn×1 = bm×1.

143. If f : Rk → Rn, what is the size of the matrix Df(x)?

answer. i-th row is the derivative of fi, 1 ≤ i ≤ n. So there are n rows.
Df(x) is n× k.
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144. What does the spectrum of the linear operator imply about the the lin-
ear/nonlinear stability around an equilibrium point q in ODEs?

answer. LS/LU = equilibrium is linearly stable/unstable

NS/NU = equilibrium is nonlinearly stable/unstable

If <λi > 0 for some i then LU-NU

If <λi < 0 for all i then LS-NS

If <λi ≤ 0 for all i then LS-NS, LS-NU, LU-NS, LU-NU are all possible.

See (LS-NSEx) for examples.

145. (LS-NSEx) For an ODE, let

• LS/LU = equilibrium is linearly stable/unstable

• NS/NU = equilibrium is nonlinearly stable/unstable

Give examples of all combinations (if they exist).

answer. LS-NS ẋ = −x − x3, for LS-NU ẋ = x + x3, for LU-NU ẋ = x.

For LU-NS, take the Hamiltonian H(q, p) = p2

2 + q4

4 . Since (0, 0) is an
isolated minimum, the origin is a nonlinear center. The linearization at
the equilibrium is q̇ = p, ṗ = 0, i.e. q̈ = 0, the solution grows linearly in
time.

146. For a conservative system, show that linear instability of a fixed point does
not imply instability.

answer. This is true for a Hamiltonian system hence for a conservative
system. See (HamExLU-NS).

147. (HamExLU-NS) For a Hamiltonian system, show that linear instability of
a fixed point does not imply instability.

answer. Take the Hamiltonian H = p4 + q2. The origin is an equilibrium
point. The linearized equations are dq/dt = 0, dp/dt = −2q. This has
solution q = q0, p = −2q0t + p0 which is increasing linearly with time, so
the origin is unstable for the linearized system. However, the Hamiltonian
has a minimum there, so it is stable.

148. For degenerate fixed points of a conservative system, linear instability of
a fixed point does not imply instability, see (HamExLU-NS). What about
non-degenerate fixed points?

answer. A non-degenerate fixed point of a conservative system can only
be a center or a saddle. Suppose E = x2

1 + · · ·+ x2
r − x2

r+1 − · · · − x2
n.

149. Linearized equations of a Hamiltonian system is a Hamiltonian system?
True or False?

answer. ?

28



2019-07-13

150. How to recall the formula for the divergence of cross product?

answer. ~∇ · ( ~A× ~B) = (∇× ~A) · ~B − ~A · (∇× ~B).

The result is a scalar, skew-symmetric, includes only 1st order derivative
operator.

151. Write the effective gravity formula.

answer. g ≡ geff = ggrav + gcf = gk + Ω2r⊥ where the second term is
centrifugal force.

152. Which side does the Coriolis force deflect objects?

answer. Coriolis force deflects MOVING objects to the RIGHT (with
respect to the direction of travel) in the Northern Hemisphere and to the
left in the Southern Hemisphere.

153. Coriolis force does not act on the bodies ...

answer. stationary in the rotating frame.

154. Show that the vector v = axi + byj + czk can be written as a potential.

answer. v = ∇ 1
2

(
ax2 + by2 + cz2

)
In particular Ar is conservative.

155. When is a radial vector field conservative?

answer. Always. Let r = |r|, r = xi + yj + zk and r̂ = r/ |r̂|.
A radial vector field is the form f(r)r̂. Such a vector field is conservative
if we can find F such that

∇F (r) = F ′(r)r̂ = f(r)r̂

which implies that F ′(r) = f(r). Since any continuous function has an
anti derivative, we can always find F as long as f is continuous.

Second way to think. The curl of a radial vector field is always zero. Thus
if the domain is simply-connected then the vector field must be given by
the gradient of a potential.

156. Show that the centrifugal term can be written as a potential.

answer. For r = xi+yj+zk, let Ω = Ωk be the rotation vector. Let r⊥ be
the perpendicular distance from the axis of rotation Ω, that is r⊥ = xi+yj.
Since Ω · r⊥ = 0, Ω× r = Ω× r⊥, and r⊥ = 1

2∇ |r⊥|
2

−F ce = Ω× (Ω× r) = Ω× (Ω× r⊥) = −Ω2r⊥ = ∇Φce
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Here think Ω = Ωi, r⊥ = aj OR use

A× (B×C) = (A ·C)B− (A ·B)C

Here Φce = − 1
2Ω2 |r⊥|2 = − 1

2 |Ω× r⊥|2 = − 1
2 |Ω× r|2.

157. Expand A× (B×C).

answer. 1st way. A× (B×C) = B(A ·C)−C(A ·B).

To recall BAC-CAB rule: A× (B×C) is perpendicular to B×C. Thus
it lies on the plane spanned by the vectors B and C.

A× (B×C) = bB + cC

Take the inner product with A to get

b = kC ·A, c = −kB ·A

To find k, take A = i, B = j, C = k. Is there an easier way?

2nd expansion. By the Jacobi identity

(A×B)×C = A× (B×C)−B× (A×C)

158. D
Dt

∫
V

dV =
∫
S
v · dS =

∫
V
∇ · vdV

2019-07-11

159. No viscosity means * in the fluid are everywhere zero.

answer. *=tangential stresses

160. Learn the nature of viscosity. ToDO

161. Kelvin’s minimum energy theorem. The steady irrotational incom-
pressible flow in a simply connected region has less kinetic energy than any
other motion with the same normal component of velocity at the boundary.

answer. Because of simply-connectedness and irrotational vector fields are
gradient, u = ∇φ. Let U be any other field

∇ ·U = 0 in D, U · n = u · n on ∂D.

Then ∫
D

ρ |U|2 =

∫
D

ρ(U− u + u) · (U− u + u)

=

∫
D

ρ |U− u|2 + 2ρ(U− u) · u + ρu2

≥
∫
D

ρu2
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Since gradient fields (u) and divergence free vector fields with zero normal
component on the boundary (ρ(U−u)) are orthogonal

∫
D
ρ(U−u) ·u = 0

proving the claim.

162. Find an irrotational incompressible vector field.

answer. Gradient of a harmonic function such as r̂/r2.

163. When is curl a left inverse to the Biot-Savart operator

BS(V )(y) = (1/4π)

∫
Ω

V (x)× (y − x)/|y − x|3d (volx)

answer. The equation ∇ × BS(V ) = V holds in Ω if and only if V is
divergence-free and tangent to the boundary of Ω.

This is an original result https://www.maths.ed.ac.uk/~v1ranick/papers/
candetgl.pdf. One side is well known.

164. If α = dg, g : M → R and c : [a, b]→M is a path, find c∗(α) and compute∮
c([a,b])

α.

answer.
c∗(α) = c∗(dg) = dc∗(g) = d(g ◦ c)

Hence ∮
c([a,b])

α =

∮
[a,b]

c∗(α) =

∮
[a,b]

d(g ◦ c) = g ◦ c(b)− g ◦ c(a)

165. Find c∗(α) for c(t) = (cos t, sin t) and α =
−ydx+ xdy

x2 + y2
.

answer. c∗ (α) = dt

166. Properties of pullback on differential forms.

answer.

• linear: φ∗(aα+ bβ) = aφ∗(α) + bφ∗(β) for all scalars a and b and all
k forms α and β on V ;

• multiplicative: φ∗(α ∧ β) = φ∗(α) ∧ φ∗(β) for all k -forms α and l
-forms β on V ;

• respects composition: φ∗ (ψ∗(α)) = (ψ ◦ φ)∗(α), where ψ : V →W is
a second smooth map with W open in Rl, and α is a k -form on W .

• Commutes with d: dφ∗ = φ∗d.
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167. Let φ(x1, x2) = (φ1(x), φ2(x)). Find φ∗(dy1), φ∗(dy1∧dy2). Example take
φ(x1, x2) = (x1x2, sinx2).

answer. φ∗(dy1) = dφ1 and φ∗(dy1 ∧ dy2) = dφ1 ∧ dφ2.

Example. If φ(x1, x2) = (x1x2, sinx2) then φ∗(dy1) = d(x1x2) = x2dx1 +
x1dx2 and φ∗(dy1∧dy2) = d(x1x2)∧d(sinx2) = (x2dx1+x1dx2)∧cosx2dx2.

2019-07-10

168. Explain the terms in accleration in a rotating frame.

answer. ar = ai−2Ω×vr−Ω×(Ω×r)− dΩ
dt ×r where ar

def
=
(

d2r
dt2

)
r

is the

apparent acceleration in the rotating reference frame, the term−Ω×(Ω×r)
represents centrifugal acceleration, and the term −2Ω× vr is the Coriolis
acceleration. The last term

(
−dΩ

dt × r
)

is the Euler acceleration and is zero
in uniformly rotating frames.

169. Give a neccessary and sufficient condition for the linear system ẋ = Ax to
be stable.

answer. The eigenvalues satisfy <λ ≤ 0 and any eigenvalue with <λ = 0
has equal algebraic and geometric multiplicities.

170. Solve Df(x,t)
Dt = 0.

answer. The solution is f(x, t) = f0(φ−1(x, t)) for an arbitrary function
f0. To see, let f(φ(a, t), t) = f0(a) then 0 = ∂f0

∂t = Df
Dt .

171. What is the no-magnetic monopole law?

answer. Gauss’s Law for magnetism: Divergence of magnetic field is zero.

172. What is the relation between Jacobian J of the motion and the deformation
gradient F?

answer.

J(a, t) = det F = det

(
∂xi
∂aj

)
= det (∇ax1, · · · ,∇axn) 6= 0

since the motion is assumed to be invertible.

173. Express dirac delta function as the Laplacian of a scalar function and as
the divergence of a vector field in R3.

answer.
1

4π
∆

(
−1

r

)
=

1

4π
∇ ·
(

r̂

r2

)
= δ3(r).
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Its integral over whole space is 1 while it is zero everwhere except origin.
Here r̂ = r

r , r is the position vector and r is its norm.

More generally if s = r− a, ∇ ·
(

ŝ
|s|2

)
= 4πδ3(s)

174. Give the curve definition of tangent vector on a manifold.

answer. Two curves t 7→ c1(t) and t 7→ c2(t) in an n -manifold M are
called equivalent at the point m if

c1(0) = c2(0) = m

d

dt
(ϕ ◦ c1)|t=0 =

d

dt
(ϕ ◦ c2)|t=0

in some chart ϕ.

A tangent vector v to a manifold M at a point m ∈ M is an equivalence
class of curves at m.

2019-07-09

175. Write ma = f in rotating frame.

answer.
ma′ = f −mΩ× (Ω× r)− 2mΩ× v′

since
a = a′ + Ω× (Ω× r) + 2Ω× v′

176. Apply the inertial time derivative twice to get the relation between inertial
and rotating accelerations.

answer. Let d/dt and d/dt′ be the time derivatives in inertial and rotating
frames respectively. Then

d

dt
=

d

dt′
+ Ω×

Define

v′ =
dr

dt′
, a′ =

dv′

dt′

Then

a =

(
d

dt

)(
d

dt

)
r =

(
d

dt

)
(v′ + Ω× r)

to get
a = a′ + Ω× (Ω× r) + 2Ω× v′
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177. Time derivatives in rotating vs inertial frame?

answer. Let d/dt and d/dt′ be the time derivatives in inertial and rotating
frames respectively. Then

d

dt
=

d

dt′
+ Ω×

Note that if the position is stationary in rotating frame dr
dt′ = 0, then in

inertial frame it is rotating with constant angular velocity Ω× r.

178. Show that if A is a deformation retract of X then A and X are homotopy
equivalent.

answer. We know the existence of a continuous map

H : X × [0, 1]→ X

such that for every x in X and a in A,

H(x, 0) = x, H(x, 1) ∈ A, and H(a, 1) = a

Let r = H(·, 1) : X → A and i : A → X be the inclusion map. Then
ri = 1A : A→ A and ir = r ' 1X .

179. Define deformation retraction and a deformation retract of a topological
space.

answer. A deformation retraction is a homotopy between a retraction and
the identity map on X . The subspace A is called a deformation retract
of X.

Specifically, a continuous map

H : X × [0, 1]→ X

is a deformation retraction of a space X onto a subspace A if, for every x
in X and a in A,

H(x, 0) = x, H(x, 1) ∈ A, and H(a, 1) = a

180. A deformation retraction is a special case ...

answer. of a homotopy equivalence. In fact, two spaces are homotopy
equivalent if and only if they are both deformation retracts of a single
larger space.

181. Define a retraction (map) and a retract (subspace) of a topological space.

answer. Let X be a topological space and A a subspace of X. Then a
continuous map r : X → A is a retraction if r(a) = a for all a in A.

A subspace A is called a retract of X if such a retraction exists.
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182. Lebesgue integrable functions are (1) for computational reasons.

answer. (1) not important

183. What is the relation between Riemann and Lebesgue integrable functions
resemble?

answer. To that of real numbers to rational numbers. Concrete calcula-
tions require only rational numbers, but it is the completeness of the real
number system which makes it powerful.

184. Discuss the difference of sums in Riemann and Lebesgue approach.

answer. In the Riemann scheme one partitions the x interval then forms
the sum

∑n
1 f(ξk)(xk+1 − xk) for arbitrary ξk in [xk, xk+1] and passes to

the limit n→∞.

In the Lebesgue approach it is the y axis that is partitioned. Let Ei be the
set of values of x such that yi ≤ f(x) ≤ yi+1. We then form

∑n
1 ηim(Ei)

where yi ≤ ηi ≤ yi+1 is arbitrarily chosen and m(Ei) is the measure of Ei.

185. Find the integral curves and stagnation points of v(x, y) = (−y, x).

answer. Counterclockwise circles around origin. The origin is a stationary
point.

186. Find the integral curves and stagnation points of v(x, y) = (y,−x).

answer. Clockwise circles around origin. The origin is a stationary point.

187. Find the integral curves and stagnation points of v(x, y) = (x, y).

answer. Straight half lines emanating outward from origin. (0, 0) is a
stationary point.

2019-07-08

188. Show that f : M → N has a pullback f∗ : Hp
dR(N)→ Hp

dR(M).

answer. Since the pullback takes closed/exact forms on N to closed/exact
forms M .

For a closed p-form ω on N , let [ω] be the equivalance class in Hp
dR(N).

Define f∗[ω] = [f∗ω]. To show that f∗ is well-defined, take ω1 ∈ [ω] that
is ω1 = ω + α where α is an exact p-form on N . Since f∗ω1 − f∗ω = f∗α
which is an exact p-form on M , it follows that [f∗ω] = [f∗ω1]. Thus
the definition does not depend on the particular element chosen from the
equivalance class.
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189. Give the integral representations of grad, curl, div.

answer.

∇f(x) = lim
vol(V )→0

1

vol(V )

∫∫
∂V

n(y)f(y)dSy

∇ · F(x) = lim
vol(V )→0

1

vol(V )

∫∫
∂V

n(y) · F(y)dSy,

∇× F(x) = lim
vol(V )→0

1

vol(V )

∫∫
∂V

n(y)× F(y)dSy,

where V is a ball centered at x. Notice that ∇ is replaced by n inside the
integral. Also the definition of divergence is intuitive by the divergence
theorem.

2019-07-05

190. ρDu
Dt = s is the Cauchy momentum equation. Write s as a sum of two

terms.

answer.

ρ
Du

Dt
= ∇ · σ + ρf

where σ denotes the molecular forces, and ρf denotes the body forces.

191. Cauchy momentum equation has the form ρDu
Dt = ∇ ·σ+ ρf . What is the

general form σ?

answer.
σ = −pI + τ

where τ is traceless and is called deviatoric part of the stress tensor.

192. Cauchy momentum equation has the form ρDu
Dt = ∇·(−pI+τ )+ρf . What

is the general form τ for a Newtonian fluid?

answer.

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λ

(
∂ul
∂xl

)
δij + T

where the first two terms are due to Newtonian stress, and T represents
non-Newtonian stress.

193. What is the conservation form of the momentum equation?

answer.
∂

∂t
(ρu) +∇ · (ρuu) = s
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This is equivalent to

ρ
Du

Dt
= s

proof. The divergence of the dyad is

∇ · (ab) = (∇ · a)b + a · ∇b

Expanding

u

(
∂ρ

∂t
+∇ · (ρu)

)
+ ρ

(
∂u

∂t
+ u · ∇u

)
= s

By mass continuity (second paranthesis) is zero.

ρ

(
∂u

∂t
+ u · ∇u

)
= s

194. Why does the stress tensor need to be symmetric?

answer. Otherwise any small fluid element would suffer infinite angular
acceleration. See Roberts - Model emergent dynamics in complex systems,
pg. 121 in the pdf.

195. Derive the Cauchy momentum equation.

ρ
Dv

Dt
= ρf +∇ ·T

What do the terms on the RHS describe?

answer.

Total force (body + surface ) =

∫
V

dV ρf +

∫
S

T · dS

=

∫
V

dV (ρf +∇ ·T)

where the first integral denotes the long ranged body forces while the
second one denotes the short ranged molecular forces, internal to the fluid.

Cauchy momentum equation is just Newton’s second law.

196. What is the rate of change of momentum of a material fluid element Vt?

answer.

d

dt

∫
Vt

ρvdV =

∫
Vt

(∂t(ρv) +∇ · (ρv ⊗ v))) dV =

∫
Vt

ρ
Dv

Dt
dV

Since

(∂t(ρv) +∇ · (ρv ⊗ v))) = v∂tρ+ ρ∂tv + v∇ · (ρv) + ρv∇ · v

first and third terms cancel due to continuity equation.
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197. What are the characteristics of two types of forces?

answer.
∫
V
ρfdV : Long ranged external body forces that penetrate mat-

ter.∫
∂V

T · n̂dS: Short ranged molecular forces, internal to the fluid. For any
element, the net effect of these due to interactions with other elements acts
in a thin surface layer.

2019-07-04

198. What is the stress tensor in a static fluid?

answer. σ = −pI where p = 1
3 tr(σ).

p is called the static pressure.

199. For a static fluid, why is the only stress is the normal stress?

answer. Since by definition a fluid subjected to a shear stress must deform
and undergo motion.

200. What is the stress tensor in a moving fluid?

answer. σ = −pI + τ where τ is the deviatoric part.

201. What are examples of body forces?

answer. gravity, electric and magnetic forces, fictitious forces such as the
centrifugal force, Euler force, and the Coriolis force.

202. The relation between the total force density f , volume force density F,
stress tensor σ?

answer.
∫
V
fidV =

∫
V
FidV +

∮
S
σijdSj , in differential form f = F+∇·σ.

203. ∇× (A×B)?

answer. = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B

204. The incompressible velocity u satisfies the no-flow condition u · n = 0 on
∂D (with n the unit

u(t, x) =

∫
D

KD(x, y)ω(t, y)dy

where the Kernel KD is given by KD(x, y) := ∇⊥GD(x, y), with ∇⊥ =
(−∂x2 , ∂x1) and GD ≥ 0 the Green’s function for D.

2019-07-03

answer.
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2019-07-02

205. Define the derivative of a map between two manifolds, f : M → N at a
point M using the curve definition.

answer. It is the linear map df : TM → TN constructed such that
df(dγdt (0)) = d

dt (f ◦ γ)(0) where γ is a curve γ(0) = m and dγ
dt (0) is its

tangent vector at m.

206. What is the temporal variability of thermocline?

answer. The thermocline structure in the major ocean basins can be
broadly thought of as a ”permanent” or ”long-term mean” temperature
profile with a superimposed seasonal variation that mainly affects the up-
per mixed layer, including its thickness.

207. What is the spatial variability of thermocline in oceans?

answer. The actual profile varies greatly from location to location. In shal-
lower waters, the seasonal variation is more pronounced and may domi-
nate the profile. At the higher latitudes, the temperature difference is
much smaller and the thermocline disappears altogether about 60 degrees
latitude.

208. Triple product with Levi-civita?

answer.
u× v ·w = εijkuivjwk

209. Define Levi-Civita symbol as a triple product.

answer.
εijk = ei · (ej × ek)

210. What is the evolution equation of the probability density function Θ(x, t)
which is associated with the Langevin equation?

answer. The Fokker-Planck equation

∂tΘ + ∂ · (vΘ) = κ∂2Θ

211. What is the equation of particles advected by a velocity field v and subject
to molecular diffusion?

answer. The Langevin equation

dx(a, t)

dt
= v(x, t) +W (t)

The function x(a, t) denotes the position at time t of the particle which
was in in a. The random process W (t) is Gaussian, independent of v, has
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zero mean a white-noise in time. The constant κ appearing is the molecular
diffusivity.

E (Wi(t)Wj (t′)) = 2κδijδ (t− t′)

212. How to remember the notation for pullback and pushforward?

answer. You can push-forward the the tangent space for any morphism
of smooth manifolds, and you can pull-back the cotangent space. The
cotangent bundle is usually written using the star for dual as T ∗M . Ergo,
pull-backs by smooth maps are f∗. Also usually upper starred objects map
in reverse direction such as adjoint operators.

2019-07-01

213. Find the unique decomposition of n×n matrix as a sum of skew-symmetric
matrix, a symmetric traceless matrix and a symmetric traceful matrix
proportional to the identity.

answer. Given A, write A = S + R with S = 1
2 (A + AT ) and R =

1
2

(
A−AT

)
. Then write S = Q+ T where Q = (S − 1

n tr(S)I) is traceless
and T = 1

n tr(S)I. Since tr(S) = tr(A),

A = R+ T +Q

214. Which direction does the earth rotate?

answer. Eastward

215. What does Coriolis parameter represent?

answer. The vertical component of the planetary vorticity.

216. Why is Coriolis parameter f = 2Ω sinφ?

answer. Coriolis parameter is the vertical component of the planetary
vorticity 2Ω. f = 2Ω · r̂ = 2Ω sinφ where φ is the latitude (π/2 at the
north pole and 0 at the equator).

217. What is the relation between the vertical components of absolute vorticity,
rotating vorticity and the Coriolis parameter?

answer. η = ζ + f where η is the vertical component of the absolute
vorticity, ζ is the vertical component of the rotating vorticity and f is the
Coriolis parameter.

To see, By (AbsVor-RelVor),

ωI = ωR + 2Ω

The vertical components are η = ωI · r̂, ζ = ωR · r̂ and f = 2Ω· r̂ = 2Ω sinφ
where φ is the latitude (π/2 at the north pole and 0 at the equator)
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218. Describe projective spaces.

answer. Every time we have a problem involving only the directions of
vectors and in which their lengths are irrelevant, we are involved with a
projective space. Given an n-dimensional vector space V over the field
K, its corresponding projective space KPn is the space formed by all the
1-dimensional subspaces of V . Each point of KPn is the set formed by
a vector v and all the vectors proportional to v. We may be in a finite-
dimensional vector space, or in an infinite-dimensional space like a Hilbert
space.

219. Show that the centripetal force ω × (ω × r) is a potential force.

answer. Let Φ = 1
2 |ω × r|2. Using

∇ (A ·B) = A× (∇×B) + B× (∇×A) + (A · ∇)B + (B · ∇)A

with A = B = ω × r becomes

∇Φ = ω × r× (∇× (ω × r)) + (ω × r · ∇) (ω × r)

???

220. The time derivative of a scalar quantity is invariant with respect to the
inertial and rotating coordinate systems, dT

dt =
(
dT
dt

)
r
.

answer. See Dolzhansky page 50 for the proof.

221. Taking the time derivative and assuming that the angular acceleration of

earth to be zero, i.e. d~Ω
dt = 0,(

d~qI
dt

)
I

=

(
d~qR
dt

)
I

+ ~Ω×
(
d~r

dt

)
I

=

(
d~qR
dt

)
R

+ ~Ω× ~qR + ~Ω×
[(

d~r

dt

)
R

+ ~Ω× ~r
]

=

(
d~qR
dt

)
R

+ 2~Ω× ~qR︸ ︷︷ ︸
Coriolis acc.

+ ~Ω× (~Ω× ~r)︸ ︷︷ ︸
centripetal

The centripetal force may be written in terms of a centripetal force poten-
tial φc where

φc =
1

2
(~Ω× ~r) · (~Ω× ~r) =

1

2
|Ω|2r2

⊥

−∇φc = − dφc
dr⊥

~e⊥ = −|Ω|2r⊥ = ~Ω× (~Ω× ~r)
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In the coordinate system rotating at the constant angular velocity, the
momentum equation reads, after dropping subscripts R

ρ

(
d~q

dt
+ 2~Ω× ~q

)
= −∇p+ ρ∇ (φg + φc) + µ∇2~q

where

φg = gz φc =
1

2
(~Ω× ~r) · (~Ω× ~r)

222. Show that
d

dt
=

(
d

dt

)
R

+ Ω×

answer. Let A = Aiei and use dei
dt = Ω× ei to get

dA

dt
=
dAi
dt

ei +Ai
dei
dt

=

(
dA

dt

)
R

+ Ω×A.

223. Derive the relation between velocity vector in inertial and rotating frames.

answer.
uI = uR + Ω× r

r = riei =⇒ dr

dt
= uI =

dri
dt

ei + ri
dei
dt

= uR + riΩ× ei = uR + Ω× r

224. State the relation between acceleration in rotating (with constant-angular
velocity) and inertial frames.

answer.
du

dt
=

(
dur
dt

)
r

+ 2Ω× ur + Ω×Ω× r

Absolute acceleration = Relative acc. + Coriolis acc. + centripetal acc.

225. Show that the relation between acceleration in rotating (with constant-
angular velocity) and inertial frames is given by

du

dt
=

(
dur
dt

)
r

+ 2Ω× ur + Ω×Ω× r

answer. Differentiate u = ur + Ω× r to get

du

dt
=
dur
dt

+ Ω× u

Use dur
dt =

(
dur
dt

)
r

+ Ω× ur and Ω× u = Ω× (ur + Ω× r).
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226. Why can’t we always conclude curl F = 0⇒ F = ∇f from Green’s Theo-
rem?

answer. The region may not be simply connected. Otherwise the result is
true.

Suppose that curl F = 0∮
C

F · dr =

∫
R

curl F · ndS = 0

But if R is an annular region then its boundary C consists of multiple
curves. Hence this does not imply that F is independent of path.

2019-06-29

227. What is the fundamental group of the circle? Why?

answer. The additive group of integers. Each homotopy class consists of all
loops which wind around the circle a given number of times (which can be
positive or negative, depending on the direction of winding). The product
of a loop which winds around m times and another that winds around n
times is a loop which winds around m+n times. So the fundamental group
of the circle is isomorphic to the additive group of integers.

228. Is the fundamental group a topological invariant?

answer. Yes. Homeomorphic topological spaces have the same fundamen-
tal group.

229. The first homotopy group is

answer. Fundamental group

230. Define tangent vector on a manifold using curves.

answer. A tangent vector is an equivalence of curves. Two curves ci : I ⊂
R → M , i = 1, 2 are equivalent if c1(0) = c2(0) = p ∈ M and for some
coordinate x : M → Rn, (x ◦ c1)′(0) = (x ◦ c2)′(0).

It turns out that the definition is independent of the coordinate chosen
since if the velocities of the curves are equal for one coordinate, it is equal
in every coordinates.

231. Show that the curve definition of tangent vector is independent of the
coordinates chosen.

answer. We need to show that if velocity vector in Rn of two curves are
equal for some coordinate then they are equal for any coordinates. Proof
follows from chain rule.
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A tangent vector is an equivalence of curves. Two curves ci : I ⊂ R→M ,
i = 1, 2 are equivalent if c1(0) = c2(0) = p ∈ M and for some coordinate
x : M → Rn, (x ◦ c1)′(0) = (x ◦ c2)′(0).

For if y is another chart near p, then

(y ◦ ci)′(0) = (y ◦ x−1 ◦ x ◦ ci)′(0) = (Daf)v

where a = x ◦ ci(0), f = y ◦ x−1, and v = (x ◦ ci)′(0).

232. Find a non-constant density and incompressible velocity profile satisfying
the continuity equation showing that incompressible flow does not mean
constant density.

answer. Suppose u = i, constant so that it is divergence free and ρ(t =
0) = ρ0(x). Then the continuity equation gives ρt + ρx = 0 which has the
non-constant solution ρ(x, y, z, t) = ρ0(x− t, y, z).

2019-06-28

233. What can be said about the eigenvalues of an orthogonal matrix?

answer. They lie on the unit circle.

234. Prove that the eigenvalues of an orhogonal matrix lie on the unit circle.

answer.

Ax = λx =⇒ |λ|2 |x|2 = |Ax|2 = (xTAT )(Ax) = xTx = |x|2

235. How does the deviatoric and hydrostatic parts of the stress tensor show
up in NSE?

answer. We write the stress tensor as

σ = −pI + T

where −pI is the hydrostatic stress (which tends to change the volume of
the fluid parcel) and T is the deviatoric part (which tends to distort the
fluid parcel). Then NSE becomes

ρ
D~v

Dt
= ∇ · σ = −∇p+∇ · T + ~f

236. Conservation law for phase space probability?

answer. f(x0)dV (x0) = f(xt, t)dV (xt).
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237. What is Liouville’s equation for a Hamiltonian system?

answer. If f is constant on the trajectories (a first integral) then it satisfies

ft + {f,H} = 0

Alternatively
ft + ẋ · ∇f = 0

Classically, f = ρ is the density of the particles.

238. What is the explicit relation (not differential one) between divergence of
velocity u and the Jacobian j of the motion?

answer.

j(φ(a, t), t) = exp

(∫ t

0

div u(φ(a, s), s)ds

)
To see,

∂J(a, t)

∂t
= J(a, t)(div U(a, t))

J(a, t) = J(a, 0) exp

(∫ t

0

div U(a, s)ds

)
Since J(a, 0) = 1

j(φ(a, t), t) = exp

(∫ t

0

div u(φ(a, s), s)ds

)
2019-06-27

239. Is a homology sphere simply connected?

answer. Not neccessarily. Having the same homolgy groups does not
imply simply-connectedness, only that its fundamental group is perfect
(see Hurewicz theorem)

240. What is a homology sphere?

answer. It is a closed n-manifold with the same homology groups of every
order as the n-sphere.

241. What is the history of Poincaré conjecture?

answer. In a 1900 paper, Poincaré conjectured that the Betti numbers and
torsion coefficients (also known today as homology) could tell you whether
or not a space was a sphere.

A few years later, Poincaré showed that he was wrong. He came up with
the first of what are called homology spheres: spaces that have the same
homology as spheres but are not topologically equivalent to spheres.
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Poincaré’s discovery of a homology sphere led him to refine his conjecture
to what is now known as the Poincaré conjecture. He added another in-
variant, known as the fundamental group, and believed that if a manifold
had the same homology and fundamental group as a sphere, it had to be
a sphere. Poincaré used the fundamental group of the homology sphere to
show that it was topologically different from a sphere.

The Poincaré conjecture was one of the most important unsolved conjec-
tures In 2006, this conjecture was finally proved, with Russian mathemati-
cian Grigori Perelman putting the finishing touches on the proof.

242. What is Poincaré conjecture?

answer. Every simply-connected, closed (compact without boundary) 3-
manifold is homeomorphic to a 3-sphere proved a century later by Perel-
man.
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243. In which domains, a divergence-free vector field a curl? Give special ex-
amples.

answer. When the second de-Rham cohomology vanishes. In particular,
if the domain is contractible (all de-Rham cohomologies vanish) then any
divergence free vector field is a curl.

244. Show that in a star shaped domain, the curl can be constructed explicitly.

answer. ToDO.

See https://www.math.unl.edu/~mbrittenham2/classwk/208s04/inclass/
divergence-frees_are_curls.pdf

245. 3 term decomposition of velocity gradient?

answer.

L =

(
1

3
(div u)I

)
+

(
1

2

(
L + LT

)
− 1

3
(div u)I

)
+

(
1

2

(
L− LT

))
(traceful) isotropic component + (traceless) rate of deformation tensor +
vorticity tensor

246. Velocity gradient as a dyadic?

answer. ∇u ≡ ∇⊗ u

247. What is Schur decomposition?

answer. If A is a complex square matrix, then A = UTU∗ where T is
triangular and U is unitary.
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248. (RBCAV) What is the relation between the circulation Γ and the vorticity
ω?

answer.

Γ =

∫
C

u · dx =

∫
D

ω · ndS

for any surface D having the closed curve C as its boundary.

249. The circulation of the velocity over a curve is the (*) the vorticity (**).

answer. (*) flux of (**) through a surface containing that curve. See
(RBCAV).

250. What is absolute vorticity?

answer. It is the curl of absolute velocity (inertial reference frame).

ωI = ∇× vI

251. (AbsVor-RelVor) Find the relation between the absolute vorticity and rel-
ative vorticity.

answer.
ωI = ∇× vI = ωR + 2Ω

To see,
vI = vR + Ω× r

The result follows from the simplification

∇× (Ω× r) = Ω(∇ · r)−Ω · ∇r = 3Ω−Ω = 2Ω.

252. If M is simply-connected then first de-Rham cohomology of M vanishes.
Is the converse true?

answer. Only in some cases such as when M is a domain in R2. But in
general the converse does not imply that the first fundamental group is
trivial. It only means that there are no nontrivial homomorphisms from
the fundamental group to real numbers.

https://math.stackexchange.com/questions/1689092.

253. Show that when M is simply-connected, any closed 1-form is exact.

answer. In a simply-connected space, any closed path is homotopic to a
point and since

∫
γ1
ω =

∫
γ2
ω for closed 1-form and homotopic paths, it

follows that ω is exact.

254. In a simply-connected manifold, closed 1-forms are exact. Is this a neces-
sary condition?

answer. No. Homology spheres have vanishing first de-Rham cohomology
which have non-trivial fundamental group.
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255. What is the condition on 1-form ω and curves γ1, γ2 so that
∫
γ0
ω =

∫
γ1
ω?

answer. γ0 and γ1 are homotopic and ω is a closed form.

256. Prove that if γ0 and γ1 are homotopic and ω = P (x, y)dx+Q(x, y)dy is a
closed form then ∫

γ0

ω =

∫
γ1

ω

This result obviously generalizes to n-dimensional case.

answer. Let γt(s) = (x(t, s), y(t, s)), t ∈ [0, 1], s ∈ [0, 1] be a homotopy
between γ0, γ1 so that γt(0) = a, γt(1) = b for all t. Then

d

dt
I(t) =

d

dt

∮
γt

P (x, y)dx+Q(x, y)dy

=

∫ 1

0

∂

∂t

(
P (γt(s))

∂x

∂s
+Q(γt(s))

∂y

∂s

)
ds

=

∫ 1

0

∂

∂s

(
P (γt(s))

∂x

∂t
+Q(γt(s))

∂y

∂t

)
ds

The above change of order of differentiation uses that Py = Qx. Hence

d

dt
I(t) = P (b)

∂x

∂t
(t, 1) +Q(b)

∂y

∂t
(t, 1)− P (a)

∂x

∂t
(t, 0) +Q(a)

∂y

∂t
(t, 0)

Since x(t, 1) is constant in t, ∂x
∂t (t, 1) = 0. Similarly the other partial

derivatives are also zero.

2019-06-25

257. Formula for the Coriolis frequency f?

answer. The Coriolis frequency f = 2Ω sinϕ also called the Coriolis pa-
rameter or Coriolis coefficient, is equal to twice the rotation rate Ω of the
Earth multiplied by the sine of the latitude φ.

2019-06-24

258. What are the two essential elements of integration by parts of differential
forms on manifolds?

answer. Integration by parts for differential forms boils down to Leibniz
rule d(η ∧ ω) = dη ∧ ω + (−1)degree(η)η ∧ dω and the Stokes Theorem∫
M

dω =
∫
∂M

ω.
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259. If you shot a missile due north from near the equator, how would an
observer from (A) outer space, (B) on earth observe the motion?

answer. (A) To an observer in outer space, the missile would appear to
have traveled in a straight line in NE direction (velocity = velocity(Earth)
+ vel(Missile)), (B) to an observer on earth the missile would appear to
have curved to the right.

Equator moves faster. The missile would carry with it the eastward mo-
mentum from that latitude. As it traveled northward above the earth it
would retain that eastward momentum while the earth below it would have
less eastward momentum, so it would land at a longitude east of where it
was launched.

260. Is there a stable equilibrium in any electrostatic field?

answer. The following argument is not quite right. Read Earnshaw’s
Theorem. ToDO

Only if a charge is right on top of another charge.

P0 is a stable location, if for any sphere around P0, the force field is inward.
By Gauss Law, it means there must be a charge at P0.

261. If w =
∫ x

f(λ)dλ then find dw.

answer. f(x)dx.

262. What are the basic consequences of

∂J(a, t)

∂t
= J(a, t) div

(
∂φ(a, t)

∂t

)
= J(a, t)U(a, t)

answer.

It implies Reynolds transport theorem

d

dt

∫
Ωt

f(x, t)dVx =

∫
Ωt

(
D

Dt
+ div

(
∂φ(a, t)

∂t

))
f(x, t)dVx

In particular, if the divergence of the velocity of the motion is zero (e.g.
Hamiltonian systems), then the volumes in phase space are conserved.

263. State the evolution equation for the (Eulerian) Jacobian of the motion
x = φ(a, t).

answer.
D

Dt
j(x, t) = j(x, t) div u(x, t)

where

J(a, t) = det (∇aφ(a, t)) , j(x, t) = J(φ−1(x, t), t),
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u(x, t) = U(φ−1(x, t), t), U(a, t) =
∂φ(a, t)

∂t

264. State the evolution equation for the (Lagrangian) Jacobian of the motion
x = φ(a, t).

answer.
∂J(a, t)

∂t
= J(a, t) divU(a, t),

where

J(a, t) = det (∇aφ(a, t)) , U(a, t) =

(
∂φ(a, t)

∂t

)
265. What is the index of origin for the vector field zn, for n an integer? Why?

answer. n because on any circle around origin, the vector field z → zn =
rn exp(inθ) rotates n times counterclockwise if n is positive and clockwise
if n is negative.

266. Can non-degenerate critical points of a function be non-isolated? Why?

answer. No. By Morse Lemma, near a non-degenerate critical point, the
function behaves like a quadratic polynomial whose gradient field is non-
vanishing except at the singular point.

267. Outline the proof that de Rham cohomology is invariant under homotopy
equivalance.

answer. (1) Let f : M → N. Then f∗ (pullback map) maps closed (resp.
exact) forms on N to closed (resp. exact) forms on M . Thus induces a
linear map, still denoted f∗, f∗ : Hk

de(N)→ Hk
de(M).

(2) Prove a generalization of Poincare’s lemma that states that if f, g :
M → N are homotopic then f(ω) − g(ω) is an exact form. Therefore,
they induce the same map from Hk

de(N)→ Hk
de(M). (The proof of this is

almost exactly the same as the proof of Poincare’s lemma.)

(3) Let M and N be homotopic manifolds. Let f : M → N and g : N →M
be functions so that f ◦ g and g ◦ f are homotopic to the identity map.
Then (f ◦ g)∗ = g∗ ◦ f∗ induces the identity map on Hk

de and similarly
for (g ◦ f)∗ . Therefore f∗ and g∗ are inverses of each other and give a
bijection between Hk

de(M) and Hk
de(N).

268. De Rham Cohomology is additive, which means for {Mi}i∈I smooth man-
ifolds that;

Hn
dR

(∐
i∈I

Mi

)
∼=
⊕
i∈I

Hn
dR (Mi) .

answer. https://www.math.vu.nl/~vdvorst/DeRham.pdf.
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269. Define the contraction of a differential k-form.

answer. For a vector field X, iX : Γk → Γk−1,

iXθ := θ(X, ·, · · · , ·)

270. What are the 3 basic properties of contraction (interior product) of a dif-
ferential form?

answer. (1) iX is linear in X, (2) iX ◦ iX = 0, (3) iX(σ ∧ ω) = (iXσ) ∧
ω + (−1)deg(σ)σ ∧ (iXω).

271. Compute directly the flux of r̂/r2 over a sphere of radiusR. Will divergence
theorem work?

answer.

∮
v · da =

∫ (
1

R2
r̂

)
·
(
R2 sin θdθdφr̂

)
= area of unit sphere = 4π

The divergence theorem will not work out of the box. ∇·v = 1
r2

∂
∂r

(
r2 1
r2

)
=

0. To use divergence theorem, we need to consider a small sphere around
the origin. Then divergence theorem says that the flux out of the big
sphere equals the negative of the flux out of the small sphere. The flux
out of the small sphere can be computed using the mean value theorem for
integrals.

Alternatively, r
r3 = −∇(1/r) so applying divergence theorem,∮
v · da =

∫
BR

−∆

(
1

r

)
dV =

∫
BR

4πδ(r)dV = 4π

2019-06-23

272. If two spaces are homotopy-equivalent, are they homeomorphic as well?

answer. Any contractible space is by definition homotopy equivalent to the
one-point space, for instance an interval, a disk, the real line, the Euclidean
plane. Any space with more than a single point is not homeomorphic to
the one-point space because cardinality is a homeomorphism invariant.

273. What is the relation between the Euler characteristic of a compact manifold
and the Morse index of an arbitrary real valued function defined on that
manifold?

answer. Take any smooth function f : N → R on the compact manifold
N. If nk denotes the number of critical points with index k, then

n∑
i=0

(−1)knk = χ(N) = the Euler characteristic of N.

Note that the sum is independent of the function chosen.
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274. What is the relation between index and topological degree?

answer. For v : Ω ⊂ Rn → Rn, if x0 is an isolated zero then

ind(v, x0) := deg(v,B, 0)

where B is a sufficiently small neighborhood of x0 which contains no other
zeros of v.

By the properties of topological degree, this definition does not depend on
the choice of B.

Index is local topological degree which does not see other zeros. Or topo-
logical degree is global index.

275. For v : Rn → Rn, if v(x0) = 0 and det(Dv(x0)) 6= 0 then find ind(v, x0) in
terms of eigenvalues of Dv(x0).

answer. ind(v, x0) = (−1)m where m is the number of negative eigenvalues
of Dv(x0). This follows from the property

deg(v,B, 0) =
∑

x∈f−1(0)

sgn detDv(x)

For x0 ⊂ B with B sufficiently small, RHS is sgn detDv(x0) and LHS is
ind(v, x0).

276. Show that χ(S2) = 2.

answer. Take the z-projection function z = ±
(
1− x2 − y2

)1/2
on S2

where sign is positive/negative in the upper/lower semi-sphere. Then the
critical points of this function are the north pole which is a max and thus
have index 2, and the south pole which is a min and thus have index 0.

277. On which manifolds, any vector field must have a singular point?

answer. On compact manifolds with non-zero Euler-Poincare characteris-
tic.

278. If M is a 3-manifold which has the same homology groups as the 3-sphere,
then is M homeomorphic to 3-sphere?

answer. No! There is a manifold, called 3-homology sphere, which has a
non-trivial fundamental group but has the same homology groups as the
3-sphere. Since fundamental group is a topological invariant, 3-homology
sphere is not homeomorphic to 3-sphere.

Poincare himself constructed this manifold and showed that homology is
not enought to guarantee homeomorphism.
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279. State the Poincaré conjecture.

answer. Every simply-connected, closed (compact without boundary) 3-
manifold is homeomorphic to a 3-sphere proved a century later by Perel-
man.

2019-06-22

280. Integrate by parts
∫ x

0
(t− x)f ′(t)dt.

answer.
∫ x

0
(t−x)f ′(t)dt = (t−x)f(t) |xt=0 −

∫ x
0
f(t)dt = xf(0)−

∫ x
0
f(t)dt.

281. What is the standard flat Riemannian metric?

answer. ds2 = dx2
1 + dx2

2 + dx2
3 on R3.

282. In general, a re-parametrization of an integral curve is no longer an in-
tegral curve. If γ : I → M is an integral curve of X, find a canonical
re-parametrization of γ which is still an integral curve of X.

answer. Let Ia = {t|t+ a ∈ I} and γa(t) := γ(t+ a), then γa : Ia →M is
an integral curve of X

283. If γ : I →M is an integral curve of X find an integral curve of aX where
a is a constant?

answer. Let Ia = {t|at ∈ I} and γa(t) := γ(at), then γa : Ia → M is an
integral curve for Xa = aX.

284. Consider the vector field X = x ∂
∂y − y

∂
∂x on R2. Find the integral curves.

answer. If γ(t) = (x(t), y(t)) is an integral curve of X, we must have for
any f ∈ C∞

(
R2
)

x′(t)
∂f

∂x
+ y′(t)

∂f

∂y
= ∇f · dγ

dt
= Xγ(t)f = x(t)

∂f

∂y
− y(t)

∂f

∂x

which is equivalent to the system

x′(t) = −y(t), y′(t) = x(t)

The solution to this system is

x(t) = a cos t− b sin t, y(t) = a sin t+ b cos t

These are circles centered at the origin in the plane parametrized by the
angle (with counterclockwise orientation).
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285. Write the differential equations associated with X = ∂
∂x1 on Rn. Find the

integral curves of X.

answer. The straight lines parallel to the x1− axis, parametrized as γ(t) =
(c1 + t, c2, · · · , cn). To check this, we need to show that

γ̇(f) = Xγ(f),

for any smooth function f on Rn.

γ̇(f) =
d

dt
(f ◦ γ) = ∇f · dγ

dt
=

∂f

∂x1
= Xγ(f)

In coordinates the integral curve satisfies

ẋ1 = 1, ẋ2 = 0, · · · ẋn = 0

286. We say that a smooth curve γ : I →M is an integral curve of X if

answer. For any t ∈ I, γ̇(t) = Xγ(t). That is d
dt (f ◦ γ)(t) = Xγ(t)(f) for

every f : M → R.

287. Let γ : I →M be a curve. Define the tangent vector of γ at the point γ(0)
as a derivation.

answer. For f : M → R, γ̇(0)(f) = d
dt (f ◦ γ) (0).

288. What is the pushforward of a map between subsets of Euclidean spaces?

answer. Between Euclidean spaces, the pushforward of a map is simply
the Jacobian.

289. What is the pushforward of a map between two manifolds?

answer. Its differential which maps tangent vectors at a point x to a
tangent vector at f(x).

290. What are the two laws of electrostatics?

answer. (1) Gauss’ Law: ∇ ·E = ρ/ε0, (2) Faraday’s Law: ∇×E = 0.

(2) follows from Faraday’s Law

∇×E = −∂B

∂t

Remark: The second law says that the steady electric field in a simply
connected domain has a potential.

291. The relation between pressure and stress?

answer. Pressure is the normal component of the stress, p = − 1
3 tr(σ).
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292. The relation between shear and stress?

answer. Shear is the tangential component of the stress

293. What do the 9 components of a stress tensor describe?

answer. They describe the stresses (force/area) on three sides of an in-
finitesimal cube.

2019-06-21

294. Is Sn, n ≥ 1 contractible?

answer. NO!

295. Is Sn, n ≥ 1 simply-connected?

answer. Yes if n ≥ 2. S1 is not simply-connected.

2019-06-18

296. Let f : M → R where M is n-dimensional. Find the Morse index of f at
a nondegenerate max, min and saddle.

answer.

f ◦ y−1 (y1, y2, . . . , yn) = f(p)− y2
1 − · · · − y2

k + y2
k+1 + · · y2

k+2 + · · ·+ y2
n

The integer k, the number of negative signs in the quadratic form, is the
Morse index of the critical point.

The Morse index at p is n if p is an argmax, 0 if p is an argmin and between
0 and n if f(p) is a saddle.

297. The geostrophic approximation is a simplification of the equations govern-
ing

answer. the horizontal components of velocity.

298. The geostrophic approximation is valid when the largest terms in the equa-
tions of motion are

answer. those involving the Coriolis force and the pressure gradient.

299. Spatial and temporal physical situations where the assumption of geostrophic
approximation are generally true?

answer. In the deep ocean over large (over 100 km) spatial and long (over
2 days) temporal scales.
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300. Obtain the geostrophic equation.

answer. For frictionless motion, the horizontal components of the momen-
tum equation are

DuH

Dt
+ fH = −1

ρ
∇Hp

where fH is the horizontal component of the Coriolis force 2Ω× u. In the
limit Ro→ 0,

fH = −1

ρ
∇p

This is called geostrophic equation.

In the GFD case, the vertical component of velocity and Coriolis acceler-
ation is negligible and the horizontal Coriolis acceleration becomes

u =

(
u
v

)
, fH =

(
−v
u

)
f

where f = 2Ω sinϕ.

In open form, the equations read

1

ρ

∂p

∂x
= fv

1

ρ

∂p

∂y
= −fu

301. The equations of the geostrophic approximation are?

answer.
1

ρ

∂p

∂x
= fv

1

ρ

∂p

∂y
= −fu

where f = 2Ω sin θ is the Coriolis parameter, the component of the earth’s
rotation perpendicular to the ocean surface.

302. The number which describes how good the geostrophic approximation is?

answer. If the Rossby number is small then the geostrophic approximation
is good.

303. For which range of Rossby numbers is the geostrophic approximation good?

answer. If Rossby number is smaller than 0.1 then it is usually OK to use
geostrophic approximation.

304. What is the equation of Rossby number?

answer. Ro = U
fL .

305. Describe the Rossby number as the ratio of two forces?

answer. It is the ratio of the inertial force (|v ·∇v| ∼ U2/L) to the Coriolis
force (Ω× v ∼ UΩ)
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306. What is inertial force in NSE?

answer. ρu · ∇u term. It is due to the momentum of the fluid.

The first component of the inertial force F1 measures how much u1 changes
in the direction of u. If u1 stays constant following the flow, then F1 is zero.
The inertial force is non-zero if and only if the velocity field is changing
direction along the flow, that is the flow is not linear.

307. In small Rossby numbers, which term is dominant?

answer. Coriolis forces.

308. In large Rossby numbers, which term is dominant?

answer. Inertial and centrifugal forces.

309. What is Rossby number in tornadoes? What is the conclusion?

answer. Large, in the order of 1000. Coriolis force is negligible and balance
is between pressure and centrifugal forces (called cyclostrophic balance)

310. In a bathtub, what is Rossby number? What is the conclusion?

answer. Length scale is small so Rossby number is large. Planetary rota-
tion is unimportant.

311. In tropics and lower latitudes, what is Rossby number? What is the con-
clusion?

answer. Rossby number is large since the Coriolis parameter f is small.
Planetary rotation is unimportant.

312. What is hydrostatic approximation for the ocean circulation model? When
is it valid?

answer. The hydrostatic approximation is a simplification of the equation
governing the vertical component of velocity.

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
+

1

ρ

∂p

∂z
+ g = Fz

We can see that if friction and the vertical acceleration Dw/Dt are negli-
gible compared to gravity, we obtain: ∂p

∂z = −ρg.

That is pressure depends only on the depth.

313. What is the most realistic set of equations for modelling the ocean circu-
lation? What are its variables?

answer. Primitive equations with variables 3D velocity, density (as a func-
tion of temperature, salinity, and pressure), temperature, salinity, and
pressure (due both to variations in the sea level and the internal density
field).

57



Since it takes a tremendous amount of computer power and time to solve
the full set of equations, a number of different approximations are often
used to simplify the equations to make them quicker and easier to solve.

314. How can dissipative systems maintain persistent behaviours?

answer. Since they lose energy in time they must have influx of en-
ergy/matter.

2019-06-16

315. What is a Rossby wave? Under which conditions they occur?

answer. Rossby waves, also known as planetary waves, naturally occur
in rotating fluids. Within the Earth’s ocean and atmosphere, these waves
form as a result of the rotation of the planet. These waves affect the
planet’s weather and climate.

316. Let M and N be smooth manifolds and f : M → N a smooth map. Show
that f has a pullback f∗ : Hp

dR(N)→ Hp
dR(M).

answer. We need to show that f∗ sends closed forms on N to closed forms
on M and exact forms on N to exact forms on M .

Let θ be a closed form on N then 0 = f∗dθ = df∗θ since dθ = 0.

Now let ω be an exact form, thus ω = dψ. Then f∗ω = f∗dψ = df∗ψ and
f∗ω is exact.

317. Define pullback of smooth maps.

answer. Just precomposition. f : M → N , g : N → A then f∗g = g ◦ f :
M → A.

318. For f : M → N , define the pullback f∗(ω) of a k-form ω on N .

answer. f∗(ω)(X1, . . . , Xk) = ω(df(X1), . . . , df(Xk)) where X is a tangent
vector on M .

The pullback is defined via pushforward.

319. Show that pullback and exterior derivative commutes.

answer. ToDO

320. What is Hk
dR(M), k ≥ 0 if M is a contractible manifold?

answer. Hk
dR(M) =

{
R k = 0
0 k > 0

321. Enthalpy form of the first law of thermodynamics?

answer. dh = Tds + vdp, where dh denotes the enthalpy change, T the
temperature, ds the change in entropy, v = 1

ρ the specific volume, and p
the pressure.
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322. Effect of adiabatic process on the enthalpy form of the first law of thermo-
dynamics?

answer. Put ds = 0 in dh = Tds+ vdp where v = 1/ρ. h is enthalpy.

323. First law of thermodynamics?

answer. Energy is conversed.

324. What is specific volume?

answer. 1/density or V/m.
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325. What are the properties of material derivative?

answer. Linear D(af+bg)
Dt = aDfDt +bDgDt and satisfies Leibniz (product) rule

D(fg)
Dt = Df

Dt g + f DgDt .

326. What is the relation between stratification of flows and gravity? Are strat-
ified flows common?

answer. Gravity causes heavier fluids to sink down. The Earth’s oceans
and atmosphere are both stratified, and so such stratified flows are ex-
tremely common.

327. Does a volume-preserving system on a domain D ⊂ Rn always have a first
integral?

answer. If every closed n−1 form on D is exact. This is true if and only if
the (n-1)th de-Rham cohomology vanishes. This in turn holds if the space
contractible.

When n = 2, this is true

328. Recall Taylor’s theorem in integral form.

answer. Taylor’s Theorem with integral form is explicit, does not involve
an unknown c.

f(a+∆x) = f(a)+f ′(a)∆x+
f ′′(a)

2!
(∆x)2+· · ·+ f (n)(a)

n!
(∆x)n+Rn,a(∆x)

where Rn,a(∆x) = (∆x)n+1

n!

∫ 1

0
f (n+1)(a+ t∆x)(1− t)ndt.

329. (Morse Lemma. One variable case) Consider the Taylor expansion at a
nondegenerate critical point f(a + x) − f(a) = h(x)x2, i.e. f ′(a) = 0,
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f ′′(a) 6= 0. Here h(x) =
∫ 1

0
f ′′(a+ tx)(1− t)dt. Make a change of coordi-

nates y = p(x), p(0) = 0 so that

∆f(x) = f(a+ x)− f(x) = ky2, k =

{
+1, f ′′(a) > 0

−1, f ′′(a) < 0

answer. Let y = p(x) = x
√
|h(x)|. Then

y2 = x2|h(x)| = x2h(x)

{
+1, h(x) > 0

−1, h(x) < 0

Check that h(0) = f ′′(a)
∫ 1

0
(1 − t)dt = f ′′(a)

2 . So h(x) > 0 (resp. <) in a
small neighborhood if f ′′(a) > 0 (resp. <).

Now check that y = p(x) is a coordinate transformation, i.e. p′(0) 6= 0.

p′(x) =
√
|h(x)| ± h′(x)

2
√
|h(x)|

x, if h(x) 6= 0

Hence p′(0) =
√
|h(0)| =

√
|f ′′(a)|/2 6= 0
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330. What is a homology sphere?

answer. A homology sphere is an n -manifold X having the homology
groups of an n− sphere, for some integer n ≥ 1. That is, H0(X,Z) = Z =
Hn(X,Z) and Hi(X,Z) = {0} for all other i. Therefore X is a connected
space, with one non-zero higher Betti number: bn. It does not follow that
X is simply-connected, only that its fundamental group is perfect (see
Hurewicz theorem).

331. In plane in which domains is dθ non-exact?

answer. In a domain which does encircle the origin.

332. Define the kth-Betti number of a smooth manifold M .

answer.

bk(M) := dimHk
dR(M) = dim

closed k-forms

exact k-forms
.

333. What is the zeroth Betti number?

answer. b0(M) = dimH0
dR(M) is the number of connected components of

M
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334. Let M and N be homotopy equivalent manifolds, M ' N . What can be
said about their de-Rham cohomologies?

answer. They are isomorphic at each level, i.e. Hk
dR(M) ∼= Hk

dR(N) for all
k ∈ N.

Why? TodO.

335. Which properties do homotopy equivalance preserve?

answer. X is path-connected if and only if Y is. X is simply-connected if
and only if Y is.

336. What is the relation between Rn − {0} and Sn−1?

answer. There is a homotopy equivalence between them.

337. Show that Rn − {0} and Sn−1 are homotopy equivalent.

answer.

H(x, t) = t
x

|x|
+(1−t)x, H(·, 0) = idRn−{0}, H(·, 1) |Sn−1= idSn−1

H is a deformation retraction of Rn − {0} onto Sn−1 and as a result two
spaces are homotopy equivalent.

338. Homotopy and contractibility?

answer. Spaces that are homotopy equivalent to a point are called con-
tractible. Intuitively, two spaces X and Y are homotopy equivalent if they
can be transformed into one another by bending, shrinking and expanding
operations.

339. Is it true that every homeomorphism is a homotopy equivalence? Prove it
or give a counterexample.

answer. It is true. If f : X → Y is a homeomorphism then let g = f−1

so that f ◦ g = idY and hence trivially homotopic to idY . Conversely,
g ◦ f = idX .

340. Suppose Y ⊂ X, f : X → Y . If H(x, 0) = idX and H(x, 1) = f(x) then
are X and Y homotopy equivalent?

answer. Let g : Y → X such that g(y) = y, ∀y ∈ Y . Suppose that H(x

341. Define the homotopy equivalance (the same homotopy type) of two spaces
X and Y .

answer. There exist continuous maps f : X → Y and g : Y → X such
that g ◦ f is homotopic to the identity map idx and f ◦ g is homotopic to
idy.

61



That is there exists homotopies H : X × I → X and G : Y × I → Y such
that

H(x, 0) = x = id(x), H(x, 1) = g ◦ f(x)

G(y, 0) = y = id(y), G(y, 1) = f ◦ g(y)

342. Let X be any topological space and A be a convex subset of Rn. Then any
two continuous maps f, g : X → A are homotopic.

answer. Take F (x, t) = (1− t)f(x) + tg(x)

343. Let f, g : R → R any two continuous, real functions. Then f ' g, i.e.
homotopic.

answer. Take F (x, t) = (1− t) · f(x) + t · g(x).
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344. Give an example of a linear unstable ODE system with spectrum Reλ ≤ 0.

answer. ẋ = Ax with A =

[
0 1
0 0

]
Then y = y0, x = x0 + y0t.

345. When are the frictional effects negligible for the oceanic/atmospheric flows?

answer. For typical atmospheric and oceanic flows, frictional effects are
negligible except close to boundaries where the fluid rubs over the Earth’s
surface.

346. How deep is the atmospheric boundary layer?

answer. The atmospheric boundary layer – which is typically a few hun-
dred meters to 1 km or so deep

347. The atmospheric boundary layer is complicated because of (1) and (2).

answer. (1) the surface is not smooth, (2) the boundary layer is usually
turbulent.

Extra: (1) there are mountains, trees, and other irregularities that increase
the exchange of momentum between the air and the ground. (This is the
main reason why frictional effects are greater over land than over ocean).
(2) contains many small scale and often vigorous eddies; these eddies can
act somewhat like mobile molecules, and diffuse momentum more effec-
tively than molecular viscosity. The same can be said of oceanic boundary
layers which are subject, for example, to the stirring by eddies generated
by the action of the wind.

62



348. Derive the x component of the pressure force acting on a cubic fluid parcel
within the fluid.

answer. Take a cubic fluid parcel with center at (x, y, z) and sides δx, δy,
δz. The net x -component of the pressure force is

Fx =

[
p

(
x− δx

2
, y, z

)
− p

(
x+

δx

2
, y, z

)]
δyδz

where the first term is the inward pressure on the left face, and the sec-
ond one on the right face. By Mean Value Theorem, x-component of the
pressure force is

Fx = −∂p
∂x
δxδyδz
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349. Write the product rule D(fg)
Dt .

answer. gDfDt + f DgDt .

350. Is an incompressible flow barotropic or baroclinic? What about homoge-
neous flow?

answer. Can be both. Barotropic/baroclinic assumption is about equation
of state. However a homogeneous flow is barotropic since density is a
(constant) function of pressure.

351. Gradient of a radial function f(|r|)?
answer. f ′(|r|) r

|r| = f ′(|r|)r̂.

For a radial function, the level surfaces are spheres and the gradient field
points in the radial direction which is normal to the spheres.

352. In general barotropic means compressible.

353. Let p : R → R, ρ : Rn → R and f : R → R be smooth. Show that
f(ρ)dp(ρ) is exact.

answer. Let w =
∫ ρ
f(λ)p′(λ)dλ. Then dw = f(ρ)p′(ρ)dρ = f(ρ)dp(ρ).
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354. For a vector A of fixed length, rotating about the origin with constant
angular velocity Ω DERIVE dA

dt = Ω×A.

answer. Let γ be the angle between Ω and A.

dA = A(t+ dt)−A(t) = e|A| sin γdθ = e|A| sin γ|Ω|dt

where e is the unit-vector along dA. Hence e ⊥ A and e ⊥ Ω so that
e = Ω×A

|Ω×A| = Ω×A
|Ω||A| sin γ .
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355. For a vector A of fixed length, rotating about the origin with constant
angular velocity ω, dA

dt =?

answer. dA
dt = ω ×A.

356. GFD Momentum equations in a rotating frame?

answer. ρ
[
du
dt + 2ω × u

]
= −∇p+ ρ∇Φ + F Pedlosky 1.6.7

357. Give an integral condition for a 1-form ω to be exact on M?

answer. ω is exact if and only if
∫
γ
ω = 0 for all closed curves γ ⊂ X.

This is equivalent to saying that
∫ B
A
ω doesn’t depend on path (for any

A,B ∈ X). Hence α =
∫ x
A
ω can be defined for which dα = ω.

358. Give an integral condition for a k-form ω to be exact on M?

answer. ω is exact if and only if it is conservative that is
∫
γ
ω = 0 for

all orientable closed k submanifolds of M . By Stoke’s Theorem these
definitions are equivalent.

359. How to keep in mind the sign of the pressure in NSE?

answer. Acceleration is produced by negative pressure gradient since the
flow is from high pressure to low pressure.
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360. If X is a vector field and f : M → R then X(f) =? Why?

answer. df(X). To see, let X = Xi∂i and df = ∂ifdx
i.

X(f) = Xi∂if = df(X)

361. Are biological systems conservative or dissipative?

answer. Dissipative.

362. What is the volumetric part of the Cauchy stress tensor?

answer. −pI where p = 1
3 tr (σ) is the mechanical pressure.

363. For which stress tensor does the NSE reduce to Euler’s equation?

answer. When the stress tensor is T = −pI.

364. Describe the isotropic/anisotropic decomposition of a tensor field. Are
they Symmetric/antisymmetric?

answer. Given a tensor T , isotropic part Tiso = 1
3 tr(T )I is the same as the

isotropic part of the symmetric part S = 1
2

(
T + TT

)
since tr(S) = tr(T ).

The anisotropic part of T is Tan = T −Tiso is traceless but not neccessarily
symmetric/anti-symmetric.
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365. Volumetric/deviatoric decomposition of a tensor? What do they describe?

answer.

σ = σvol + σdev =

(
1

3
tr (σ) I

)
+

(
σ − 1

3
tr (σ) I

)
366. What do the volumetric/deviatoric decomposition terms of a tensor de-

scribe?

answer. Volumetric (aka hydrostatic, mean, isotropic) part is traceful and
is related to the volume change, deviatoric part is traceless and is related
to the shape change.

367. How does the stress tensor σ and external force f show up in Navier Stokes?

answer.

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + f

368. Write the Navier Stokes equation when the stress tensor consists only shear
part.

answer. It becomes Euler equations.

ρ

(
∂u

∂t
+ u · ∇u

)
= ∇ · σ + f = −∇p+ f .

369. Given E(r) = 1
4πε0

∫
all space

ŝ
s2 ρ (r′) dτ ′ where s = r− r′, COMPUTE the

divergence of E(r). (This is Gauss’s law for electricity which is the first
law of Maxwell.)

answer. ∇ ·E = 1
ε0
ρ(r) found by using ∇ ·

(
ŝ
s

)
= 4πδ3(s).

370. Gauss’s Law in integral form?

answer.
∮
S E · da = 1

ε0
Qenc = 1

ε0

∫
V ρdτ .

371. Gauss Law for electrostatic field in differential form?

answer. ∇ ·E = 1
ε0
ρ.

372. Show directly that the flux of electric field through a sphere of radius r of
a single charge q located at the origin is q

ε0
.

answer.
∮
S

E · dA =
∮
S

1
4πε0

(
qr̂
r2 · r

2 sin θdθdφr̂
)

= 1
ε0
q.

373. The flux of electric field through a closed surface?

answer.
∮
S

E · dA = Qenc/ε0 where Qenc is the total charged enclosed,
and ε0 is the permittivity of the vacuum. This is called Gauss Law.
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374. What is the electrostatic Field at r due to a continuous charge distribution
in a volume V ?

answer. E(r) =
1

4πε0

∫
V

r− r′

|r− r′|3
ρ(r′)dr′ where ρ is the charge density.

This can be derived from ∇ ·E = ρ
ε0

.

This can be generalized to electric fields due to line charges and surface
charges.

375. Electrostatic Field at r due to n charges qi located at ri?

answer. E(r) = 1
4πε0

∑n
i=1 qi

r− ri

|r− ri|3
.

376. Electrostatic field at r due to a single charge q located at r0?

answer. E = 1
4πε0

q
r− r0

|r− r0|3
.

377. What does the electric field at a point describe?

answer. The electric field at a point is the net Coloumb’s force at that
point due to charges at the other points.

378. (Coloumb’s Law) Electrostatic force between two charged particles?

answer. The force of charge q to charge Q located at r relative to q.

F = 1
4πε0

qQ
r

|r|3
.

379. A k-form on D is exact if its integral over any compact oriented k-manifold
in D is zero.

answer. Is this true?
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380. What is an equation of state?

answer. A relation between state variables. For ocean: f(ρ, P, S, T ) = 0

381. The curl of vorticity of a divergence-free vector field acts as negative dif-
fusion. Why?

answer. ∇2u = ∇(∇ · u)−∇×∇× u = −∇× ω.

382. Define a barotropic fluid as an equation of state.

answer. A barotropic fluid has an equation of state p = p(ρ) or ρ = ρ(p)
which does not contain the temperature as a dependent variable. Thus
level surfaces of density and pressure coincide.
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383. Define a baroclinic fluid.

answer. The flow is baroclinic if it is not barotropic. That is density is a
not just a function of only pressure but is a function of both pressure and
temperature.
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384. Every closed 2-form is exact in a domain in D if any closed surface S in D
is the boundary of a region V in D.

I think this means, the region can not contain any holes.

385. Show that a simply-connected domain is homologically trivial, that is any
curve C in D is the boundary of a surface in D.

answer. Let c(t) be a parametrization of the curve C and H(t, 0) = c(t)
and H(t, 1) = p be a homotopy between the curve and a point. Then
H(t, s) is a parametrization of a surface D with boundary C. This is
difficult to prove?

386. A domain D for which any closed curve c ⊂ D is the boundary of a sur-
face S ⊂ D is called homologically trivial. A closed 1-form is exact in a
homologically trivial domain. Why?

answer. By Stokes Theorem, the 1-form ω is path-independent. We can
define a 0-form α(p) =

∫ p
p0
ω so that dα = ω.

387. Give an example. A linear stable ODE system with spectrum not contained
in the complex left half plane.

answer. Simple pendulum. ẍ+ x = 0.

388. When is a linear system having eigenvalues of zero real part stable/unstable?

answer. Stable if algebraic and geometric multiplicities of ALL eigenvalues
with zero real part are equal. Unstable otherwise.

389. J̇ = (∇ · u)J implies J(t) = J0 exp
(∫
∇ · u

)
. Does this mean anything?

390. Find d
dtV ol(Ω(t)).

answer.

d

dt
V ol(Ω(t)) =

d

dt

∫
Ω(t)

1dV (x) =
d

dt

∫
Ω0

JdV (a) =

∫
Ω0

J̇dV (a)

=

∫
Ω0

(∇ · u)JdV (a) =

∫
Ω(t)

(∇ · u)dV (x)
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391. If every closed k-form is exact, what can be said about the de-Rham co-
homology?

answer. k-th de-Rham cohomology vanishes.
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392. When does the pullback f(x, t) = f0(φ−1(x, t)) imply that f is transported
by u?

answer. When u is divergence-free. To see, given condition implies ft+u ·
∇f = 0 which in integral form does not imply d

dt

∫
V
fdV +

∫
∂V

fu · n = 0
unless u is divergence-free.

393. Let φ be the flow of an incompressible velocity field u and suppose f is
transported by u. If f0 is a probability density function then so is f(·, t)
for all t and Pt(Ωt) = P (Ω0).

answer. We have J(x, t)f(x, t)dV (x) = J(a, 0)f0(a)dV (a) and J ≡= 1.
By the change of variables formula∫

Ωt

f(x, t)dV (x) =

∫
Ω0

J(a, t)f(a, 0)dV (a).

394. Consider the motion φt generated by u and let Ωt = φt(Ω0). When is∫
Ωt
f(x, t)dV (x) =

∫
Ω0
f(a, 0)dV (a)?

answer. In the incompressible case, that is J(a, t) = det(∇aφt) ≡ 1 since∫
Ωt

f(x, t)dV (x) =

∫
Ω0

J(a, t)f(a, 0)dV (a)

by the change of variables.

395. Show that if the infinitesimal volumes are conserved (i.e. divergence of
flow is zero) then global volumes are also conserved.

answer. Let φ be the flow of an incompressible velocity field u and suppose
f is transported by u, that is define f(x, t) = f0(φ−1(x, t)). If f0 is a
probability density function then so is f(·, t) for all t and P (Ωt) = P (Ω0).

answer. ToDO: transport http://faculty.virginia.edu/rohde/transport/
OTCrashCourse.pdf.

This is a consequence of the change of variables formula∫
Ωt

f(x, t)dV (x) =

∫
Ω0

J(a, t)f(a, 0)dV (a).
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396. Let J(x, t)f(x, t) = f0(a) where J > 0 is the Jacobian of the motion φ
generated by u and x = φ(a, t). Find the equation satisfied by f . What
happens in the special case J ≡ 1?

answer.
D (Jf)

Dt
:= ft +∇ · (fu) = 0

J ≡ 1 =⇒ Df

Dt
:= ft + u · ∇f = 0

To see, Take the time derivative of both sides and use DJ/Dt = J(∇ · u)
to get

0 =
DJ

Dt
f + J(ft + u · ∇f) = J(f(∇ · u) + ft + u · ∇f) = ft +∇ · (fu)

397. Research statistical mechanics for ODEs.

answer. ToDO

398. If the flow map is volume preserving in the phase space then if an ensemble
of initial data in the phase space is stretched in some direction under the
flow map, it must be compensated for by squeezing in some other direction
under the flow map and vice versa. This kind of stretching/squeezing
together with the bending/twisting (mixing) implied by the non-linearity is
a key mechanism in the complex/chaotic behavior of the dynamical system
and in the tendency towards statistical equilibrium for large ensembles of
trajectories.
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399. What are the characteristics of GFD?

answer. 1) shallow or thin, i.e., horizontal length scales is much larger
than the vertical length scales, 2) stratified, i.e., the vertical variation in
density is important, and 3) rapidly rotating.

400. (Reynolds’ Transport Theorem)

d

dt

∫
V (t)

θdV =

∫
V (t)

(
∂θ

∂t
+ div(θu)

)
dV

What do the terms on the right describe?

answer. First term is generated by the unsteadiness of the field.

Second term is the transport of θ by u across the boundary of V (t).
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401. What is the type of matrix whose columns form an orthonormal basis in
Cn?

answer. Unitary. AA∗ = I.

402. For which A,
∫∫
S

A ·dS = 0 for every orientable surface S without bound-
ary?

answer. This is the definition of A · dS being an exact 2-form, that is
A = ∇× F. Then by Stokes Theorem

∮
∂S

F · dr =
∫∫
S
∇× F · dS = 0.

Alternatively, if A is closed (∇·A = 0) and S is the boundary of a volume
region V then ∫∫

S

A · dS =

∫∫∫
V

∇ ·AdV = 0

403. Why is a contractible space path-connected?

answer. The identity map on X is homotopic to the constant map x→ x0,
that is H(0, x) = x, H(1, x) = x0 and H is continuous. Take any point
p ∈ X then c(t) = H(t, p) is a path between p and x0. Hence any point p
is path connected to x0.

404. Two layer topography https://www.duo.uio.no/bitstream/handle/10852/

64575/jostein_brandshoi_master_2018.pdf?sequence=1&isAllowed=y

405. Shallow water equations? http://www.mathematik.tu-dortmund.de/lsiii/

cms/papers/Kuehbacher2009.pdf http://pordlabs.ucsd.edu/jen/gfd/

hw/shallow_water_pv.pdf http://www.cgd.ucar.edu/staff/islas/teaching/

5_Shallow_QG.pdf http://barnes.atmos.colostate.edu/COURSES/AT601_

F15/lecture_material/12_lecture_notes_handouts.pdf https://gfd.

whoi.edu/wp-content/uploads/sites/18/2018/03/lecture8-harvey_136564.

pdf

406. Basic tensor calculus?

407. 3D vorticity equation for a baroclinic, compressible, inviscid flow?

answer. D~ω
Dt ≡

∂~ω
∂t +(~u·~∇)~ω = (~ω · ~∇)~u︸ ︷︷ ︸

vortex stretching

−~ω(~∇·~u)+
1

ρ2
~∇ρ× ~∇p︸ ︷︷ ︸

baroclinic contribution

.
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408. When does an incompressible irrotational flow on a given domain exist and
is unique?

answer. If the domain D is simply-connected and either (1) u · n or (2)
u× n is specified.
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In either case the flow MUST be given by the gradient of a harmonic
potential, u = ∇φ. There are infinitely many harmonic functions unless a
boundary condition is specified.

(1) u · n = g on ∂D implies ∇φ · n = g on ∂D. Hence by the Neumann
problem, vector potential is unique up to a constant which means u is
unique.

(2) u× n = g on ∂D implies ∇φ× n = g on ∂D. ??? When g = 0 and in
2D this means φ is constant on the boundary curve which is the Dirichlet
condition for the potential.

Q. What happens on multiply-connected domains?

409. (Baroclinic term) −
∮
C
∇p
ρ · d~x =

∫∫
A

?

answer.

∫
A

∇ρ×∇p
ρ2

· n̂dA.

410. Basic Stokes Theorem and meaning?

answer.
∫∫
S

(∇×u) ·ndA =
∮
∂A

u · dr. Sum of small circulations equal to
big circulation.

411. What is baroclinity vector? What does it measure?

answer. ∇p × ∇ρ is called the baroclinity vector and measures whether
constant density (isopycnic) and constant pressure (isobar) surfaces are
aligned. A barotropic fluid is one for which baroclinity vector is zero.

412. State Kelvin’s Circulation Theorem.

answer. For
Du

Dt
= ∇Φ

d

dt

∫
Ωt

u · dx = 0

If the material derivative of the velocity is irrotational then the circulation
of velocity around a material curve is a conserved property.

For example inviscid barotropic flow under conservative forces.

413. What is the relation between the ∇2u and the vorticity for a divergence
free field?

answer. ∇2u = ∇(∇ · u)−∇×∇× u = −∇× ω.

414. What is dΓ
dt , the rate of circulation for viscous flows?

answer.
dΓ

dt
=

∮
Ct

(−1

ρ
∇p+ ν∇2u) · dx.
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To see,

dΓ

dt
=

d

dt

∮
Ct

u · dx =

∮
Ct

Du

Dt
· dx +

∮
Ct

u · du =

∮
Ct

Du

Dt
· dx

415. Baroclinity and viscous forces gives rise to circulation. Why?

answer. dΓ
dt = −

∮
Ct

( 1
ρ∇p− ν∇

2u) · dx.

416. Under which boundary conditions is a harmonic function unique?

answer. ToDO

417. Up to a choice of an orthonormal basis, a normal matrix is ...

answer. a diagonal matrix.

418. Necessary and sufficient conditions for a matrix to have a set of eigenvectors
which form an orthonormal basis?

answer. If and only if it is normal. Easy to remember: The eigenbasis is
orthonormal iff the matrix is normal. Proof in other questions.

419. Show that if a matrix is normal then it has a set of eigenvectors which
form an orthonormal basis.

answer. Suppose A is normal then by Schur decomposition A = UTU∗

where U is unitary and T is triangular. Since AA∗ = A∗A,

UTT ∗U∗ = AA∗ = A∗A = UT ∗TU∗

TT ∗ = TT ∗ and T is normal as well. A normal triangular matrix must be
diagonal. Thus T is a diagonal matrix of eigenvalues of A, U is the unitary
matrix of eigenvectors.

420. If A ∈Mn(C) has an orthonormal basis then show that A is normal.

answer. Suppose U is a unitary matrix of eigenvectors of A then u∗jAui =
u∗jλiui = λiδij , that is U∗AU = D or A = UDU∗. This shows that

AA∗ = (UDU∗)(UD∗U∗) = UDD∗U∗ = UD∗DU∗ = A∗A.

421. If {u1, . . . , un} form an orthonormal basis for Cn then what is the property
of the matrix U = (u1, . . . , un)? Why?

answer. U is unitary since (ui, uj) = u∗i uj = ui
Tuj = δij .

422. Express u · ∇u as a dyadic?

answer.
(u · ∇)u = div(u⊗ u)− div(u)u

since
(div(u⊗ u))j = ∂i (uiuj) = div(u)uj + uiuj,i.
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423. What is the dyadic product u⊗ v?

answer. The tensor uivj .

2019-05-29

424. Euler’s equation including gravity?

answer. ∂v
∂t + (v · ∇)v = −∇pρ − gk

425. What is the hydrostatic balance equation for a homogeneous fluid at rest?

answer. dp
dz = −ρ(z)g or p = −g

∫ z
0
ρ(z′)dz′.

426. Derive the hydrostatic balance equation dp
dz = −ρg for a homogeneous

fluid at rest using the vertical balance between pressure and gravity. (This
balance can also be derived from NSE)

answer. Fluid parcel at equilibrium. Ftop = −ptopA, surface area A.
Fbottom = pbottomA. The weight of the parcel Fweight = −ρA∆zg. Balanc-
ing Ftop + Fbottom + Fweight = 0 gives ∆p = −ρg∆z.

427. What does the principle of hydrostatic equilibrium tell?

answer. The principle of hydrostatic equilibrium is that the pressure at
any point in a fluid at rest (whence, hydrostatic) is just due to the weight
of the overlying fluid.

2019-05-28

428. Surface element in constant radius r in spherical coordinates:

answer. dS = dsθdsφ = r2 sin θdθdφ.

429. The volume element in spherical coordinates?

answer. dv = dsrdsθdsφ = r2 sin θdrdθdφ.

430. The line element in spherical coordinates?

answer. dl = dsr r̂ + dsθθ̂ + dsφφ̂ = drr̂ + rdθθ̂ + r sin θdφφ̂.

431. What is the circulation of a gradient field?

answer. Zero.

2019-05-27

432. Prove that KerAT = Im(A)⊥.

answer. x ∈ Ker(AT )⇔ ∀x,< Ax, y >= 0⇔ y ∈ ImA⊥.
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433. State Fredholm alternative verbally.

answer. Either the linear equation has a solution for a given data or
else the homogeneous adjoint problem has a nontrivial solution and this
solution is orthogonal to the given data.

2019-05-26

434. An n-layered fluid would have a barotropic mode and n-1 baroclinic modes.
A continuously stratified fluid essentially has an infinite number of layers,
and so has an infinite number of baroclinic modes.

435. If b ∈ Ker(AT ) \ {0}, can you solve Ax = b?

answer. No! To see, 0 = (x,AT b) = (Ax, b) = (b, b) = |b|2. This is also a
consequence of Ker(AT ) = Im(A)⊥.

436. Compute directly the flux of r̂/r2 over a sphere of radius R.

answer.

∮
v · da =

∫ (
1

R2
r̂

)
·
(
R2 sin θdθdφr̂

)
= area of unit sphere = 4π

Second way: ∇ · v = 1
r2

∂
∂r

(
r2 1
r2

)
= 0 and use divergence theorem.

437. What is an implicit solution to a first order ODE?

answer. G(x, y) = 0 is an implicit solution to the ODE dy
dx = f(x, y) if

there is a function y = g(x) which satisfies both the ODE and functional
relation.

example. G(x, y) = x2 + y2 − c = 0, c > 0 is an implicit solution to
dy
dx = −xy . Why? Because suppose Gy(x0, y0) = 2y0 6= 0 then by IFT

y = g(x) for x ∈ I for some I containing x0 and dg
dx = −Gx(x,g(x))

Gy(x,g(x)) = − x
g(x) .

That is there exists a function satisfying both equations.

438. What is the simplest configuration that yields a baroclinic QG structure?

answer. Two-layer system.

439. (Bathymetry) two-dimensional bump-like topography

hB(x, y) = h0 cos (ktx) cos (lty)

hB(x, y) = h0 sin (ktx) sin (lty)

where hB(x, y) denotes the topographic height above the resting depth of
the fluid, h0 the maximum/minimum amplitude and kt and lt the topo-
graphic wavenumbers in the x− and y -direction.
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440. (Rossby waves) The ocean responds to changes in atmospheric forcing via
the planetary (Rossby) waves, which propagate westward across the basin
[Anderson and Gill, 1975]. These have scales of hundreds to thousands of
kilometers and are clearly observed in satellite measurements of sea surface
height (SSH) [Chelton and Schlax, 1996]. LaCasce and Pedlosky [2004]
suggested these waves are unstable, breaking into smaller, deeper eddies.
This would have an enormous impact on oceanic adjustment, making it
much more turbulent.

441. The bathymetry was excluded from the ocean theory in the past because
the general thinking was that (*) is weak, so the (**) is probably also weak.

answer. (*) deep motion, (**) topographic influence.

Extra: Much ocean theory in the past, though, has ignored bathymetry,
treating the bottom as a smooth, flat surface. For example, the models
of Stommel [1948], Munk [1950], Stommel and Arons [1960], Anderson
and Gill [1975] and Fofonoff [1954] all assumed a flat bottom. However,
recent work (e.g. de La Lama et al. [2016] and LaCasce [2017]) suggests
topography influences the ocean response throughout the water column
further and significantly the vertical structure of the flow.

2019-05-25

442. (Sylvester’s Theorem). Every square symmetric invertible matrix is con-
gruent to a diagonal matrix with entries ±1. The number of positive (resp.
negative) entries is equal to the number of positive (resp. negative) eigen-
values. Prove it!

answer. By spectral theorem, A = QDQ−1. D = diag(λi). As A is
invertible, λi 6= 0. Let U = diag(

√
|λi|). Then A = QTUTD′UQ where

D′ = diag(sign(λi)).

443. Let A be a bounded region in R2.
∮
∂A
Pdx+Qdy =?

answer.
∫∫
A

(Qx−Py)dxdy. Since for ω = Pdx+Qdy, dω = (Qx−Py)dxdy
and the result follows from Stokes Theorem.

444.
∫∫
A
∇×F · kdA =

∫
∂A

? where F : R2 → R2 and A is a bounded region in
R2.

answer. Circulation.
∮
∂A

F · dr

445.
∮
∂A

F · dr =
∫∫
A

? where F : R2 → R2 and A is a bounded region in R2.

answer.
∫∫
A
∇× F · kdA

446. If C is the boundary curve of A in the plane
∮
C

F · nds =
∫∫

?

answer.
∫∫
A

div FdA
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447. (Manifold theory). What is a derivation?

answer. D : C∞(M) → C∞(M) is linear and satisfies the Leibniz rule:
D(fg) = gDf + fDg where f , g are smooth real valued functions.

448. Does −∆u = f in U , ∇u · n = g in ∂U have a unique solution? Prove.

answer. The solution is unique up to a constant if and only if the com-
patibility condition∫

U

fdV =

∫
U

−∇ · ∇udV = −
∫
∂U

gdS

is satisfied. Take w = u1 − u2. Then −∆w = 0 and 0 =
∫
U
|∇w|2 dV .

Hence w is constant.

449. Relate the Eulerian conservation of mass 0 = Dρ
Dt + ρ∇ ·u and Lagrangian

conservation of mass ρJ = ρ0 or ρ(φ(a, t), t)J(φ(a, t), t) = ρ0(a).

answer.

0 =
Dρ

Dt
+ ρ∇ · u =

Dρ

Dt
+ ρ

1

J

DJ

Dt
=

1

J

D

Dt
(ρJ) =⇒ 0 =

D

Dt
(ρJ)

Recall that the solution of Df
Dt = 0 is f(φ(a, t), t) = f(φ(a, 0), 0) = f0(a).

Thus
ρ(φ(a, t), t)J(φ(a, t), t) = ρ0(a)J(a, 0) = ρ0(a)

which is the Lagrangian conservation of mass.

450. What is material derivative in Lagrangian coordinates?

answer. Time derivative with fixed a.

∂F (a, s)

∂t
=

d

ds
(f(φ(a, s), s)) =

Df(x, s)

Dt

∣∣∣∣
x=φ(a,s)

where f(φ(a, t), t) = F (a, t).

To see,

∂F (a, s)

∂t
=

d

ds
(f(φ(a, s), s)) = ft(φ(a, s), s) + (U(a, s) · ∇)f(φ(a, t), t)

= ft(φ(a, s), s) + (u(φ(a, s), s) · ∇)f(φ(a, s), s)

=
Df(x, s)

Dt

∣∣∣∣
x=φ(a,s)

Example. F (a, t) = at2, φ(a, t) = at, φ−1(x, t) = x
t , U(a, t) = a, u(x, t) =

U(φ−1(x, t), t) = x
t . Then

f(x, t) = F (φ−1(x, t), t) = F
(x
t
, t
)

= xt
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∂F (a, s)

∂t
= 2as

Df(x, s)

Dt
|x=φ(a,s)= x+

x

s
s |x=φ(a,s)= 2x |x=φ(a,s)= 2as

∂F (a, s)

∂t
=
Df(x, s)

Dt

∣∣∣∣
x=φ(a,s)

451. What kind of relation is the equation of state for sea water?

answer. ρ = ρ(T, S, p)

T = Temperature: ocean range: −2◦C to 30◦C

S = Salinity = mass of salt (gm) dissolved in 1 kg seawater

http://mason.gmu.edu/~bklinger/seawater.pdf

452. Is sea water essentially compressible or incompressible?

answer. Incompressible.

2019-05-24

453. For barotropic incompressible Euler’s equation under conservative forces,
what can be said about the stability of irrotational flows in (A) 2D, (B)
3D case?

answer. In 2D case, Dω
Dt = 0 vorticity is a conserved quantity, so if initial

vorticity is small, it will always stay small. This is not the case as in 3D
case Dω

Dt = ω·∇u. An initially irrotational flow always will stay irrotational
but if slightly preturbed, vorticity may grow.

454. For 2D viscid incompressible barotropic flows under conservative forces,
derive the vorticity equation.

answer. Dω
Dt = ν∆ω since in this case the equations of motion ut + (u ·

∇)u = ν∆u +∇P and ∇× (u · ∇u) = (u · ∇)ω.

455. Expand ∇× (u · ∇u).

answer. ∇× (u · ∇u) = (∇ · u + u · ∇)ω − (ω · ∇)u

proof.

(1) u · ∇u = 1
2∇(u · u)− u× (∇× u) = ∇

(
v2

2

)
− u× ω = ω × u

(2) ∇× (A×B) = (∇ ·B + B · ∇)A− (∇ ·A + A · ∇)B

(3) ∇× (ω × u) = (∇ · u + u · ∇)ω − (ω · ∇)u
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456. Which terms remain in the expansion of ∇× (u · ∇u) when (A) ∇·u = 0,
(B) in 2D?

answer. The expansion is (see ENCUNU)

∇× (u · ∇u) = (∇ · u + u · ∇)ω − (ω · ∇)u

(A)
∇ · u = 0 =⇒ ∇× (u · ∇u) = (u · ∇)ω − (ω · ∇)u

(B)
In 2D ∇× (u · ∇u) = (∇ · u + u · ∇)ω

since ω(x, y) = (0, 0, ω(x, y)) and u(x, y) = (u1(x, y), u2(x, y), 0).

457. Write the second order central scheme for second derivative f ′′(x).

answer. f ′′(x) ≈ f(x+h)−2f(x)+f(x−h)
h2 . Why h2?

458. Give 3 examples of barotropic stratification.

answer. (1) Ideal gas with constant temperature, (2) a fluid where pressure
and density are functions of elevation only, (3) A homogeneous fluid.

459. Let
Ω1 =

{
fdθ | f : S1 → R, i.e. f(0) = f(2π)

}
T : Ω1 → R, T : fdθ →

∫
S1

fdθ =

∫ 2π

0

f(θ)dθ

T is a linear map between vector spaces Ω1 and R.

(1) What is KerT? Why?

(2) What is DomT? Why?

answer. (1) KerT = Ω1
exact because if

∫ 2π

0
f(θ)dθ = 0 then the scalar

function g(θ) =
∫ θ

0
f(θ′)dθ′ is a 0-form on S1 since g(0) = g(2π) and

dg = fdθ.

(2) DomT = Ω1 = Ω1
closed since every 1-form on S1 is closed.

460. Show that H1
dR(S1) ∼= R.

answer. Let

Ω1 =
{
fdθ | f : S1 → R, i.e. f(0) = f(2π)

}
T : Ω1 → R, T : fdθ →

∫
S1

fdθ =

∫ 2π

0

f(θ)dθ

T is a linear map between vector spaces Ω1 and R.
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• KerT = Ω1
exact because if

∫ 2π

0
f(θ)dθ = 0 then the scalar function

g(θ) =
∫ θ

0
f(θ′)dθ′ is a 0-form on S1 since g(0) = g(2π) and dg = fdθ.

• DomT = Ω1 = Ω1
closed since every 1-form on S1 is closed.

• ImT = R. This is obvious since T ( c
2πdθ) = c, for any c ∈ R.

Hence by the definition of de-Rham cohomology and the first isomorphism
theorem,

H1
dR(S1) = Ω1

closed/Ω
1
exact = Dom(T )/Ker(T ) ∼= Im(T ) ∼= R.

461. What is a direct method to prove that de-Rham cohomology Hk(M)is a
given vector space V ?

answer. Construct map T : Ωk(M)→W whose domain is closed k-forms,
kernel is exact k-forms, and image isomorphic to V .

462. What is H1
dR(M) if M is simply-connected?

answer. {0} since any closed 1-form on a simply-connected space is exact.

Also, integrals of closed 1-forms over homotopic paths are equal. And in
a simply-connected space, any loop is homotopic to a trivial loop. Thus
closed 1-forms are path-independent and thus exact.

463. If A−1 exists, what is d
dt det(A)?

answer. d
dt det(A) = det(A) tr

(
dA
dt A

−1
)

= det(A) tr
(
A−1 dA

dt

)
. Note tr(AB) =

tr(BA).

464. In a barotropic flow, density is a function of pressure and also pressure is
a function of density!

answer. True.

465. Is a homogeneous density fluid always barotropic or baroclinic?

answer. Barotropic.

2019-05-23

466. Define functional independence of k functions in a domain.

answer. If their gradients are linearly independent at each point. Equiva-
lently the matrix of gradients has full rank at each point.

467. Give a condition so that three functions on R3 are functionally indepen-
dent.

answer. ∇f1 · (∇f2 ×∇f3) 6= 0 otherwise say ∇f3 = c1∇f1 + c2∇f2.
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468. When do level surfaces of two functions on f, g : Rn → R coincide?

answer. When ∇f = λ∇g and ∇f 6= 0, ∇g 6= 0, that is f and g are
functionally independent. In R3 this is identical to ∇f ×∇g = 0.

469. When do level surfaces of two functions on f, g : R3 → R coincide?

answer. When ∇f ×∇g = 0 and ∇f 6= 0, ∇g 6= 0.

470. Give a condition so that two functions on R3 are functionally independent.
What does the condition tell?

answer. ∇f1 ×∇f2 6= 0 since two functions are functionally dependent if
∇f1 = k∇f2.

This means local level surfaces of the functions do not coincide.

471. In 3D, write ∇F1 ×∇F2 as Jacobians.

answer. =
(
∂(F1,F2)
∂(y,z) , ∂(F1,F2)

∂(z,x) , ∂(F1,F2)
∂(x,y)

)
.

472. Show that barotropic (consider both p = P (ρ) and ρ = R(p) cases) flows
are isentropic that is there exists w such that ∇w = 1

ρ(p)∇p.

answer. 1st case: Assume p = p(ρ) and define w =
∫ ρ p′(λ)

λ dλ. Then

wx = p′(ρ)
ρ ρx and ∇w = p′(ρ)

ρ ∇ρ = 1
ρ∇p(ρ).

2nd case: ρ = ρ(p) and define w =
∫ p 1

ρ(λ)dλ. Then ∇w = 1
ρ(p)∇p.

473. If f : R3 → R, g : R3 → R and h : R→ R such that f(x) = h(g(x)) then

∇f ×∇g = 0

since ∇f = h′(g(x))∇g. Is the converse true?

answer. If ∇f 6= 0 and ∇g 6= 0, then LOCALLY this is true. For the
proof see Advanced Calculus 3rd Edition by Taylor pg 264-265. The proof
is nice. ToDO.

474. True or False? Constant density fluids are isentropic.

answer. True. A fluid is isentropic when there is enthalpy function w with
1
ρ∇p = ∇w.

475. Write the rate of change of circulation of velocity on a material line for 3D
NSE. When is it zero (Kelvin’s Theorem)?

answer. For
Du

Dt
= −1

ρ
∇p+ ν∆u + F

d

dt

∫
Ct

u(x, t) · dx =

∫
Ct

Du

Dt
· dx
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This is zero for isentropic (− 1
ρ∇p = ∇w), inviscid (ν = 0) flows under

conservative forces (F = ∇f).

476. (Kelvin’s Circulation Theorem) Prove that if

Du

Dt
= ∇w +∇f

then
d

dt

∮
Ct

u(x, t) · dx = 0

(isentropic flow under consevative force)

answer. By transport theorem for curves

d

dt
Γ(t) =

∫
Ct

D

Dt
u(x, t) · dx +

∫
Ct

1

2
d(|u|2)

=

∫
Ct

D

Dt
u(x, t) · dx =

∫
Ct

∇(w + f) · dx = (w + f) |Ct= 0.

since d |u|2 = ∇
∣∣u2
∣∣ · dx.

477. State the transport theorem for curves, d
dt

∫
Ct

g(x, t) · dx =?

answer.

d

dt

∫
Ct

g(x, t) · dx =

∫
Ct

D

Dt
g(x, t) · dx + g(x, t) · du.

since

d

dt

∫
Ct

g(x, t) · dx =
d

dt

∑
i

gi ·∆xi =
∑
i

(
Dgi
Dt
·∆xi + gi ·∆ui)

478. Write the equation of motion for an inviscid, isentropic fluid in the presence
of conservational body forces.

answer.
Du

Dt
= −∇w +∇f

w is the enthalpy, ∇w = 1
ρ∇p.

479. What is an isentropic flow? What is the origin of the name?

answer. 1
ρ∇p = ∇w. The scalar w is called enthalpy.

This terminology comes from thermodynamics, which state that

dw = Tds+
1

ρ
dp

where s is the entropy. If s is constant, hence the name isentropic.
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480. For D ∈ R2, find the form of Green’s function ∆xG(x− x′) = δ(x− x′) in
D and G = 0 on ∂D.

answer. Let G(x, x′) = 1
2π ln(|x− x′|) + h(x) where ∆h = 0 on D and

h(x) = −1
2π ln(x− x′) on ∂D.

481. X{f,g} in terms of the commutator?

answer. X{f,g} = [Xf , Xg]

2019-05-22

482. Spectral theorem (Hilbert-Schmidt Theorem) in infinite dimensional spaces?
(1) Space, (2) Operator, (3) Basis, (4) Properties of eigenvalues.

answer. Suppose A is a linear, compact, self-adjoint operator on an in-
finite dimensional (real or complex) Hilbert space H. Then there is an
orthonormal basis of R(A) consisting of eigenvectors of A, that is

Au =

N∑
i=1

λi 〈ϕi, u〉ϕi for all u ∈ H.

Each eigenvalue is real. If eigenvalues are ordered so that

|λn+1| ≤ |λn|

then
lim
n→∞

λn = 0

483. What is H0
dR(M) when M has k connected components?

answer. H0
dR(M) ∼= Rk.

484. Show that H0
dR(M) ∼= Rk when M has k connected components.

answer. Let M = ∪ki=1Mi. Then the functions χMi form a basis for the
vector space of closed 0-forms. The only exact 0-form is the zero function.

485. What is H0
dR(M) when M is connected?

answer. H0
dR(M) = R since closed 0-forms are constants, a 1-d vector

space and exact 0-forms is trivial space.

486. Define the k-th de Rham cohomology space.

answer. The vector space Hk
dR(M) = { closed differential k forms on M}

{ exact differential k forms on M} . It is

equivalence classes of closed forms which differ by an exact form.

487. For which A is x→ Ax a linear vector field on Sn−1?

answer. When A is skew-symmetric.
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488. Why, for skew-symmetric A, x→ Ax a linear vector field on Sn−1?

answer. Since it that case 〈x,Ax〉 = 0 which means Ax is tangent to Sn−1.
Or alternatively, etA ∈ SO(n) and etAx0 ∈ Sn−1 if x0 ∈ Sn−1.

489. 〈x,Ax〉 = 0 if and only if A is ...

answer. skew-symmetric. proof not hard. http://www-math.mit.edu/

~larsh/teaching/vectorfields.pdf.

490. Radial harmonic functions on Rn \ {0}, n ≥ 2?

answer. In R2: a ln r + c, In Rn: ar2−n + b, n ≥ 3.

491. Is angle dimensional?

answer. No. Angle of an arc is arc length over radius which is a ratio of
two length units.

492. Give an example to show that angle is non-dimensional.

answer. Length of arc of radius r and angle θ is rθ. Since rθ has dimension
length then θ must be non-dimensional.

493. State the spectral theorem for normal matrices and compare with Hermi-
tian case.

answer. For normal matrices we have

A = UDU∗

where D is a diagonal matrix of eigenvalues of A and U is an unitary
matrix of corresponding eigenvectors. The difference with the Hermitian
case is D may be complex.

494. Show that if all the eigenvalues of a normal matrix A are real then A is
Hermitian.

answer. By spectral theorem, we have A = UDU∗ where D is a diagonal
matrix of eigenvalues of A and U is an unitary matrix of corresponding
eigenvectors. Since D is real, A∗ = UD∗U∗ = A.

495. State the spectral theorem for symmetric and hermitian matrices.

answer. Real Case. Any symmetric real matrix A can be diagonalized
by an orthogonal matrix, that is D = QTAQ where D is a real diagonal
matrix of eigenvalues.

Complex Case. Any Hermitian matrix A can be diagonalized by an uni-
tary matrix, that is D = QTAQ where D is a real diagonal matrix of
eigenvalues.
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496. What is the difference between orthogonal and unitary matrices?

answer. For orthogonal matrices QQT = I and for unitary matrices
UU∗ = I where ∗ conjugate transpose. For real matrices, a matrix is
unitary if and only if it is orthogonal.

497. Do eigenvectors of a Hermitian matrix must be real as well? What is the
property of the matrix of eigenvectors?

answer. No they only form a unitary matrix (meaning vi ·v∗j = δij) . Take

A =

 3 2− i −3i
2 + i 0 1− i

3i 1 + i 0

. Then

v1 =

 −1
1 + 2i

1

 (λ1 = −1),

 1− 21i
6− 9i

13

 (λ2 = 6),

 1 + 3i
−2− i

5

 (λ3 = −2).

Checked by Mathematica as well.

498. 2019-05-21

499. Write the 5-point stencil finite-difference scheme for the 2D-Laplacian.

answer. This can be seen easily when considering a finite-difference ap-
proximation to the Laplacian:

∇2f(x, y) ≈
f(x+ h, y) + f(x− h, y) + f(x, y + h) + f(x, y − h)− 4f(x, y)

h2
=

f(x+ h, y)− 2f(x, y) + f(x− h, y)

h2
+
f(x, y + h)− 2f(x, y) + f(x, y − h)

h2
=

1

h2

∑
h

f(x + h)− f(x)

This describes the averaging property of Laplacian. Why h2?

500. What is the idea that every closed 1-form on a simply-connected space is
exact?

answer.
∫
C
α depends only on the end points by Stokes Theorem since∫

∂R
α =

∫∫
R
dα = 0 since α is closed. Thus the function f(P ) =

∫ P
P0
α is

well-defined and is an anti-integral.

501. What can be said about the curl of a radial vector field?

answer. It is zero.

proof. Let v = f(r)(xi + yj + zk). By symmetry, it suffices to check
v3,y − v2,z = 0. v3 = f(r)z and v3,y = f ′(r)yr z and v2,z = f ′(r) zr y.
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502. Expand ~∇ · ( ~A× ~B)

answer. (∇× ~A) · ~B − ~A · (∇× ~B)

503. Write the integration by parts
∫∫∫

u · (∇× v)dV .

answer.
∫∫∫

u · (∇× v)dV =
∫∫∫

(∇× u) · vdV +
∮

u · (n× v)dS.

Proof is not important. ∇ · (u× v) = (∇× u) · v − u · (∇× v).

By divergence theorem,
∮

(u×v)·dS =
∫∫∫

(∇×u)·vdV −
∫∫∫

u·(∇×v)dV .

Finally, by the triple product propert (just determinant), (u × v) · n =
−u · (n× v).

504. Write the integration by parts
∫∫∫

u(∇× v)dV .

answer.

∫∫∫
u(∇× v)dV =

∮
u(n× v)dS −

∫∫∫
(∇u× v)dV .

ToDO: Can this be expressed by differential forms?

Reason (proof is not important, remember the form). In
∫∫∫

u·(∇×v)dV =∫∫∫
(∇ × u) · vdV −

∮
(u × v) · dS, take u = ue where e is arbitrary and

constant. Use (1) (∇× u) · v = (∇u× e) · v = −e · (∇u× v) (think triple
product as determinant), (2) n · (ue× v) = −eu · (n× v)

e ·
∫∫∫

u(∇× v)dV = −e ·
∫∫∫

(∇u× v)dV + e ·
∮
u(n× v)dS

505. What is the physical meaning of ct +∇ · (cv) = 0?

answer. This means c is a conserved quantity transported by u and there
is no diffusion and no source/sink. The equation can be derived from
0 = d

dt

∫
Wt
cdV =

∫
Wt

(ct +∇ · (cv)) dV where Wt is a material region.

2019-05-20

506. Show that the Poisson equation has at least one solution on Rn if we look
for solutions that vanish at infinity.

answer. We need to show that the particular solution
∫
Rn G(x−x′)f(x′)dx′

vanishes at infinity.

507. Show that Poisson equation ∆u = f has at most one solution on Rn if we
look for solutions that vanish at infinity.

answer. If there are two solutions u1, u2 then u = u1−u2 is harmonic and
vanishes at infinity. Since there is no non-trivial harmonic function that
vanishes at infinity, u ≡ 0.
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508. What condition has to be put so that the inverse Laplace ∆−1 is well-
defined on Rn?

answer. We can put the condition that we are looking for a function which
vanishes at infinity lim|x|→∞ u(x) = 0. There are no harmonic functions
which vanish at infinity. Still incomplete.

509. Is the inverse of the Laplace operator defined on Rn when no condition for
the inverse is specified. Why?

answer. Because if h is a harmonic function on Rn such as h(x) = xi and
∆u = f then ∆(u+ h) = f and ∆−1 is not well-defined.

510. Show uniqueness for −∆u = f in U and u = g on ∂U . (Extra: Prove in
two different ways.)

answer. 1st way. Maximum principle: The difference of two solutions
satisfies the homogeneous equation and homogeneous BC which must be
zero by the max principle. 2nd way. Energy method: w = u1 − u2.

0 =
∫
U

∆wwdV = −
∫
U
|∇w|2 dV . Hence w = c in U and by the boundary

conditions w = 0.

511. Prove that KerAT = (ImA)⊥.

answer. y ∈ KerAT ⇐⇒ (Ax, y) = 0, ∀x ⇐⇒ y ∈ (ImA)⊥.

512. How to define the differential of a map f : M → N using the derivation
definition of tangent space?

answer. For g : N → R define dfp(X)(g) = X(g ◦ f).

513. In 2D, give 3 classes of harmonic functions. Which of them satisfy the
condition lim|x|→∞ h(x) = 0?

answer. Polynomials: a(x2 − y2) + bxy, radially symmetric: a ln r + b,
exponentials: : ekx sin(ky), . . . .

None of these functions satisfy lim|x|→∞ h(x) = 0 except for h(x) = 0.

514. State the conservation of mass in Lagrangian form.

answer. ρ0(a) = ρ(φ(a, t), t) det
(
∂φ(a,t)
∂a

)
= ρ(φ(a, t), t)j(φ(a, t), t).

To see, taking derivative w.r.t t

0 =
D

Dt
(ρ(·)j(·)) = j(·)Dρ(·)

Dt
=⇒ Dρ(·)

Dt
= 0

515. Name the equation ρ0(a, t) = ρ(φ(a, t)) det
(
∂φ(a,t)
∂a

)
.

answer. Conservation of mass in Lagrangian form.
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516. For an incompressible flow, the density is constant. True?

answer. No. Only material density is constant or divergence of flow is
zero.

517. What is the definition of an incompressible flow? Extra: Give two other
equivalent conditions.

answer. Three equivalent definitions: (1) Dρ/Dt = 0 (2) ∇ · u = 0, (3)

J = det
(
∂φ(a,t)
∂a

)
≡ 1.

2019-05-19

518. What is the Euler characteristic definition for a polyhedron?

answer. Let P be a polyhedron with V vertices, E edges, and F faces.
Then we define the Euler characteristic to be χE(P ) = V − E + F .

519. ”Distinct air mass regions exist. Fronts separate warmer from colder air.”
Is this barotropic or baroclinic?

answer. Baroclinic.

520. ”Region of uniform temperature distribution; A lack of fronts.” Is this
barotropic or baroclinic?

answer. Barotropic.

521. Are tropics barotropic or baroclinic?

answer. Barotropic

522. There are clear density gradients in a X environment caused by the fronts.
Is X barotropic or baroclinic?

answer. Baroclinic

523. A X atmosphere is out of balance. Is X baroclinic or barotropic?

answer. Baroclinic. Part of the word baroclinic is clinic. If the atmosphere
is out of balance, it is baroclinic, just as if a person felt out of balance they
would need to go to a clinic.

524. A mid-latitude cyclone is a X environment. Is X baroclinic or barotropic?

answer. Baroclinic.

525. Define Laplacian using scale factors.

answer.

∇2 =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂

∂u1

)
+

∂

∂u2

(
h1h3

h2

∂

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂

∂u3

)]
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526. Define curl using scale factors.

answer.

∇× vR =
1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3
∂
∂u1

∂
∂u2

∂
∂u3

h1V1 h2V2 h3V3

∣∣∣∣∣∣
527. Define div using scale factors.

answer.

∇ · V =
1

h1h2h3

[
∂

∂u1
(V1h2h3) +

∂

∂u2
(h1V2h3) +

∂

∂u3
(h1h2V3)

]
528. Define grad using scale factors.

answer.

∇ =
ê1

h1

∂

∂u1
+

ê2

h2

∂

∂u2
+

ê3

h3

∂

∂u3

2019-05-18

529. Estimate the ur, urr and uθθ coefficients in polar Laplacian by dimensional
analysis.

answer. ∆u = urr + ur
r + uθθ

r2 . The terms have the same dimension U/L2

and angle is dimensionless.

530. Write the differential line element in spherical coordinates.

answer. dl = drr̂ + rdθθ̂ + r sin θdφφ̂.

531. Find the motion and its inverse when the (Eulerian) velocity is constant.

answer. φ(a, t) = a + tu, φ−1(x, t) = x− tu.

2019-05-17

532. Every symmetric matrix is up to choice of an ..., a diagonal matrix.

answer. orthonormal basis

533. What is the inertial acceleration term in fluid equations and what is its
units?

answer. |v · ∇v| ∼ U2/L.

534. Which equations can describe atmospheric and oceanographic flows and
why?

answer. Shallow water equations.
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535. Two geometric meanings of gradient?

answer. the direction of steepest ascent, normal of the level surfaces.

536. What does divergence describe?

answer. amount of stuff created at a point

537. What does Laplacian describe?

answer. the average rate of change at a point.

538. In image processing, a discrete Laplacian can be used as a crude ... filter.
It is close to zero in regions where the image is varying smoothly, and has
large values in regions where the image has sharp transitions from low to
high intensity.

answer. edge-detection

539. Show that on a compact manifold without boundary, every harmonic func-
tion is constant.

answer. A harmonic function can not have any max or min in there interior
of its domain. But a continuous function on a compact domain must have
a max and min.

540. Show that if ω = ∇× u then there is v with ω = ∇× v with ∇ · v = 0.

answer. Idea is that addition of any gradient term to the vector potential
does not change the curl.

ω = ∇× (u +∇f) for any f . Then ∇ · (u +∇f) = 0 means ∆f = −∇ ·u.
Solve for f to obtain v.

This is known as gauge selection.

541. Express
∫
Rn f(|x|)dx as a single integral.

answer. ωn−1

∫∞
0
f(r)rn−1dr where ωn−1 is the surface area of the unit

n-sphere. To see this∫
Rn
f(|x|)dx =

∫ ∞
0

f(r)

∫
Sn−1(r)

dSdr =

∫ ∞
0

f(r)

∫
Sn−1(1)

rn−1dSdr

In 2D this is polar coordinates:
∫ 2π

0

∫ R
0
f(r)rdrdθ. In 3D this is spherical

coordinates.

542. Is every conservative ODE also volume-preserving? If not, find a counter-
example.

answer. ẋ = x, ẏ = y has a first integral F (x, y) = y/x since Ḟ = 0.
However the system is not volume-preserving as its divergence is non-zero.
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543. Unitary matrix means, columns form ...? answer. an orthonormal basis.

2019-05-16

544. What is the divergence of a radial vector field? Take the divergence of r̂
r2 .

Hint: use spherical divergence.

answer. ~∇ · (f(r)r̂) = 1
r2

∂
∂r

(
r2f(r)

)
.

∇ ·
(
r̂
r2

)
= 1

r2
∂
∂r

(
r2 1
r2

)
= 0.

545. State the maximum principle.

answer. Suppose that Ω is a connected open set and u ∈ C2(Ω). If u is
harmonic and attains either a global minimum or maximum in Ω, then u
is constant.

546. If u is a harmonic function defined on whole Rn with lim|x|→∞ u(x) = c
then u(x) = c everywhere. In particular, there is no nontrivial harmonic
function which vanishes at infinity.

answer. Suppose u is a harmonic function on Rn. Take B(0, r) ⊂ Rn a
closed ball. Then the maximum and minimum values of u occur at the
boundary. As r →∞, we see that u must be zero everywhere.

This is a special case of Liouville’s Theorem which states that bounded
harmonic functions defined on whole of Rn must be constant.

547. Liouville’s Theorem says that harmonic functions defined on whole Rn
must be bounded. Can one find a harmonic function defined on all Rn
except a compact region?

answer. Yes! 1
|x−x0| is a bounded harmonic function on Rn \ Bε(x0) for

every ε > 0.

2019-05-15

548. Are focuses possible in a gradient system?

answer. No. Eigenvalues of the linearized operator are real.

549. Classify the non-degenerate equilibria of a gradient system.

answer. ẋ = −∇f(x) has a saddle where f has a non-degenerate saddle,
stable node where f has a non-degenerate minimum and an unstable node
where f has non-degenerate maximum.

To see. The linearization of a gradient system at an equilibrium x = x0

is ẋ = −∇f(x) is ẏ = −D2f(x0)y. The eigenvalues of −D2f(x0) are real
and nonzero since it is a symmetric, non-degenerate matrix. Thus either
all eigenvalues are positive/negative and the equilibrium is a source/sink
or some are positive and some are negative and the equilibrium is a saddle.
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550. Research the degenerate equilibria of a gradient system. First the isolated
case, second non isolated case. ToDO

551. Define a non-degenerate equilibrium of a function f : Rn → R.

answer. ∇f(x0) = 0 and detD2f(x0) 6= 0.

552. What can be said about degenerate equilibria of a gradient system?

553. Define vector field on a manifold.

answer. X : M → TM such that X(p) ∈ TMp. Note that π ◦X = idM
where π : TM →M is the projection.

An alternative method is to define a vector field as a derivation on smooth
real valued functions on M .

554. Give an example of a 2-form which is closed but not exact.

answer. ?d

(
−1

r

)
= ?

(
xdx+ ydy + zdz

r3

)
=
xdydz + ydzdx+ zdxdy

(x2 + y2 + z2)
3/2

is

a 2-form on R3−{(0, 0, 0)} which is closed (its divergence is zero) but not
exact (its not the curl of another field).

The reason for the existence of such a 2-form is that this space is not con-
tractible (although it is simply-connected) and thus the Poincaré Lemma
does not hold (globally).

Note that R3 \ {0} is homotopy equivalent to S2 which has trivial first
de-Rham cohomology but non-trivial (isomorphic to R) second de-Rham
cohomology.

555. In 3D, find ?dx, ?dy, ?dz, ?(dx ∧ dy).

answer. ?dx = dy ∧ dz, ?dy = dz ∧ dx, ?dz = dx ∧ dy, ?(dx ∧ dy) = dz.

2019-05-14

556. What is a harmonic vector field?

answer. A vector field which is both irrotational and incompressible.

557. Show that the vector Laplacian of a harmonic vector field is zero.

answer. Since ∇2s ≡ ∇(∇ · q)−∇× (∇× p) = 0.

558. When does a harmonic field have a potential? What is the property of the
potential?

answer. When the domain is simply-connected, since v is irrotational,
v = ∇φ. Since v is divergence-free ∇2φ = 0. The potential is harmonic.
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559. Show that each component of a harmonic vector field is a harmonic function
on a simply-connected domain.

answer. Since ∇× v = 0, it follows that v = ∇φ. Since 0 = ∇ · v = ∇2φ.
Thus φ and therefore ∂φ

∂xi
are all harmonic.

560. Show that not every harmonic function is a component of harmonic vector
field (although locally this is true).

answer.

2019-05-13

561. On R2, write the Laplacian in terms of Hodge star ? and d. (Hint start
with df).

answer. ∆ = ?d ? d. To see: Let Vol = dx ∧ dy. Then ?dx = dy, ?dy =

−dx. df = ∂f
∂xdx + ∂f

∂y dy. ?df = ∂f
∂xdy −

∂f
∂y dx. d ? df = ∂2f

∂x2 dx ∧ dy +
∂2f
∂y2 dx ∧ dy. ?d ? df = ∂2f

∂x2 + ∂2f
∂y2 .
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562. (Poincaré-Hopf). Let M be a compact oriented surface and v : M −→ TM
a smooth vector field with isolated zeros. What is the relation between the
Euler characteristic of M and the indices of the zeros?

answer. The sum of the indices at the zeros equals the Euler characteristic
of M: ∑

x zero of v

indx,v = χ(M)

563. (Hairy Ball Theorem) Show that any vector field on a 2-sphere must have
singularities.

answer. Since the Euler characteristic of the sphere is 2 (non-zero), the
sum of indices of singular points of any vector field must be 2. In particular,
there must exist singular points.

564. Define the index of a critical point in 2D formally.

answer. Let v = (v1, v2) be a vector field on a surface S, x an isolated
singularity of v, θ be the angular coordinate of the vector field, that is

θ = arctan

(
v2

v1

)
. The Poincaré index of v in x is

indx,v =
1

2π

∫
γ

dθ =
1

2π

∫
γ

v1dv2 − v2dv1

v2
1 + v2

2
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565. In n-dimensions, which closed k-forms and which exact k-forms are trivial?

answer. Closed 0-forms (functions which are constant on each connected
component) and closed n-forms (every n-form) are trivial. Closed k-forms,
1 ≤ k ≤ n− 1 are interesting.

Only exact 0-forms are trivial which consist of 0 by convention.

566. SO(n) is the connected-component of ... containing ....

answer. O(n), identity.

567. When is the system ẋ = f(x, y), ẏ = g(x, y) a gradient system?

answer. When the form is closed (fy = gx) and the domain is simply-
connected.

568. On a gradient system ẋ = −∇V (x), what can be said about V (x(t))?

answer. Non-increasing with strictly decreasing except at fixed points.
d
dtV (x(t)) = −‖ẋ‖2 ≤ 0. V is non-decreasing along orbits and the system
points in the direction of local minima (if any) of V .
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569. Why is X{f,g} = [Xf , Xg] where [·, ·] is the commutator and {·, ·} is the
Poisson bracket?

answer. Follows from the Jacobi identity. X{f,g}(h) = {{f, g}, h} and
[Xf , Xg] (h) = {f, {g, h}} − {g, {f, h}} = −{{g, h}, f} − {{h, f}, g}.

570. If H is the Hamiltonian and I is an integral of motion then what is zero?

answer. XI(H) = {I,H} = 0

571. If H is the Hamiltonian and I is an integral of motion then what is XI(H)?

answer. XI(H) = {I,H} = 0.

572. What is the vector field Xf generated by the function f by means of
Poisson bracket?

answer. Xf (g) = {f, g}.

573. For ẋ = Ax where A =

(
0 −θ
θ 0

)
, write the solution explicitly using the

exponential matrix.

answer. Since eA =

(
cos θ − sin θ
sin θ cos θ

)
(see another question), the solu-

tion is

x = etAx0 =

(
cos θt − sin θt
sin θt cos θt

)
x0
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574. Find a function u such that ∆u = f in R3. Is the solution unique?

answer. u(x) = − 1

4π

∫
f (x′)

|x− x′|
d3x′

This function is not unique. For any harmonic function h, ∆(h+ u) = f .

575. What is
∂r

∂xi
?

answer.
xi
r

.

576. What can be said about the Hessian of a harmonic function?

answer. Symmetric traceless matrix.

577. Find all harmonic quadratic polynomials on R3.

answer. ax2 + by2 + cz2 + dxy+ exz + fyz + gx+ hy+ iz + j of the form
a+ b+ c = 0 and d, e, f, g, h, i, j arbitrary.

578. With u as the velocity, write the differential form of (A) d
dt

∫
Wt
fdV = 0

and (B) d
dt

∫
W
fdV = −

∫
∂W

F ·n +
∫
W
QdV . (C) When do these two give

the same result?

answer. (A) ft +∇ · (fu) = 0 and (B) ft +∇ · F = Q. (C) When Q = 0
and F = uf .

579. What is J̇ = d
dt det(∇ax)? Prove.

answer. J(∇ · u). Reason: d
dt det(F) = det(F) tr(ḞF−1), Ḟ = LF and

L = ∇ · u.
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580. What is Green’s function to Laplace operator on R2 and R3?

answer. 2d: 1
2π ln(x− x′),

3d: −1
4π|x−x′| .

581. What is the relation between ρ, ρ0, J , a and x = φ(a, t)?

answer. ρ0(a) = ρ(x, t)J(x, t). This is the alternative form of the conser-
vation of mass.

582. What is the Lagrangian differential form of the conservation of mass.

answer. D(ρJ)
Dt = 0 whose solution is ρ(x, t)j(x, t) = ρ0(a)J(a) = ρ0(a).

ρ0dV = ρdv or ρ0 = ρj.
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583. Obtain the 3D volume change dv = JdV by using the fact that the volume
is given by triple product.

answer. The edges of a infinitesimal parallelpiped is dXi = dXiEi. The
Lagrangian volume element is

dV = dX1 · (dX2 × dX3) = dX1dX2dX3E1 · (E2 ×E3) = dX1dX2dX3.

Upon deformation, these edges go to

dxi = F · dXi =
∂x

∂X
· dXi = dXi

∂x

∂X
·Ei = dXi

∂x

∂Xi

The deformed volume is

dv = dx1 · (dx2 × dx3) = dX1dX2dX3
∂x

∂X1
·
(
∂x

∂X2
× ∂x

∂X3

)
Since J = det(F ) = det

(
∂x
∂X

)
= ∂x

∂X1
·
(
∂x
∂X2
× ∂x

∂X3

)
, the result follows.

By the conservation of mass ρ0dV = ρdv hence we get the alternative form
the conservation of mass ρ0 = ρJ .

584. Liouville’s Theorem states that the density of particles in phase space is
... .

answer. constant in time

585. For a smooth function on u : U ⊂ Rn → R satisfying some BC what
is
∫
U

∆u(x′)G(x − x′)dx′ where G is the Green’s function to the Laplace
operator on U with BC? Why?

answer. u(x). To see, integrate by parts twice, the boundary terms are
gone since u and G satisfy the same BC. Also ∆G(x− x′) = δ(x− x′).

2019-05-08

586. What is the meaning of the transport equation ct + v · ∇c = 0 and more
generally ct +∇ · (cv) = 0?

answer. The first one is the evolution of a conserved quantity c transported
by a divergence free vector field v. The second equation is the general case,
v is not necessarily divergence-free.

587. For the transport equation ct + v · ∇c = 0, c(0, x) = c0(x), what is the
solution when v is constant?

answer. c0(x− tv).
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588. For the transport equation ct + v · ∇c = 0, c(0, x) = c0(x), FIND the
solution when v is constant?

answer. Since (1,v) ·
(
∂
∂t ,∇

)
c = 0, c is constant in the direction (t, x) =

(1,v). Set z(s) = c(t + s, x + sv) then dz
ds = 0. c(t + s, x + sv) = z(s) =

z(0) = c(t, x). Hence c(s, x+ sv) = c0(x). Write x+ sv = x′ and s = t to
get c(t, x′) = c0(x′ − tv).

2019-05-07

589. What is a symplectic manifold? What is this useful for?

answer. It is a smooth manifold equipped with a closed nondegenerate
differential 2-form, called the symplectic form.

Symplectic manifolds arise naturally in abstract formulations of classical
mechanics and analytical mechanics as the cotangent bundles of manifolds.
For example, in the Hamiltonian formulation of classical mechanics, which
provides one of the major motivations for the field, the set of all possible
configurations of a system is modeled as a manifold, and this manifold’s
cotangent bundle describes the phase space of the system.

2019-05-06

590. What is the PDE satisfied by the time dependent first integral Φ of the
ODE ẋ = u(x, t)?

answer. The transport equation

Φt + u · ∇Φ = 0

or
DΦ

Dt
= 0

since

0 =
d

dt
Φ(x(t), t) =

DΦ

Dt

591. What is the PDE satisfied by the first integral of the ODE ẋ = f(x)? What
is the physical meaning?

answer.
∇u · f = 0

or
f1(x)ux1

+ f2(x)ux2
+ · · ·+ fn(x)uxn = 0

where f = (f1, · · · , fn).

The physical meaning is that, u is constant along f or u does not change
in the direction of f or f is tangent to level sets of u.
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592. ẋ = −x, ẏ = y + x2. What is the unstable space and unstable manifold?

answer. The y axis is both the unstable space and the unstable manifold.

593. ẋ = −x, ẏ = y + x2. Find the stable manifold by series expansion.

answer. Let y = h(x) = a2x
2 + · · · , using h(x) + x2 = ẏ = h′(x)ẋ, that is

(a2 + 1)x2 + a3x
3 + · · · = −2a2x

2 − 3a3x3 − · · ·

and we find exactly that y = h(x) = −x
2

3 . This invariant set is the stable
manifold of the origin tangent at origin to stable space Es which is the
x-axis.

594. ẋ = −x, ẏ = y + x2. What is the ODE satisfied by the stable manifold
function?

answer. ẏ = h′(x)ẋ or h(x) + x2 = −h′(x)x.

595. What is the global attractor of ẋ = x−x3? What does it consist of? Give
an absorbing set.

answer. The set A = [−1, 1] is the attractor. The attractor consists of 3
fixed points, two are stable one is unstable and connecting orbits. Note
that the system is multi-stable. Any set [−1− δ, 1 + δ] is an absorbing set.

596. What is the inclusion relation between GL(n,R), SL(n,R), O(n), SO(n)?

answer. GL(n,R) ⊃ SL(n,R) ⊃ SO(n) ⊂ O(n). By definition SO(n) =
O(n) ∩ SL(n,R).

597. If A ∈ SL(n,R), what can be said about stability of the zero solution of
the system ẋ = Ax? Is the system volume preserving?

answer. Nothing. The eigenvalues satisfy λ1 · · ·λn = 1. The origin can be
stable/unstable/saddle. The system is volume preserving if 0 = div(Ax) =
tr(A) = λ1 + · · ·+ λn.

598. For GL(n,R), SL(n,R), O(n), SO(n) which groups are connected and if
disconnected, how many connected-components are there?

answer. GL(n,R) has two connected components and SL(n,R) is the con-
nected component containing the identity (see Marsden, Ratiu pg. 285).
O(n) has also two connected-components and SO(n) is the component
containing the identity.

599. Is the map exp : o(n)→ O(n) surjective?

answer. No. There are matrices in O(n) with determinant −1. But the
exponential of a skew-symmetric matrix det eA = etr(A) = 1.
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600. What is the relation between o(n) and so(n)? Why?

answer. They are same. Basically SO(n) is the connected component of
O(n) containing the identity. So the tangent space at identity are equal in
both cases.

601. Is exp : sl(n)→ SL(n,R), surjective for n ≥ 2?

answer. No. Consider n = 2. Let

T =

(
−1 1

0 −1

)
Then T ∈ SL(2). Suppose T ∈ exp (A) where A ∈ sl(2) is a traceless
matrix. Then by Schur decomposition

U−1AU =

(
a b
0 −a

)
If a = 0 then

U−1 exp(A)U =

(
1 b
0 1

)
which has different spectrum than T which is not possible. If a 6= 0 then
A is diagonalizable and so is exp(A). But T is not diagonalizable thus T
is not in the image of the exponential map

If B ∈ SL(n,R), is any matrix with some of the eigenvalues negative (and
determinant 1) then B 6= eA for any A since eA has all positive eigenvalues.

602. Give an counter-example to show that exp : gl(n,R) → GL(n,R) is not
surjective.

answer. No. If B ∈ GL(n,R) =

[
−1 0
0 −2

]
, and eA = B then eigenvalues

λ1, λ2 of A satisfy eλ1 = −1 and eλ2 = −2 meaning λ1 = iπ and λ2 = ln 2+
iπ. Since A is real, its eigenvalues are complex conjugate. Contradiction.

2019-05-03

603. Reduce the general first order linear PDE a(x, y)ux + b(x, y)uy = 0 to a
system of ODEs in x, y. What is the relation between the solution of the
ODE and the PDE?

answer. The problem can be reduced to the ODE

ẋ = a(x, y), ẏ = b(x, y)

The solution of the PDE is a first integral of the above ODE since u is con-
stant in the characteristic direction (a(x, y), b(x, y)), that is u(x(t), y(t)) =
c.
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The solution of the ODE generates the characteristic curves of the solution
of the PDE.

604. Reduce the general first order linear PDE a(x, y)ux + b(x, y)uy = 0 to a
first order exact ODE equation. What is the relation between the solution
of the ODE and the PDE?

answer. The problem can be reduced to the ODE

dx

a
=
dy

b
, b(x, y)dx− a(x, y)dy = 0

The solution of the PDE is constant on the integral curves of the ODE.

If g(x, y) = c is an implicit solution of the ODE, that is if gx = b, gy = −a
then the general solution of the PDE is u(x, y) = f(g(x, y)) since

aux + buy = af ′gx + bf ′gy = 0.

Trick. Think x = t, then

ut + v · ∂yu = 0, v =
b(t, y)

a(t, y)

which is the transport equation which is the first integral equation for the
ODE dy

dt = v.

605. Solve aux + buy = c, a, b, c are constants.

answer. u = f(ay− bx) + c
ax. The first term is the homogeneous solution,

the second one is non-homogeneous solution.

606. de Rham cohomology vs fundamental theorem of calculus?

answer. Every 1-form in 1D is automatically closed (since d2 = 0) and ex-
act by the FTC. de Rham cohomology, which (roughly speaking) measures
precisely the extent to which the fundamental theorem of calculus fails in
higher dimensions and on general manifolds.

607. Which implies the other: star-shaped, convex, contractible?

answer. convex implies star-shaped implies contractible.

608. If the divergence of a 2d-field is sign-definite in a region then no periodic
orbits can lie in that region. Which result shows this? What is the idea of
this result?

answer. This is Bendixon’s criteria which can be shown via Green’s theo-
rem. The idea is if divergence of a v.f. is, say, positive in a region then the
normal component of the v.f. can not vanish everywhere on its boundary.
This can be generalized to Dulac’s criteria.
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609. Let H1 = H2(0, 1) ∩ H1
0 (0, 1), H1/2 = H1

0 (0, 1), H = L2(0, 1). Then
what can be said about the inclusions H1 ⊂ H1/2 ⊂ H?

answer. They are dense and compact.

2019-05-01

610. A path-connected space whose fundamental group is trivial is called?

answer. simply-connected. The fundamental group of a topological space
is an indicator of the failure for the space to be simply-connected.

611. Show that a contractible space is simply-connected.

answer. In a contractible space X, the identity map is homotopic to a null
map x → x0 for some x0 ∈ X. Hence any loop at x0 is homotopic to the
trivial loop and π1(X,x0) is trivial. Moreover, since a contractible space
is path-connected, the fundamental group based at any other point is also
trivial.

612. For which topological spaces, the base point of the fundamental group
makes no difference. Why?

answer. For path connected ones. The fundamental groups based at points
x1 and x2 are isomorphic if there is a path p from x1 to x2. reason. If
c is a loop at x1 then pcp−1 is a loop around x2. Show that the map
c→ pcp−1 : π1(X,x1)→ π1(X,x2) is an isomorphism.

613. Define the fundamental group π1(X,x0) of a topological space X with base
point x0. What is the group multiplication?

answer. It is the set of all loops modulo homotopy (that is homotopic
loops are considered identical) with the group multiplication

(f ∗ g)(t) =

{
f(2t) 0 ≤ t ≤ 1

2
g(2t− 1) 1

2 ≤ t ≤ 1

Thus the loop f ∗ g first follows the loop f with “twice the speed” and
then follows g with “twice the speed”.

614. Suppose we have a domain of Rn with the property that every closed 1-form
is exact. Is this domain simply-connected?

answer. The answer is positive for n = 2 and negative for n ≥ 3. Note
that every closed 1-form on a simply-connected domain is exact. This is
the converse question. There are domains which are not simply-connected
but still all closed 1-forms are exact if n ≥ 3. https://www.csun.edu/

~vcmth02i/Forms.pdf
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615. How is the derivative of a map f : M → N defined between manifolds?

answer. It is defined as the linear map Df : TM → TN which carries the
tangent vector v at p defined by a curve γ to the tangent vector Df(v)
which is the tangent vector to the curve f ◦ γ at f(p).

616. Express the differential of a map between manifolds in local coordinates?

answer. Let f : M → N . Choose coordinates x near p on M and y near
f(p) on N . Then F = y ◦ f ◦x−1 is a map between Euclidean spaces. The
differential of f can be represented as the Jacobian of F .

617. In 2D, write the vorticity formulation of the incompressible barotropic
Euler equation without forcing.

answer. Dω
Dt = ωt + u · ∇ω = 0.

618. Solve incompressible, isentropic 2D Euler’s equation without forcing

Du

Dt
= −1

ρ
∇p, ∇ · u = 0

for velocity u in terms of the initial vorticity ω0, the flow φt of the velocity,
and K the Biot-Savart operator.

answer. u = K(ω0◦φ−1). The vorticity formulation is Dω
Dt = ωt+u ·∇ω =

0 which can be solved in terms of the motion as ω(φ(a, t), t) = ω(a, 0) =
ω0(a) or ω(x, t) = ω0(φ−1(x, t)).

619. Express the motion as the integral of the velocity.

answer. φ(a, t) = a+
∫ t

0
v(φ(a, s), s)ds.

620. Assume Dω
Dt = ωt + u · ∇ω = 0 where ω(x, t) is a scalar and u(x, t) is a

vector. What is the the solution? What is the physical meaning?

answer. ω(x, t) = ω0 ◦φ−1(x, t) or ω(φ(a, t), t) = ω0(a) where φ(a, t) is the
flow of u and ω(x, 0) = ω0(x). This means ω is constant along the flow of
u.

621. Assume Dω
Dt = ωt + u · ∇ω = 0 where ω(x, t) is a scalar and u(x, t) is a

vector. Show that ω(x, t) = ω0 ◦ φ−1(x, t) is the unique solution of the
IVP.

answer. Let ω be any solution. Define W (a, t) = ω(φ(a, t), t). Then
∂W
∂t = ωt +∇ω · u = 0. Hence ω(φ(a, t), t) = W (a, t) = W (a, 0) = ω0(a).

This shows that if there is a solution it must be given by the formula. On
the other hand, the given formula is a solution.

2019-04-30
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622. Given the Eulerian velocity, how do you define the motion?

answer. Eulerian velocity → the motion is defined as the solution of

the ODE, ∂φ(a,t)
∂t = u(φ(a, t), t) and φ(a, 0) = a. Hence φ(a, t) = a +∫ t

0
u(φ(a, s), s)ds.

answer.

623. Given a motion φ, how do you define the Eulerian velocity?

answer. φ(a, t) motion→ Lagrangian velocity U(a, t) = ∂φ(a,t)
∂t → Eulerian

velocity u(x, t) = U(φ−1(x, t), t) or u(x, t) = ∂φ
∂t (a, t)

∣∣∣
a=φ−1(x,t)

.

To find the Eulerian velocity, first take the time derivative of the motion
and then plug in the inverse motion to the Lagrangian variable.

624. Are these two expressions identical?

∂φ

∂t
(a, t)

∣∣∣∣
a=φ−1(x,t)

∂

∂t
φ(φ−1(x, t), t).

What is the latter one?

answer. They are not identical. Second one is ∂
∂tx = 0.

625. What is the relation between the Lagrangian velocity U and Eulerian ve-
locity u?

answer. u(x, t) = U(φ−1(x, t), t) and U(a, t) = u(φ(a, t), t).

626. What is the Beale-Kato-Majda criterion?

answer. It is a necessary and sufficient condition for the global existence
of smooth solution of the 3D incompressible Euler equations.

Beale, Kato, and Majda (1984) proved that a smooth solution of the 3D
incompressible Euler equations breaks down on a time-interval [0, T∗] if
and only if ∫ T

0

‖ω‖∞(t)dt→∞ as T ↑ T∗

627. For the Euler Equations, what is known about the existence of global
in time smooth - or weak - solutions in 2D and 3D for the initial value
problem?

answer. 2D: there exist global smooth solutions. 3D: existence of global-
in-time smooth — or weak — solutions. (see Hunter’s notes)

628. Consider the ODE (
ẋ
ẏ

)
=

(
P (x, y)
Q(x, y)

)
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Write a 1-form α so that if that form is exact then the system is Hamilto-
nian.

answer. α = −Q(x, y)dx+ P (x, y)dy.

Suppose
α = dH = (∂H/∂x)dx+ (∂H/∂y)dy

Then

ẋ = P =
∂H

∂y
ẏ = Q = −∂H

∂x

2019-04-29

629. Why Hamiltonian systems do not have attractors?

answer. Because of Liouville’s theorem, which says that phase space vol-
ume is conserved by the flow of the system.

630. Why the conservation of mass equation (continuity equation) does not take
diffusion into account?

answer. If a microscopic diffusion were to take place, we would not be able
to tell because the molecular masses are identical, so we would not be able
to tell state 1 from state 2.

631. Write the solution to ∆u = f in V ⊂ R3 with u = g on ∂V as a sum of
homogeneous and an EXPLICIT particular solutions.

answer.
u(x) = uc(x) + up(x)

where

up(x) =

∫
V

f (x′)

−4π |x− x′|
d3x′

∆uc = 0, in V, uc = g(x)− up(x) on ∂V

632. What is the Laplacian of the inverse distance in 3D?

answer. −4πδ3 (~r − ~r0)

633. in 3D: ∆
(

1
|~r−~r0|

)
=?

answer. −4πδ3 (~r − ~r0).

634. Show that the Fredholm alternative is implied by KerAT = (ImA)⊥.

Fredholm Alternative: Given A, b, exactly one of the following must
hold: (1) ∃x, Ax = b, (2) ∃y, yTA = 0, yT b 6= 0.

answer. Suppose Ax = b has no solution, then b /∈ Im(A) hence b =
Ax + y for some x and some non-zero y ∈ (ImA)⊥ = KerAT . Thus
yT b = (yTA)x+ yT y = |y|2 6= 0. Hence if (1) does not hold then (2) must
hold. Also it is easy to see that if (1) holds then (2) can not hold.
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635. State Fredholm Alternative for matrices.

answer. Given A, b, exactly one of the following must hold: (1) ∃x, Ax = b,
(2) ∃y, yTA = 0, yT b 6= 0.

Stated differently, either Ax = b has a solution, or if not, the homogeneous
adjoint problem AT y = 0 has a non-trivial solution with yT b 6= 0.

proof. Clearly both can not hold at the same time. This statement is

equivalent to the statement KerAT = (ImA)⊥. Because suppose Ax = b
has no solution, then b /∈ Im(A) hence b = Ax + y for some x and some
non-zero y ∈ (ImA)⊥ = KerAT . Thus yT b = (yTA)x+ yT y = |y|2 6= 0.

636. Let ω = ωijdx
i ∧ dxj , X = Xi

∂
∂Xi and Y = Yi

∂
∂Y i . Find ω(X,Y ).

answer. ω(X,Y ) = ωij(XiYj − YiXj)

637. Define the action of a differential 2-form on 2 tangent vectors in coordi-
nates.

answer. ω(X,Y ) = ωij(X
iY j −XjY i), where ωij = ω (∂i, ∂j), X = Xi∂i,

Y = Y i∂i.

638. Define the action of a differential 1-form on a tangent vector in coordinates.

answer. ω = ωidx
i and X = Xi

∂
∂xi . Then ω(X) = ωiXi.

639. What are two compact forms of a Hamiltonian system?

answer. z = (q, p) ∈ R2n, (1) dz
dt = J∇H(z) with J =

(
O −I
I O

)
. (2)

ż = {z,H} which is to be understood as q̇i =
{
qi, H

}
and ṗi =

{
pi, H

}
.

2019-04-27

640. Assume ∇ × u = 0 and decays sufficiently fast at infinity on R3. Find ψ
which satisfies ∇ψ = u.

answer.

ψ(x) = ∆−1 (∇ · u) =

∫
R3

(x− y)

4π|x− y|3
u(y)d3y

Proof. Integrate by parts the solution of ∆ψ = ∇ · u, which is

ψ(x) = −
∫
R3

1

4π|x− y|
(∇ · u(y))d3y
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641. Give all the possible incompressible irrotational flows on R3 which decay
at infinity.

answer. Must be zero. See [IIFDSF].

642. Prove that any incompressible irrotational flows on R3 which decay suffi-
ciently fast at infinity is zero. [IIFDSF]

answer. Since ∇× u = 0, we have ∇ψ = u where

ψ(x) = −
∫
R3

1

4π|x− y|
(∇ · u(y))d3y

Since if ∇ · u = 0 then ψ = 0 hence u = 0.

643. Find a function G(x, y) : R3 × R3 → R such that ∆xG(x, y) = 0, if x 6= y
and

∫
∂B
∇xG(x, y) · n(x)dSx = −1 for every ball centered around y.

answer. G(x, y) = 1
4π|x−y| .

644. What is the growth rate for the integrability of the radial function f(|x|)
as |x| → ∞ on Rn?

answer. For some ε > 0, |f(|x|)| = O

(
1

|x|n+ε

)
as |x| → ∞. A good way

to remember is 1D case where this is the well known p-test for improper
integrals.

To see, note that
∫
Rn f(|x|)dx = ωn−1

∫∞
0
f(r)rn−1dr where ωn is the

surface area of the of the n-sphere. The latter is integrable at infinity if

for some ε > 0, |f(r)rn−1| = O

(
1

r1+ε

)
as r →∞.

645. What is the integral of an exact 2-form on a sphere?

answer.
∫
S2 dω =

∫
∂S2 ω = 0 since ∂S2 = ∅.

2019-04-26

646. Why is there no diffusion in the continuity equation but there is conserva-
tion of momentum equation?

answer. Do not know.

647. Show that for incompressible barotropic Euler equation

ut + u · ∇u +∇p = 0

with u · n = 0 on the boundary, the kinetic energy is conserved.

105



answer. Take the inner product with u, and use the identity

u · ((u · ∇) u) =
1

2
∇ ·
(
|u|2u

)
to obtain

d

dt

1

2

∫
Ω

|u(x, t)|2 dx = 0

648. For a divergence-free vector field u, find A such that

∇ ·A = u · ((u · ∇) u)

answer. A = | 12u|2u. Proof.

u · ((u · ∇) u) = ui (uj∂jui) = uj∂juiui = uj
1

2
∂j(u

2
i ) =

1

2
u · ∇|u|2

= ∇ ·
(
|1
2
u|2u

)
649. When is u · ∇f = ∇ · (uf) in general true?

answer. When u is a divergence-free vector field.

650. What is the physical meaning of Laplace equation?

answer. It describes the spatial distribution of a time-independent con-
served quantity which is in equilibrium, that is its net flux is zero.

More details: When there is no advection, the flux is proportional to the
gradient of the density u of that quantity, that is F = −a∇u. In integral
form this reads

∫
∂Ω

F · ndS = 0 while in differential form it reads as the
Laplace equation ∆u = 0.

651. What does Laplace term in an equation correspond to?

answer. It describes the diffusion process. More details: The total flux
through a boundary of a region V of a conserved quantity u is

∫
∂V

FdS.
The diffusive part of the flux is −d∇u. By divergence theorem, the integral
of the diffusive part becomes −d

∫
V

∆udV .

652. Express the convection-diffusion equation for a conserved scalar c in a
media with velocity u, source S and non-homogeneous diffusion coefficient
D.

answer. Flux is F = −D∇c+cu, sum of diffusion and convection/transport.
Conservation law takes the form

ct −∇ · (D∇c+ cu) = S

Special Case. When the velocity is divergence-free and the diffusion is
homogeneous

ct + u · ∇c = D∆c+ S
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653. Express the heat equation as a conservation law in differential form

∂U

∂t
+∇ · F = S

where U is the conserved state, F is its flux and S is a source/sink term.

answer.
Tt = d∆T + S,

U = T is the temperature and F(U) = −d∇T (since the heat transport is
from high to low) and S is source.

654. Express the continuity equation as a conservation law in differential form

∂U

∂t
+∇ · F = S

where U is the conserved state, F is its flux and S is a source/sink term.

answer.
ρt +∇ · (ρu) = 0

U = ρ is density, F(U) = ρu is the mass transport by the the fluid flow
and S = 0.

Question. The heat equation may include a convective flux, F = −d∇T +
uT which is the heat equation in Rayleigh-Benard convection. However,
continuity equation does not contain a diffusion flux.

655. Express a conservation law in integral form and show how it can be written
in differential form.

answer.
d

dt

∫
Ω

Udx +

∫
∂Ω

F(U) · nds =

∫
Ω

S(U, t)dx

where Ω is any fixed domain, U is the conserved state, F is the flux of the
conserved state, n is the outward unit normal on the boundary ∂Ω and S
is a source/sink term.

Using the divergence theorem, the differential form is

∂U

∂t
+∇ · F = S

656. What is a nondegenerate critical point of a function from f : Rn → R?
What is a nondegenerate critical point of a vector field u : Rn → Rn?

answer. Function: ∇f(x) = 0, det(D2f(x)) 6= 0.

Vector field: u(x) = 0, det(Du(x)) 6= 0.
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2019-04-25

657. Show that the identity map on X is null-homotopic if and only if any
continuous map on X is also null-homotopic.

answer. One way is trivial. For the other way, we know the existence of
a homotopy H(x, 0) = x and H(x, 1) = x0 for all x ∈ X. Now G(x, t) =
H(f(x), t) is a homotopy between f(x) and the constant map x→ x0.

658. Prove asymptotical stability of an equilibrium when a strict Lyapunov
function for that point exists. (strict = positive definite function with
negative-definite time derivative along trajectories)

answer. Let x(t) be a trajectory with x(0) = x0 which lies in the domain
U of Lyapunov function V . By the Lyapunov stability of the equilibrium
it can be shown that the {x(t;x0) : t ≥ 0} stays in U for all x0 ∈ V where
V is a neighborhood of 0. Take any x0 ∈ V . Then since V (x(t)) is strictly
decreasing and bounded from below, it follows that limt→∞ V (x(t)) = c.

Suppose c 6= 0 = V (xe). Then −γ = maxt≥0 V̇ (x(t)) < 0 since the set
{x(t) : t ≥ 0} is contained in a compact set {x : c ≤ V (x) ≤ V (x0)}.

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ

≤ V (x(0))− γt

which is a contradiction.

659. Prove Lyapunov stability of an equilibrium when a non-strict Lyapunov
function L for that point exists. (non-strict = positive definite function
with non-positive time derivative along trajectories)

answer. Take any closed spherical shell S centered at the equilibrium x.
Then L being continous and S being compact, L has a positive minimum
m on S. By continuity we can find a small open neighborhood N of x
where L(x) < m/2 on N . Since L can not increase along trajectories, a
trajectory starting from N can not enter the shell S.

2019-04-24

660. Show that if A ∈ Mn(C) has an orthonormal basis of eigenvectors then
there is a diagonal matrix D = diag(λ1, λ2, ·, λn) consisting of the eigen-
values of A and a unitary matrix U = (u1, u2, . . . , un) consisting of eigen-
vectors of U (unitary means UU∗ = U∗U = I where ∗ denotes conjugate
transpose) such that A = UDU∗.
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answer. If {u1, u2, . . . , un} is orthonormal then U is a unitary matrix such
that

Uek = uk, U∗uk = ek,

where {e1, . . . , en} is the standard basis of Cn. Note that the first equality
is always true while the second one is a consequence of orthonormality.

U∗AUek = U∗Auk = U∗λkuk = λkek = Dek

661. What is the relation between the vorticity and the velocity gradient?

answer. Let R = 1
2

(
∇v −∇vT

)
be the anti-symmetric part of the velocity

gradient. Then for ω = ∇× v and any vector h,

Rh =
1

2
ω × h

Biot-Savart

662. If the vorticity and the normal component on the boundary of an incom-
pressible velocity field is specified in a bounded, simply-connected domain,
then its ... is uniquely defined

answer. tangential component on the boundary.

663. (Biot-Savart) Let D ⊂ R3 be a bounded, simply-connected region. Given
ω in D and g on ∂D, show that there exists unique u,

∇× u = ω, ∇ · u = 0, in D, u× n = g on ∂D

answer.

Existence. By the Biot-Savart integral we can always find

∇×U = ω, ∇ ·U = 0, in R3.

Now show that the problem

∆f = 0 in D, ∇f × n = g on ∂D.

has a unique solution ??? ToDO

Then
u = U +∇f

satisfies all the required conditions.

Uniqueness. Let for i = 1, 2, ∇ · ui = 0, (tangential component of the
velocity) ui × n = g in ∂D and ∇× ui = ω in D. In a simply-connected
domain u1−u2 = ∇f so that ∆f = 0 and∇f×n = 0. That is f is constant
along the boundary. By Maximum principle for harmonic functions, f is
constant in D so that u1 = u2. This means f is constant so that u1 = u2.
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664. (Biot-Savart) Let D ⊂ R3 be a bounded, simply-connected region. Given
ω in D and g on ∂D satisfying∫

∂D

gdS = 0

show that there exists unique u,

∇× u = ω, ∇ · u = 0, in D, u · n = g on ∂D

answer. Note: Simply-connectedness is only used in the uniqueness part.
If not simply-connected, then is non-uniqueness possible?

Existence. By the Biot-Savart integral we can always find

∇× uBS = ω, ∇ · uBS = 0, in R3.

Now consider the Neumann problem

∆f = 0 in D, ∇f · n = g − uBS · n on ∂D.

which has a unique solution f up to a constant since∫
∂D

(g − uBS · n)dS =

∫
∂D

gdS −
∫
D

∇ · uBSdV = 0

Then
u = uBS +∇f

satisfies all the required conditions.

Uniqueness. Assume u1, u2 be two solutions. In a simply-connected
domain, ∇ × (u1 − u2) = 0 so that u1 − u2 = ∇f and ∆f = 0 and
∇f · n = 0. By the Neumann problem for Laplace equation f is constant
so that u1 = u2.

665. Under which conditions can the vorticity be uniquely inverted on bounded
domains of 3-space?

answer. (Biot-Savart) When the domain is simply-connected and either
the normal component or the tangential component of the velocity is pre-
scribed at the boundary. See questions: item 663, 664.

666. State Biot-Savart formula on a domain with boundary in R3.

answer. ToDO

667. State Biot-Savart formula on whole R3.

answer. If ω decays sufficiently fast at infinity and ∇ · ω = 0 then

u(x) =

∫
R3

ω(y)× (x− y)

4π|x− y|3
dy
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is the unique solution to

∇× u = ω, ∇ · u = 0.

668. Assume that ω is divergence-free and decays sufficiently fast at infinity on
R3. Find the vector potential u such that ω = ∇× u and ∇ · u = 0.

answer.

u(x) = (−∆)
−1

(∇× ω) =

∫
R3

ω(y)× (x− y)

4π|x− y|3
dV (y)

669. Assume that ω is divergence-free and decays sufficiently fast at infinity on
R3. Show that ω = ∇× u with ∇ · u = 0 where

u(x) = (−∆)
−1

(∇× ω) =

∫
R3

ω(y)× (x− y)

4π|x− y|3
dV (y)

Where do we use the decay condition? Where do we use that ω is divergence-
free?

answer. Step 1. Taking the curl, ∇× ω = ∇×∇× u = ∇(∇ · u)−∆u =
−∆u.

Step 2. By inverting the Laplace operator, we get

u(x) =

∫
R3

G(x− y) (∇× ω(y)) dV (y)

where G(x− y) =
1

4π|x− y|
is the Green’s Function.

Step 3. Using
∫

Ω
f∇× gdV =

∫
∂Ω
fn× gdS −

∫
Ω
∇f × gdV , we have

u(x) =

∫
R3

−∇yG(x, y)× ω(y)dV (y)

Step 4. Noting −∇yG(x, y) =
y − x

4π|x− y|3
= ∇xG(x, y), the integral repre-

sentation follows.

Step 5. Now why is ∇ · u = 0? Direct computation.

Decay condition is used in two places: (1) TO ensure that the integrals
converge, (2) The boundary integral in the integration by parts is canceled.

Divergence-free condition for the vorticity is a compatibility condition. But
is it needed in the actual construction?

670. Show that the divergence of u(x) =
∫
R3

ω(y)×(x−y)
4π|x−y|3 dV (y) is zero.

answer. Use ~∇ · ( ~A × ~B) = (∇ × ~A) · ~B − ~A · (∇ × ~B) and the fact that
curl of a radial vector field is zero.
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Lie Groups and Algebras

671. What is the Lie bracket of matrix Lie algebras?

answer. Matrix commutator.

672. Under which operations are matrix Lie algebras closed?

answer. They are closed under matrix addition, scalar multiplication
(since they form a vector space) and the matrix commutator.

673. Transpose of matrix commutator?

answer. [A,B]T = (AB −BA)T = (BTAT −ATBT ) = [BT , AT ].

674. Verify that matrix commutator of skew-symmetric matrices is ...

answer. Skew symmetrix. [A,B]T = [BT , AT ] = [−B,−A] = [B,A] =
−[A,B].

675. What is the Lie algebra of SU(n)?

answer. u(n) is the Lie algebra of skew-Hermitian matrices with zero-
trace. If I = eAeA

∗
means A∗ = −A and det eA = 1 implies trace of A is

zero. Note that diagonal of skew-Hermitian matrices are purely imaginary
and not necessarily zero.

676. What is the diagonal of skew Hermitian matrices?

answer. Purely imaginary.

677. What is Lie algebra of unitary group U(n)? Why?

answer. u(n) is the Lie algebra of skew-Hermitian matrices, A∗ = −A. If
eA ∈ U(n), I = eA

(
eA
)∗

= eAeA
∗

= eA+A∗ , and A + A∗ = I that is A is
skew-Hermitian.

678. What is SU(n)?

answer. Special unitary matrices which are unitary matrices with deter-
minant 1.

679. What is det(A) for A ∈ U(n)?

answer. det(A) = eiθ, θ ∈ R.

680. What is U(n)?

answer. Lie group of unitary matrices UU∗ = U∗U = I, complex analog
of orthogonal matrices.

681. What is the tangent space T1O(n)?

answer. Real skew-symmetric matrices.
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682. Show that the tangent space T1O(n) is the real skew-symmetric matrices.

answer. Let γ : (−ε, ε) → O(n) be a curve with γ(0) = I. Then 0 =
d
dtγ(t)T γ(t) = γ′(t)T γ(t)+γ(t)T γ′(t). At t = 0, this reduces to 0 = vT +v.

683. Why are on and son equal?

answer. Because SO(n) is the connected component of O(n) containing
identity.

684. Suppose there is a Poisson bracket defined on C∞(M). Where is the Lie
algebra here?

answer. The vector space C∞(M) with the Poisson bracket as the Lie
bracket is a Lie algebra. Recall that a Poisson bracket is (i) skew-symmetric,
(ii) bilinear, satisfies (iii) Jacobi identity and (iv) Leibniz identity. (i), (ii),
(iii) are enough to say that the Poisson bracket is a Lie bracket on the
vector space C∞(M).

685. Show, using the definition that the Lie algebra g of a Lie group G is the
tangent space at the identity, that the Lie algebra sln(R) of SLn(R) (the
matrix group with determinant 1) is the set of all matrices in Mn(R) with
trace zero.

answer.

Step 1. sln(R) = {γ′(0)|γ : (−ε, ε)→ SLn(R) is differentiable with γ(0) = I}.

Step 2. γ′(0) = limh→0
γ(h)−γ(0)

h ∈Mn(R).

Step 3. If γ is such a curve then det(γ(t)) = 1 for all t so that d
dt det(γ(t)) =

0

Step 4. d
dt

∣∣
t=0

det(γ(t)) = trace (γ′(0)) = 0 by Jacobi’s formula.

686. If γ : (−ε, ε)→Mn(R) is differentiable and γ(0) = I then find

d

dt

∣∣∣∣
t=0

det(γ(t))

answer. d
dt

∣∣
t=0

det(γ(t)) = trace (γ′(0)). By Jacobi’s formula,

d

dt

∣∣∣∣
t=0

det(γ(t)) = trace (γ′(0) adj(γ(0))) = trace (γ′(0) adj(I))

where adjugate matrix is defined by A adj(A) = det(A)I so that adj(I) = I.

687. What is the definition of a Lie algebra of a Lie group G?

answer. The Lie algebra g of G is the tangent space to G at the identity:

g = {γ′(0) | γ : (−ε, ε)→ G is differentiable with γ(0) = I}
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How is the Lie bracket defined? http://web.stanford.edu/~tonyfeng/

222.pdf

688. What is the general definition Lie algebra?

answer. It is a vector space g over some field with a bilinear, skew-
symmetric binary operation [·, ·] which satisfies the Jacobi identity.

689. Show that the vector space R3 can be made a Lie algebra.

answer. g = R3 with the bracket [x, y] = x× y.

690. How is the Lie algebra of a matrix Lie group defined via exponential map?

answer. If G is a matrix group then its Lie algebra is

g = {X ∈ Mat(n,C) | exp(tX) ∈ G, ∀t ∈ R}

The Lie bracket is given by the matrix commutator.

691. Show that for vectors a = (a1, a2, a3)
>

and b = (b1, b2, b3)
>

there exists a
skew symmetric matrix [a]× such that

a× b = [a]×b

Also
[a× b]× = [a]×[b]× − [b]×[a]×

answer. Define

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0


692. What is the commutator of two matrices? When do two matrices com-

mute?

answer.
[A,B] = AB −BA

The matrices commute when their commutator is zero.

693. What are properties of commutator?

skew symmetric [A,B] = −[B,A], bilinear, satisfies Jacobi identity [A, [B,C]]+
[B, [C,A]] + [C, [A,B]] = 0

694. Show that for a square matrix A, xTAx = 0 for all x iff A is skew sym-
metric.

answer. By definition (uT v = vTu) xTAx = (Ax)Tx = xTATx. If A is
skew-symmetric then this implies xTAx = −xTAx that is xTAx = 0.
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For the converse, 0 = eTi Aei = Aii for all i and

0 = (ei+ej)
TA(ei+ej) = (ei+ej)

T (Ai+Aj) = Aii+Aij+Aji+Ajj = Aij+Aji

for all i, j.

695. For a square matrix find Aei and eTi Aej .

answer. Aei = Ai, the i-th column and eTi Aej = Aij .

Example

eT1 Ae2 =
[
1 0

] [a b
c d

] [
0
1

]
= b = A12

696. What is the group of volume and orientation preserving linear transforma-
tions of Rn?

answer. SL(n,R).

697. DefineGL(n,R), SL(n,R), O(n), SO(n) and gl(n,R), sl(n,R), o(n), so(n).

answer.

• GL(n,R) = {A ∈Mn(R) | det(A) 6= 0},
• SL(n,R) = {A ∈Mn(R) | det(A) = 1},
• O(n) =

{
A ∈Mn(R) | A is orthogonal, i.e.ATA = AAT = I

}
,

• SO(n) = O(n) ∩ SL(n,R),

• gl(n,R) = Mn(R),

• sl(n,R) = {A ∈Mn(R) | tr(A) = 0},
• o(n) =

{
A ∈Mn(R) | A is skew-symmetric, i.e.AT = −A

}
,

• so(n) = o(n)

698. What is the exponential of the real skew symmetric matrix

(
0 −θ
θ 0

)
?

answer. eA =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2), a rotation matrix (with deter-

minant +1). This means if ẋ = Ax where A is a real skew-symmetric then
x(t) is the counterclockwise rotation around the origin.

699. If ẋ = A(t)x where A(t) is skew symmetric then what can be said about
x(t)?

answer. x(t) moves on a sphere, that is ‖x(t)‖ is constant.

700. The solution of the simple harmonic oscillator ẍ = −kx lies on the circle
in the phase plane. In general when does the solutions of ẋ = A(t)x lie on
a sphere.

answer. If ẋ = A(t)x where A(t) is skew symmetric then the trajectory of
x(t) lies on a sphere. See [SSHO]
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SSHO . If ẋ = A(t)x where A(t) is real skew symmetric then show that x(t)
moves on a sphere, that is ‖x(t)‖ is constant.

answer.
d

2dt
(x · x) = x · ẋ = x ·A(t)x = (x,A(t)x) = 0

since xiAijxj = xjAjixi = −xjAijxi implies xiAijxj = 0.

701. Show that when A is n× n skew-symmetric matrix, exp(A) ∈ SO(n).

answer. (a) exp(A)(exp(A))T = exp(A) exp(AT ) = exp(A+AT ) = I.
(b) det(exp(A)) = exp (tr(A)) = 1.

Helmholtz-Hodge Decomposition

702. State the exact formula of the Helmholtz-Hodge decomposition on whole
R3 for sufficiently fast vanishing vector fields at infinity (so that the inte-
grals are defined)

answer.
w = ∇p+∇× r

where

p(x) = − 1

4π

∫
div w (x′)

|x− x′|
dx′, r(x) =

1

4π

∫
curl w (x′)

|x− x′|
dx′

This shows that such vector fields are uniquely determined by their curl
and divergence.

703. Discuss the uniqueness of the Helmholtz decomposition

w = u +∇p, ∇ · u = 0 in D, u · n = 0, on ∂D

in non-simply connected regions and the existence of harmonic fields on
that domain.

answer. ToDO. A related problem is:

Is the Helmholtz decomposition unique on a compact manifold without
boundary?

Yes. Reason: On a compact domain without boundary (such as the surface
of a sphere), there are no non-constant harmonic functions.

See the paper “The Helmholtz-Hodge Decomposition—A Survey”.
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704. (Alternative decomposition for Helmholtz-Hodge decomposition) Show that
any u defined on D ⊂ R3 can be represented as

u = ∇× r + p

with ∇× p = 0 in D and n× p = 0 on ∂D.

answer. Taking curl,

∆r = −∇× u in D, with n× (∇× r) = n× u on ∂D

It can be shown that the equation has a unique solution (does not mean
this decomposition is unique). The terms ∇ × r, p are orthogonal and
finally by the orthogonality the decomposition is unique. See the paper
“The Helmholtz-Hodge Decomposition—A Survey”.

705. (Existence for Helmholtz-Hodge decomposition) Show that for w defined
on D ⊂ R3, the decomposition

w = u +∇p, ∇ · u = 0 in D, u · n = 0, on ∂D

exists.

answer. We get the Neumann problem

∆p = div w in D, with
∂p

∂n
= w · n on ∂D

Since the data satisfies the compatability condition
∫
D
∇·wdV =

∫
∂D

w·n,
the solution to this problem exists and is unique up to the addition of a
constant to p. With this choice of p, define u = w − ∇p. Hence such a
decomposition exists.

Remarks.

(1) Now consider any such decomposition. Then we get the exact same
Neumann problem for p so that ∇p and thus u are unique.

(2) The decomposition can easily be generalized to the non-homogeneous
boundary data g with

∫
∂D

gdS = 0, such that

w = u +∇p, ∇ · u = 0 in D, u · n = g, on ∂D

706. (Proof of uniqueness for Helmholtz-Hodge decomposition) Show that for
w defined on D ⊂ R3, the decomposition w = u +∇p with u div-free and
u · n = 0 is unique using the orthogonality relation.

answer. We have
∫
D

u·∇pdV = 0. Suppose that w = u1+∇p1 = u2+∇p2.
Then 0 = u1 − u2 +∇ (p1 − p2). Taking the inner product with u1 − u2

and integrating, we get

0 =

∫
D

{
‖u1 − u2‖2 + (u1 − u2) · ∇ (p1 − p2)

}
dV =

∫
D

‖u1 − u2‖2 dV

which shows that u1 = u2 and ∇p1 = ∇p2.
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707. (L2 orthogonality for Helmholtz-Hodge decomposition) Show that if

∇ · u = 0 in D, u · n = 0 on ∂D

then ∫
D

u · ∇pdV = 0, for al smooth p.

answer. This is a simple consequence of divergence theorem and the fact
that u is div-free.∫

D

u · ∇pdV =

∫
D

div(pu)dV =

∫
∂D

pu · ndA = 0

708. State 2-term Helmholtz-Hodge Decomposition in a contractible domain
with smooth boundary.

answer. A vector field w on D can be uniquely decomposed in the form

w = ∇× u +∇p, ∇ · u = 0 in D, ∇× u · n = 0 on ∂D.

Remark: ∇× u · n = 0 on ∂D means that circulation of u is zero on any
closed curve on the boundary.

709. State 2-term Helmholtz-Hodge Decomposition on a domain with smooth
boundary.

answer. A vector field w on D can be uniquely decomposed in the form

w = u +∇p, ∇ · u = 0 in D, u · n = 0 on ∂D

that is u is parallel to ∂D.

For proof, see Chorin-Marsden pg 37.

710. The motion of a fluid u in an infinite space R3 such that it vanishes at
infinity is determinate when we know the values of the divergence θ(x) =
∇ · u(x) and the curl ω(x) = ∇× u. On the other hand, if the motion of
the fluid is limited to a simply-connected region Ω ⊂ R3 with boundary
∂Ω, it is determinate if θ(x), ω(x) and the value of the flow normal to the
boundary, un = u · n for x ∈ ∂Ω are known.

711. Explain the terms in three-component Helmholtz-Hodge decomposition.

answer. (1) gradient term/irrotational part: expansion or contraction in
three orthogonal directions, (2) curl term/divergence-free part: rotation
about an instantaneous axis, and (3) irrotational and divergence-free part:
translation.
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712. Describe the elements of 3-term Helmholtz-Hodge decomposition of a smooth
vector field.

answer. A smooth vector field on a domain can be uniquely decomposed
into three components: 1. an irrotational component d, 2. an incom-
pressible component r, 3. an harmonic component h, representing the
translation part. v = ∇D +∇×R+ h = d+ r + h

The harmonic part being at the same time irrotational and incompressible
can be put together with the first or the second term, giving a version of
the decomposition with only two parts.
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