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Precalculus







Chapter 1

Limits and Continuity

1.1 Informal definition of limits
Two main problems of calculus are

1. Derivative. Find the rate of change of f.

2. Integral. Find the area under a given curve.

Both are based on the concept of limit.
We say lim,_., f(x) = L to mean that f(x) is “close enough” to L for any x “close enough” to a.

Example 1.1.1. Which value is x close to when x is close to 2?

limx=2
x—2

Example 1.1.2. Which value is 3 close to when x is close to 2?

lim3=3

x—2
We can generalize these examples.

Theorem 1.1.1. Let a and c be two real numbers. Then

limc=c, lim x = a.
X—a X—a

The limit lim,_., f(x) may be different from f(a) as the next example shows.

Example 1.1.3.

)x dfx#2
f(X)_{l, fx=2

Which value is f(x) close to when x is close to (but not equal to) 2?
limy_, f(x) =limy_» x = 2 although f(2) = 1.
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Informal definition of left and right limits
If f(x) is close to L when x < a and x is close enough to a then we say
xllrgl_ fx)=L

This is called the left limit of f at x = a.
Similarly we can define the right limit.

Theorem 1.1.2. lim,_., f(x) = L ifand only if bothlimy_. .- f(x) = L andlim,_ 4+ f(x) = L.

Example 1.1.4. Find the left and right limits of the signum function

-1 forx<0 1
fx)=40 forx=0
1 forx>0

Solution. The one-sided limits exist, but are not equal
lim f(x)=1and lim f(x)=-1.
x—0+ x—0—

Hencelim,_. f(x) does not exist.

Properties of Limits

Theorem 1.1.3. Suppose
lim f(x) =L, lim g(x) = M.
X—a X—a

Then

)lci_r}}l(f(x)+g(x)) =L+M, (1.1)
)lciLI}l(f(x)—g(x))=L—M, (1.2)
lim (f(x)-g(x)) =L-M (1.3)

L
Jim £ —, ifM#0 (1.4)

Xx—a g(x) M
}Cgr}l[f(x)]” =L" n = positive integer (1.5)
)lci_lg[f(x)] Un_ ptin n = positive integer and L > 0 if n=even (1.6)
(1.7)
Proof. Proofrequires the formal definition of limit. O

Using the above properties we can evaluate the following limits.

x2+1

Example 1.1.5. Findlim,_., x> +1 andlim,_.,
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Solution. Using the product rule of limits and the Theorem 1.1.1,

limx®=limx-limx=2-2=4
x—2 x—2 x—2
Using the sum rule of limits,
limx*+1=limx*+liml=4+1=5
x—2 x—2 x—2
Using the division rule of limits,
x*+1 3 limy_o x% +1 5

im = — .
x—26-—x limy.,6—x 4
The above example is a special case of the following theorem.

Theorem 1.1.4. If P(x) is a polynomial then,

lim P(x) = P(a)

X—a
If Q(x) is another polynomial with Q(a) # 0 then
P(x) P(a)
im——=——..
—aQ(x) Q(a)
The Squeeze Theorem

Theorem 1.1.5. Suppose that f(x) < g(x) < h(x) andlimy_., f (x) =limy_, h(x) = L. Thenlim,_,g(x) = L.

h(x)

L
(a,L) 2(x)

f(x)

Figure 1.1: The Squeeze Theorem.

Example 1.1.6. If—x? < g(x) < x? for -1 < x < 1, findlim,_ g(x).
Example 1.1.7. Show that iflimy_,|f(x)| =0 thenlimy_, f(x) = 0.

Solution. Note that — | f (x)| <flx) =< | f (x)| and use the Squeeze Theorem.

More examples

Example 1.1.8. Let
|x -2
[l =

T xX2+x-6
Findlimy_,4 f(x),limy_o_ f(x). Doeslimy_, f(x) exist?
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Most of the limits you need to compute in this class will be lim,_., f(x) when f(a) does not exist. Here
is an example.

Example 1.1.9.

i X+x-2
imy._ o ————,
221 5x+6

Solution. Remember that we consider x values close to but not equal to —2. Hence x +2 # 0 and we can make
the simplification

X +x-2 . (x+2(x-1) .. x-1 -3
lim —= - = =1 Z - _~-_3
x—-2x24+5x+6 x—-2(x+2)(x+3) x—-2x+3 1
Exercises. . X3+
6. lim .
x—-1 x+1
1_1 Answer: 3
. X 5
L lim-—.  1Bx—1]—3x+1]
. 7. lim .
Answer: —3- x—0 X
Answer: -6
x-2
2. lim \/_—, 2 4
x—4 x>~ 16 8 lim —~ )
Hint: multiply and divide by the conjugate ex- x—-2-|x+2|
pression v/x + 2. Answer: 3%2 Answer:
2 -4 +3
3 lim "2 9 lim%.
x—-2 x2—-14 y—=1  y =1
Answer: % Answer: —%
4 hm—‘4+h_2 . VA—4x+x?
- om 10. lim ——————.
) x—2 xX—2
Answer: 3 Answer: 1
t
5. lim ) 11. If2—x% < f(x) < 2cosx for all x, find lim f(x).
=0\/4+1—\A—1 f ! f find lim. f
Answer: 2 Answer: 2

1.2 Limits at Infinity and Infinite Limits

Limits at Infinity

Definition 1.2.1. We will say that lim_. f(x) = L if f(x) is “close enough” to L whenever x > 0 is “large
enough’.

Similarly we definelimy_._, f(x) = L if f(x)is “close enough” to L whenever x <0 is “large enough’.

If either limy_.o f(x) = L orlimy_._o, f(x) = L, we say that the line y = L is an horizontal asympftote of

the graph of f .
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Example 1.2.1. Argue that
lim 1/x= lim 1/x=0.

X—00 X——00
by making a table of values of x and 1/ x.
1
fx) ==
X
10+

5 |
! L L x
~10 —ﬁ 5 10

_10 L

Recall that for ordinary limits, limit of product of functions is a product of limits of functions. Same is
also true for limits at infinity. Hence

1 1 1
lim —=1lim —-lim —=0x0=0.

X—00 X X—00 X X—00 X
Similarly
X——00 X

Finally, for any positive integer n

Example 1.2.2. Let f(x) =

. Findlimy_.o f(x), limy__o f(x).
x2+1

Solution.
li al li al
im —— = lim ——
X=00\/x2 41 X7 |x|V1+1/x2
X

= lim —— =
=00 xv1+1/x2 f& 211

1
= lim —— 1
X=00\/14+1/x2 1Y

3 limy_ool

_liquoovl—i-l/xz ; g

B 1 1, -5 5
ViMoo +1/x2) 1

Similarly,

im
¥=-0/x2 41



10 CHAPTER 1. LIMITS AND CONTINUITY

Limits of Rational Functions at Infinity

Recall that a rational function is a ratio of two polynomials.
Strategy. To find limits of rational functions at infinity, divide by the highest power of x appearing in the
denominator.

Example 1.2.3.

202 —x+3 2-3+m 2
x—%co 3x2+5  x—tc0 3432 3
X
Example 1.2.4.
. X—=35 . i—% 0
lim —— = lim =—=0
x—+002x2 +4x+1 x—>i002+%+x—12 2

We can generalize the above examples.

Theorem 1.2.1. Let P(x) = apx? + ap_lx”‘l +-+-+ ag be a polynomial of degree p and Q(x) = byx9 +---+ by
be a polynomial of degree q. If p = q, then

P(x) ap
im —=—,
X—+00 Q(x) qp
Ifp<q, then
P(x)
im —— =0,
X— 400 Q(x)
Example 1.2.5.
Vit x— 0/t 1 1
lim Vx2+x—x= lim (VX" +x-0Vx+x+x) = lim ;: lim ——=—.
X—00 X—00 e+ x+x X—00 X—00 2

1 1
lx[y/1+<+x I+5+1

Infinite Limits

1 1
Example 1.2.6. The values of — gets larger and larger as x approaches to 0. Thuslimy_.o — does not exist.
X
Although the limit does not exist, it is useful to state why it does not exist by writing

1
llm—2 =00
x—0 X
f(x) ==
10
5 ]
X
-10 -5 5 10
-5

_10 uE
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Example 1.2.7.
1
lim — =o0.
x—0+ X
. 1
lim — = —oc0.
x—0- X
1 .
lim — does not exist.
x—0Xx
Example 1.2.8.

lim Vx2+x—x

X——00

Solution. Both —x and vV x? + x grow large as x — —oo. So the limit is co.

Behaviour of Polynomials at Infinity

Example 1.2.9.
lim 4x% - 2x+1= lim 4x3 = 0o.
X—00 X—00
lim -3x°+x3+1= lim —-3x% =o0.
X——00 X——00
In general,

Theorem 1.2.2. I[fP(x) = a,x" +---+ ay is a polynomial then
lim P(x)= lim a,x".
X—+00 X—+o00
IfQ(x) = by x™ + - -+ + by is also a polynomial then

P(x) . a,x"

x—+00 Q(x) "~ x—+00 by, x™

Example 1.2.10.

. X+1 . Xtz X
lim 5 =li 5= lim —=o00
X—o0o x4 —2X X—oo 1_} x—oo ]
| i (x—2)%
Example 1.2.11. 1. 1mx_,2m =0
. x—3 B
2. hmx_,2+ m =—-00
I x—3 B
3. 1My 2 m =00
4. lim,_.» 2_ does not exist.
x-—-4
. 2x—1
5. limy_

V32t x+1

11
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. x2—x
6. limy .14 5
X—Xx

Solution. Ifx>1 then x— x%=x(1-x)<0.So
x’-x .. -Vx’-x -Vx?>—x _ -1

lim = lim ——— = lim = lim

=1+ x— x2 x—1+ x2-—x =1+ /32 — xvV/x2 — x Ll /32— x

= —00

1.3 Continuity

Let f(x) = V4 — x2. Domain of fis[-2,2].
e x =—2isthe left end point of Dom(f).
e x =2 is theright end point of Dom().
e Any x with —2 < x < 2 is called an interior point of Dom(f).

Definition 1.3.1. A function f is continuous at an interior point c of its domain if
lim f(x) = f(c)

f is continuous at its left endpoint c if

Jlim f(x) = f(c)

f is continuous at its right endpoint c if
Jlim f(x) = f(c)

The following theorem gives an alternative definition of continuity which is sometimes useful.

Theorem 1.3.1. A function f is continuous at an interior point c of its domain if and only if
lim f(c+h) = f(c
m f( )= f(o)

f is continuous at its left endpoint c if
hli%l flc+h)=f(c)
—0+

f is continuous at its right endpoint c if
hlirgl flc+h)=f(co)

Proof. Let h=x—c. Then x — cifand onlyif 7 — 0. Solim,_.¢ f(c+h) = f(c) isthe same aslim;_.o f(c+h) =
f(o). O

Note that f is discontinuous at c if
i) eitherlim,_. f(x) does not exist.

ii) orlim,_. f(x) exists but is not equal to f(c).
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Figure 1.2: fis discontinuous at a because of (ii) and discontinuous at b because of (i). fis continuous at c.
Definition 1.3.2. f is called a continuous function if f is continuous at every pt of its domain.
Example 1.3.1. f(x) = V4 — x? is continuous at every point of its domain. So it is a continuous function.

flx)=va-x?

2

According to this definition f(x) = 1
fined rather than discontinuous at 0.

There are lots of continuous functions:

is also continuous!!! 0 is not in domain of f. So we say f is unde-

* polynomials,

¢ rational functions,

In

rational powers x™"

* trigonometric functions

absolute value function | x|
Theorem 1.3.2. If f and g are continuous at c then
e f+g,f—g, fg, arecontinuousatc,

* ifk is constant then k f is continuous at c,

f

. § is continuous at c provided that g(c) # 0.
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o U continuous at c provided that f(c) > 0 if n is even.

Proof. Let’s prove that if f and g are continuous at ¢ then so is f + g. If f and g are continuous at ¢ then
lim f(x) = f(o),  limg(x) = g(o),

By the limit rule,
}Ciinc(f(x) +gx) = }Cilncf(x) + }Ciincg(x) = f(c)+ glo).

The other proofs are similar. O

Composites of continuous functions are continuous
If g is continuous at ¢ and f is continuous at g(c) then f o g is continuous at c. In other words,

lim f(g(x)) = f(lim g(x)) = f(g(c)).

Example 1.3.2. Find m so that

X—m, ifx<3,
g(x) = .
1-mx, ifx=3

is continuous for all x.

Continuity of Trigonometric Functions

Theorem 1.3.3. sin x and cos x are continuous at x =0, i.e.
limsinx =sin0 =0, ﬁl’I})COSX:COSOZ 1.
x—>

x—0

Proof.

P = (cos0,sin0)

|1-cosf|=|AQ|<|AP| <86,
Isinf| = |PQ| < |AP| <0

In other words, —0 < sinf < 0
and using the squeeze theorem
we get limg_osinf = 0. Simi-
larly, we get limg_.g1 —cosf =0
orlimg_gcosO =1.

Theorem 1.3.4. sinx and cos x are continuous for all x.

Proof. By Theorem 1.3.1, we need to prove limy,_.¢sin(x + h) = sin x for any x.

}lim sin(x+ h) = Illim sinxcosh+cosxsinh =sinx }lim cosh+cosx Iliim sin h = sin x.
-0 -0 -0 -0

Prove the continuity of cos x as an exercise. O
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Extreme Value Theorem

Theorem 1.3.5. If f is continuous on the closed interval [a, b] then there exist numbers p and q in the interval
la, b] s.t.

fip=sf=fl@

for all x in [a,b]. f(p) is called the absolute minimum value and f(q) is called the absolute maximum
value.

Extreme value theorem is an existence theorem. It only guarantees the existence of p and g but does
not tell how to actually find them.

We say a function f is bounded if there exists M and N such that M < f(x) < N for all x in the domain
of f. Extreme value theorem says that continuous functions on closed intervals must be bounded.

Example 1.3.3. The conclusions of the theorem may fail if the function f is not continuous or the interval is
not closed.

1 1
(a) The function f(x) = 1/x on the open inter- (b) The function f(x) = x on (0, 1) is discontin-

val (0, 1) is continuous but unbounded and has uous, bounded and has no minimum and no
no minimum and no maximum. maximum.

./
0 0 1

1 1

(a) This function is defined on the closed in- (b) This function is defined on the closed inter-
terval [0, 1], discontinuous, has a minimum but val [0, 1], discontinuous, bounded, has no min-
no maximum. imum and no maximum.

Intermediate Value Theorem

Theorem 1.3.6 (Intermediate Value Theorem). If f is continuous on [a, b] and if s is between f (a) and f (D)
then there exists c in [a, b] s.t. f(c) =s.
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y=f

X

Figure 1.5: Illustration of the intermediate value theorem.

Example 1.3.4. Ifa child grows from 1 m to 1.5 m between the ages of two and six years, then, at some time
between two and six years of age, the child’s height must have been 1.23 m.

In particular, a continuous function on a closed interval takes every value between its minimum m and
maximum M. Hence its range is a closed interval [m, M].

3

Example 1.3.5. Show that the equation x> — x — 1 = 0 has a solution in the interval [1,2].

Solution. f(x) = x3-x—1 isa polynomial and hence continuous. f(1) = —1 and f(2) = 5. Since0 lies between
—1 and5, the intermediate value theorem assures us that there must be a number c in [1,2] such that f(c) = 0.

Bisection Algorithm

Intermediate Value Theorem is also an existence theorem. It does not say how to find c in its statement.
Let’s try to better estimate the root of previous example. Write f(x) = x> — x — 1 and try to find a smaller
interval where a root lies of

f(x)=0.

We know that a root lies in [1, 2], if say that the root is 1.5 the maximum error will be 0.5.
Now f(1.5) =0.875 > 0. So a root lies in [1,1.5], and if we say the root is 1.25 then the maximum error
will be 0.25.
If this is not sufficient then compute f(1.25) = —0.2969, now if we say the root is 1.375 then the error is
less than 0.125.
Next step is f(1.1375) = 0.2246. So a root must lie in [1.25,1375]. The error is less than 0.0625 if we say
the root is 1.315.
Going this way, we find the approximations, 1.3438, 1.3282, 1.3204. Hence the root mustlie in [1.3204, 1.3282].
So the first two decimal digits of the root are 1.32.

In engineering, you almost never get exact results. All you can do is lower your error below an acceptable
threshold.

Optional Issues

Is there a function which is continuous only at a single point? Yes!
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Example 1.3.6.
x, ifx isarational number
fx)= .
0, otherwise

is continuous only at x = 0.

This also answers the following question
If a function is continuous at point, is it continuous in some open interval around that point? NO!

1.4 Formal definition of Limit

The informal description of the limit uses phrases like “close enough” and “really very small”. “Fortunately”
there is a good definition, i.e. one which is unambiguous and can be used to settle any dispute about the
question of whether lim,_., f(x) equals some number L or not.

In this section we assume that f is defined in an open interval containing a except possibly at x = a.

Definition 1.4.1. We say that

fim )= £
if for everye > 0 there exists a0 > 0 such that
0<|x—al <06 implies|f(x)—L|<e. (1.8)

Why the absolute values? Recall that the quantity |x — y| is the distance between the points x and y on
the number line.

What are € and 6 ? The quantity € is how close you would like f(x) to be to its limit L; the quantity § is
how close you have to choose x to a to achieve this. To prove that lim,_, f(x) = L you must assume that
someone has given you an unknown € > 0, and then find a positive 6 for which (1.8) holds. The é you find
will depend on €.

When we first discussed the limit, say lim,_.52x + 1, we made a table,

x fx)=2x+1
5.1 11.2
5.01 11.02
5.001 11.002
4.9 10.8
4.99 10.98
4.999 10.998

This table can be written also in this form.

lx—5] | [f(x)—11]
0.1 0.2
0.01 0.02

0.001 |  0.002

It looks like for any € > 0, if [x — 5| < % then |f(x)—11| <E€.
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1.5 Review Problems

CHAPTER 1. LIMITS AND CONTINUITY

Example 1.5.1. Evaluate the limits if they exist. If they do not exist, state wheter they are oo, —oco or just does

not exist.

i x*+1
1. 1mx_.21 2

2

2. 1i X
L limy, ——
1-—x2’

cosx
3. limy_.oo ——, (Hint: Use Sandwich Theorem)
X

2x3+2x—1

4. limy. o————
T 33 4 a2

5. limy oo x+Vx2—4x+1,

Solution.
. ) 4 1 ) 4 1
lim x+Vx2—4x+1= lim x+|x[\/l1-—+—== lim x|1—-4/1-—+ =
X——00 X——00 X x2 x—-o0 x x2
1 (1+ 1—§+x—12)
= lim x|1 1——+—2
X——00 X X 4, 1
(1+ 1—}4—?)
. 1 1
= lim x|1- 1——+—2 lim
o R )
. 4 1 . 1)1
= lim x -—= lim |[4——|=-=2
X——00 X X X——00 X
6. li al
. lim, . g——m——.
01— |x+ 1
. X—5
7. lim >
x—5 x4 —25
. x%2+3x-10
8 lim ———
x—-5 xX+5
_1_1
9. lim
x—1 x-—1
Cout-1
10. lim
u—1 u3—
11. lim Vx-
-9 x—-9
1 1
12, lim 2L
) x—0 X
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

3

}/1_13 v*-16
If2 - X% < g(x) <2cosx, forall x, findlim,_, g(x)

fx)-5
-2

Ifli
Fim

=3, findlim,_., f(x)
fx)=5
x=2

lim Vh2+4h+5-+/5

h—0+ h

Iflin% =4, findlim,_., f(x)
X

. |x+ 2]
lim (x+3)
x—=2- X+2

Define g(3) in a way that extends g(x) = (x2=9)/(x—3) to be a continuous at x = 3.

For what value of b is

ax+2b, x<0
gx)=<{x*+3a-b, 0<x<2
3x-5, x>2

continuous at every x?
Explain why the equation cos x = x has at least one solution.
If f(x) = x® — 8x + 10, show that there is a value c for which f(c) = 1000.

Suppose that a function f is continuous on the closed interval [0,1] and that0 < f(x) <1 for every x in
[0,1]. Show that there must exist a number c in [0, 1] such that f(c) = c (c is called a fixed point of f).
(Hint: Consider the function g(x) = f(x) — x) and try to find a zero of g(x).

Show that the function F(x) = (x — a)%(x — b)? + x takes on the value (a+ b)/2 for some value of x.






Chapter 2

Differentiation

2.1 Tangent Lines and Their Slopes

Problem: Find a straight line L that is tangent to a curve C at a point P.
“For simplicity, restrict ourselves to curves which are graphs of functions.”
How do we define the tangent line to a curve?

The slope of the line PQ is

J(xo+ h) — f(xo)
A .
Definition 2.1.1. Suppose f is cts at x = xo and

limf(xo+h)—f(xo) -
h—0 h
If the limit exists, then the line with equation

¥y =m(x— xp) + f(x0)

is called the tangent line to the graph of y = f(x) at P = (xy, f (x0)). If the limit does not exist and m = oo or
m = —oo then the tangent line is the vertical line x = xy. If the limit does not exist and is not +oo then there is
no tangent line at P.

21
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Example 2.1.1. Find an equation of the tangent line to the curve y = x* at (1,1).

2.
h—0 h

And an equationisy =2(x—1) + 1.
Example 2.1.2. Find an equation of the tangent line to the curve y = x''3 = {/x at the origin.

Solution. The slope of the tangent line is

hl/S

m = lim — = oo.
h—0

So the tangent line is a vertical line x = 0 (in other words the y-axis).

f(x) — x1/3
1 1Y
1 1 d
-2 2
=1

Tangent lines to curves such as circles and parabolas do not cross these curves, they just touch at a single
point. However, for graphs of functions tangent lines may cross the curve such as above. In fact at inflection
points (which we will define later) they always do! For example the tangent line to the graph of f(x) = x> at
x =0 is the y-axis.

Example 2.1.3. Does f(x) = X213 have a tangent line at (0,0) ?

Solution. The limit of the difference quotient is undefined at Osince the right limit is oo while the left limit is
—o0. Hence the graph has no tangent line at (0, 0).

“We say that this curve has a cusp at the origin. A cusp is an infinitely sharp point. If you were traveling
along the curve, you would have to stop and turn 18(° at the origin.”

Example 2.1.4. Does f(x) = |x| have a tangent line at (0,0)?
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h
Solution. The difference quotient is % which has right limit 1 and left limit —1 at h = 0.

fx) =|x|

2.2 Derivative

Definition 2.2.1. The derivative of a function f at x is

lim f(x+h)—f(x).
h—0 h

flx)=
whenever the limit exists. If f'(x) exists, f is called differentiable at x.
f'(x) is the slope of the tangent line to the graph of f at (x,f(x)).

We will regard f’ as a function whose domain is those x at which f is differentiable.
Another way of defining derivative is

f'(x0) = x]Lm M — lim f(xo+h) — f(xo)

X X—Xp h—0 h

Two limits are equivalent. This can be seen by letting x = x + h.

Example 2.2.1. Show that the derivative of the linear function f(x) = ax+ b is f'(x) = a. In particular the
derivative of a constant function is zero.

Example 2.2.2. Use the definition of the derivative to calculate the derivatives of a) f (x) = x%, b) flx) = %, c)

fx)=vx.

The previous three formulas are special cases of the following Power Rule for Derivative:
f)=x" = f(x)=rx'!

whenever x"~! makes sense.
Proof of the Power Rule for positive integers. Let f(x) = x” and n a positive integer. Then

, X" =xl (= x) (" X g+ xx T )
[ (xp) = lim = lim
X—=Xo X — X X=X X— X0

n-1

"Zxg+ e xxd 1Y = nxd)

= lim (x" '+x
X— X0

We will prove the general version later.
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Example 2.2.3.

for all x. How about f'(-1/8)?
1 ’ 1 _3n
X)=— = f(x)=—=x
fx) NG [ >
forx>0.
Example 2.2.4. Differentiate the absolute value function f(x) = |x| to get
-1, ifx<0
/ )
(x) = sgn(x) =
! & { 1, ifx>0
Note that f is not differentiable at 0.
Example 2.2.5. How should the function f(x) = xsgn(x) be defined at x = 0 so that it is continuous there? Is
it then differentiable there?

Notations for Derivative

Let y = f(x). We denote the derivative by

f_ e dy _d
y=rm= dx dxf(x)'

If we want to evaluate the derivative at point x
dy d
y' |x:x0: f'(xo) = E |x=xo: af(x) |x=x0 .

d d
The notations y' and f'(x) are Lagrange notations for the derivative. The notations d—i and P f(x) are

called Leibniz notations for the derivative.
The Leibniz notation is suggested by the definition of the derivative. Let Ay = f(x + h) — f(x) be the
increment in y and Ax = x+ h — x = h be the increment in x. Then

d A
4V _ fim 2

dx Ax—0Ax

2.3 Differentiation Rules

Differentiability is stronger than continuity.
Theorem 2.3.1. If f is differentiable at x then f is cts at x.

Proof.

}llir(l)(f(x+h)—f(x)):}11£r(1) h=f(x)0=0

fx+h)—-f(x) lim
h h—0
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Hence
}lin})f(x+h) =f(x)

O
Theorem 2.3.2. If f and g are differentiable at x then
(f+8) ') =f(x)+gx),
(f-8'x) =f'x)-gw),
and for any constant ¢
(cf) (x) = cf'(x).
Proof. Let’s prove the derivative of sums is sum of derivatives. The others are similar.
(f+g)(x) = lim (f+)x+h)—-(f+gx) lim fx+h)+gkx+h) - f(x)+gk)
h—0 h h—0 h
L fx+-fx) . glx+h)-gx) ,
- et e e U
O

The sum rule extends to any number of functions.

(it + f)' (0 = f{Q)++ f ().
Example 2.3.1. Take the derivative of

f(x):5\/§+%—19

It is NOT true that derivative of product of functions is a product of their derivatives. Usually (fg)’(x) #
f(xX)g ().

Theorem 2.3.3. If f and g are differentiable at x then
(fg)(x) = f'(x)gx) + f()g'(x).

Proof.

(F9)/(0) = lim LEE MBI~ (0800 _ G )= [00) gLet )+ /) (gl + )~ ()
h—0 h pm -
 lim f(“”‘;l‘f(x) gla+ ) —g(x)

h—0 h

li h) + li li
lim glx+h)+ hl_I%f(x) lim

Example 2.3.2. Find the derivative of f (x) = (X+x+1)2x+ %).

The product rule can be extended to any number of functions

hff3) = Afhf+ Al fs+fifefs
(fl"'fn),:fl/fZ"'fn+f1f2,f3'“fn+”'+f1”.fn_1f’;'
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Theorem 2.3.4. If f is differentiable at x and f (x) # 0 then 1/ f is diff at x, and

(l) (=W

f [0
Proof.
1 1
i 1 ~ lm fx+h) f(x) _ lim -1 limf(x+h)—f(x)
dx f(x) h—o h h—0 f(x+ h) f(x) h—0 h
The result follows by limit rules and continuity of f. O
5
Example 2.3.3. Differentiate y = BT

Theorem 2.3.5. If f and g are differentiable at x and g(x) # 0 then

Y . g - fxg'(x)
=l x)= 5
g g-(x)

Proof. Using the product rule and reciprocal rule,

(f) (x)=(§(x)f(x)) _ W8l - f(x)g (%)

g% (%)
O
. o a+ bx
Example 2.3.4. Find the derivative of f(x) = .
m+cx
2
Example 2.3.5. Find an equation of the tangent lineto y = 3_avx at the point (1,-2).
—4y/x
Solution. Let us define g(x) =3—4+/x. Then g'(x) = —4% = —% and
' 2
I —8 (x) _ VX 4

g7 TB-4y?  VrG-4yx?
Hence y'(1) = 4. And the equation of the tangent lineis y = 4(x — 1) — 2.

x+1

Example 2.3.6. Find the x-coordinates of points on the curve y = 3=/

liney=4x.

where the tangent line is parallel to the

Solution. Solvingy' =4, we find x = —-3/2 and x = —5/2.

Example 2.3.7. Iff(2) =2 and f’(2) =3, calculate
( )
dx f(x)

2-2f(2)-2%f'2) 8-12
f(2)? S 4

x=2

Solution. Answer is

=-1.
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2.4 Chain Rule

The following theorem is known as the chain rule.

Theorem 2.4.1. If f(u) is differentiable at u = g(x) and g(x) is differentiable at x, then
(fog)(x)=f"(g(x)g'(x)

Proof. The proofin the case g(x) # g(a) for x sufficiently close to a.

8- fgla) . f8x)-flgla) g -gla)

x—a Cx—a g(x)-gla) x—

(fog)(a)= lim =f'(gla)g'(a)

If there is always an x # a, x near a such that g(x) = g(a) then the above proof fails due to division by zero.
You can find the proof in this case in Wikipedia. O
In Leibniz notation, if y = f(u) where u = g(x) then
y=fEgx) = (o))

dy dydu
dx dudx

dy
where Ti

is evaluated at u = g(x).
Example 2.4.1. Find the derivative of y = V x? + 1.

Solution. Herey = f(g(x)) where f(u) = vu and u= x*+1.

gx)=—=2x=

dy _ o / 1
=f(gx)g (x)= :
dx J(stg 2v/8(x) 2vx?+1 Vx?+1

Example 2.4.2. Differentiate y = (x> —1)1000,

Solution. Letu = (x> —1) then y = u'%. y' =1000u%1' = 1000(x3 — 1)¥93x2.

Example 2.4.3.

d X X
—|x| \/x = =—, x#£0
dx 2\/_ \/_ | x|

This function is called sign function or signum function.

) X 1, x>0
SN(X) = — = .
& | x| -1, x<0

Example 2.4.4. Express in termsof f and f’.
a) L f(x?),
b) L(fx-2fxNt
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Solution. For (a)
i 2y _ ol 2
dxf(x )= f(x")2x
For (b)
d
E[f(” —2f(x))]4 =4(f(m - 2f(x))]3f'(ﬂ =2f () (=2f"(x)).

Example 2.4.5. For

f(x):(1+\/2x+1

)—4/3

evaluate f'(0).

Solution.
fl(x) = _—4(1 +V2x+ 1)—7’3i\/2x+ 1= _—4(1 +V2x+ 1)_7/3—i(2x+ 1)
3 dx 3 2V2x+1dx
—4 1
=5 U V2 DT 2
Hence
f/(()) = _21}33'

Example 2.4.6. Find an equation of the tangent line to the graph of

y= (14223302

atx=-1.

Solution.

y = §(1 N les)l/zgx—l/s
> .

Y1 = 2(1 + 1)1’22(—1) =-V2.

2.5 Derivatives of Trigonometric Functions

The radian measure of an angle is defined to be the length of the arc of a unit circle corresponding to that
angle.
180°

T

angle in degrees = angle in radians-

In calculus all angles are measured in radians. By an angle of 7/3 we mean n/3 radians or 60° not
(m/3)° = 1.04°.

. sinf
Theorem 2.5.1. limy_.q e =1.
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Proof.

Suppose 0 <0 < 7.
Area of OQP triangle is % sinf cosf.
Area of OAP arc is 212,

Area of OAT triangle is 3 tan = 2833569'
1 0 inf
—sinfcosf < — < S
2 2 2cosf
0 1 P £ (cos@,sin0)
cosf s ——=<
sinf  cos6
1
Take reciprocal to get
in6 1 -
cosf < < —, (2.1) o @
0 cosf
for0<6<7.
Use the squeeze theorem to show that

sinf
=1

lim
0—0+ 0O

Similarly, we can show that (2.1) holds for -7 <6 <0

and hence )
lim ﬂ =1
0—0- 6
O
Example 2.5.1. Show thatlimj,_. % =0.
Solution.
. cosh—-1 . (cosh-1)(cosh+1) . cos?h—1
im ——— = lim =lim ——
h—0 h h—0 h(cosh+1) h—0 h(cosh+1)

i —sin®h i sinh sinh 100
=lim— =-1lim —=-1-0=
h—0 h(cosh+1) h—0 h cosh+1

Example 2.5.2. Find the limit of

sinx
sin2x

i limx—>0

xsinx
2—-2cosx

liquo

o lim,_ql=gs
tan2x
X

limx—>0
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Theorem 2.5.2. sinx is differentiable for every x and

—sinx =cosx

dx
Proof.
. . sin(x+h)—sinx . sinxcosh+cosxsinh—sinx
—sinx = lim = lim
dx h—0 h h—0 h
. sinx(cosh—-1) . cosxsinh . . (cosh-1) . sinh
= lim + lim =sinxlim —— + cosxlim =COoSX
h—0 h h—0 h h—0 h h—0
L]
Theorem 2.5.3. cos x is differentiable for every x and
d .
—cosx = —sinx.
dx
Proof.
in(5—x) = -cos (5 - x) = -si
—cosx=—sin|——x|=-cos|— —x|=—sinx.
dx dx 2 2
OJ

Example 2.5.3. Evaluate the derivative of
a) sin(mwx)+ cos(3x),

b) x?cos(y/x),

coSX
1-sinx

The derivatives of the other trigonometric functions

sinx 1 COS X 1
tanx = , Secx= , cotx=——, cscx=——.
CoSX CoSX sinx sinx

Since cos and sin are eveywhere differentiable, the above functions are differentiable everywhere except
where their denominators are zero. The derivatives of these functions can be derived by using quotient and
reciprocal rules.

d 2 d d 9 d
—tanx=sec“x, —secx=secxtanx, —cotx=-—-CsSC°X, —— CSC=—CSCxcCOtx.
dx dx dx

Example 2.5.4. Verify the derivative formulas for tan x and sec x.
Example 2.5.5. Find the derivative of y = sin(cos(tan 1)).

Example 2.5.6. Find the points on the curve y = tan(2x), —n/4 < x < /4, where the normal is parallel to the
liney=-x/8.
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Exercises

sinx
1. J}im ——. (Hint: Use Sandwich Theorem)

2—t+sint
2. lim —————— (Hint: Divide both sides by ¢ and use the previous exercise)
t—oo t+cost

2.6 Higher Order Derivatives
Derivative of derivative is called second derivative. If y = f(x) then

d d d? d?
" 1y — — = .
y=rm dx dxy dxzy dxzf(x)

Similar notations can be used for third, fourth, etc. derivatives. For n-th derivative, we write
ay
(n) — r(n) —
= X)) = ——
yrErrw =
Example 2.6.1. Calculate all the derivatives of y = x°.
Example 2.6.2. Calculate all the derivatives of y = x"* where n is a positive integer.

Solution.

0 —(nf!k)!x”‘k ifo<k<n
0 ifk>n

Example 2.6.3. Show thatif A, B and k are constants, then the function y = Acos(kt)+ Bsin(kt) is a solution
of the second order differential equation

d’y

— +k*y=0.
dx? ¥
Example 2.6.4. Ify = tan kx show that y" = 2k’ y(1 + y?).

Example 2.6.5. If f and g are twice differentiable functions, show that

(fg)/,:fllg+2flg/+fg”.

What do you think about the general formula for j—;n (fg)?

2.7 Mean Value Theorem

The Mean Value Theorem is the midwife of calculus - not very important or glamorous by
itself, but often helping to deliver other theorems that are of major significance.
—E. Purcell and D. Varberg

Suppose you drive in 2 hours from city A to city B which are 200km apart. That means your average
speed was 100km/h. Even if you did not travel constant speed, there was at least one instant where your
speed was exactly 100km/h. This is called mean value theorem.
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Theorem 2.7.1 (The Mean-Value Theorem). Suppose
that f is continuous on the interval |a, b] and that it
is differentiable on the open interval (a, b). Then there
exists a point c in the open interval (a, b) s.t.

o -f@ a ¢ b
b-a =1

Figure 2.1: Mean Value Theorem says that the slope of
the secant line joining two points on the graph of of
f(x) is equal to the slope of the tangent line at some
point x = ¢ between a and b.

Let f(¢) denote the distance from city A. Then f(0) =0 and f(2) = 200. Mean Value Theorem says there
isatime t = ¢ s.t. f'(c) =100.

Example 2.7.1. Let f(x) = |x| on[—1,1]. Show that thereis no c € [—-1, 1] satisfying the conclusion of the Mean
Value Theorem. Why?

The Mean Value Theorem is an existence theorem like Intermediate Value Theorem. In particular

¢ We don't know how to find c.

* We don't know how many different ¢ can be found satisfying Mean Value Theorem (there is at least
one).

Figure 2.2: There may be more than one c satisfying the conclusion of the Mean Value Theorem.

Example 2.7.2. Show thatsinx < x for all x > 0.

Solution. For x > 2m, we havesinx < 1 < 2n < x. Now assume 0 < x < 2. By the Mean Value Theorem there
exists ¢, 0 < ¢ < x such that
sinx —sin0
x—0
Hencesinx = xcosc. Since0 < c<2m,cosc< 1. Sincealso x>0, we have xcosc < x. Sosinx = xcosc < x.

= Cosc.
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Example 2.7.3. Show thatv1+x<1+% forall x> 0.

Solution. Let f(x) = V1+ x. Then f'c)< % for ¢ > 0. Use Mean Value Theorem.

Example 2.7.4. Determine all the numbers ¢ which satisfy the conclusions of the Mean Value Theorem for
fx)=x>+2x*—x, xe[-1,2]

Solution. Solve

f@-f(-1) 14-2
2-(-1) 3

=4

3¢t +4c-1=f(c) =

Solutions of3¢*> +4c—5=0 are
—4++/76
T

Cy =

Notice that only _4+6‘/% liesin[-1,2].

Example 2.7.5. Suppose f is continuous and differentiable on (3,9]. Suppose f(3) = —4, and f'(x) < 10 for
all x. What is the largest value possible for f(9)?

Solution. By Mean Value Theorem, there exists c € (3,9) such that
f)—-fB) =f"(c)(9-3)<10x6=60.
S0 f(9) <60+ f(3) = 56.

Definition 2.7.1. Suppose f is defined on an interval I. If for all x,,x, in I s.t. xo > X1,

If Thenon I, f is
fx2) > f(x1) increasing
flx) < f(x1) | decreasing

f(x2) = f(x1) | non-decreasing
f(x2) < f(x1) | non-increasing

Theorem 2.7.2. Suppose f is differentiable on an open interval 1. If forall x € I,

If Thenon I, fis
f'(x)>0 increasing
f(x)<0 decreasing

f'(x) 20 | non-decreasing
f'(x) =0 | non-increasing

Proof. Let’s prove the first statement. Let x, > x; in I. By the Mean Value Theorem, there exists ¢, x; < ¢ < X2,
such that f(x) — f(x1) = f'(c)(x2 — x1). Since f'(c) > 0 and x, — x; > 0, we have f(x2) > fix;). So f is
increasing. [

Example 2.7.6. On what intervals is f(x) = x3 — 12x + 1 increasing or decreasing?
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Solution.
fx)=x>-12x+1
y
f'(x) =3(x—2)(x+2). So f is decreasing on (-2,2) and 01
increasing otherwise.
4 2 > [ a
— 10 1

We know that if f is a constant function then its derivative is zero. The converse is also true.
Theorem 2.7.3. If f'(x) = 0 on an interval I then f(x) is constant on I.

Proof. Choose xpin I. Let C = f(xp). If x is any other point in I then by Mean Value Theorem, f(x)— f(xg) =
1) (x—x0) = 0. =

Challenge Problem. Suppose that f,g : R — R are differentiable functions such that the limits L =
limy_._o f(x) and M = lim,_._,, g(x) exist and L < M. Is it possible that f(1) = 4, and g(1) = 2? Hint:
Consider h(x) = g(x) — f(x) and use MVT.

2.8 Implicit Differentiation

We learned to find the slope of a curve that is the graph of a function. But not all curves are graphs of
functions, for example the circle X%+ y2 =1.
Curves are graphs of equations in two variables

F(x,y)=0.
For the circle F(x, y) = x%+ y2 -1.
Example 2.8.1. Find the slope of the circle x> + y* = 25 at the point (3, —4).

Solution. Ist method. Solve the equation x*> + y*> = 1 for y. There are two solutions y1, = +V25— x2. The
point lies on the graph of y,. Take derivative of y,.
2nd method. To differentiate with respect to x treat y as a function of x and use Chain Rule.

(x +y(x))—dx0—0.

dx
This gives
d
2x+2y00 XY _
or
dy  2x
dx 2y

Pluginx =3, y=—-4tofind % =3/4.
This second method is known as the implicit differentiation.

Example 2.8.2. Find an equation of the tangent line to the curve xsin(xy — y*) =0 at (1,1)

Example 2.8.3. Find y" in terms of x and y ifxy + y* = 2x.
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The General Power Rule for Derivative

So far, we proved the following rule
dxr r—1

Pl
for integer exponents r and a few special exponents such as r = 1/2. Using the implicit differentiation, we
can give a proof for any rational exponent r = m/n where n # 0.

If y = x™'" then y" = x™. Differentiating implicitly

n—1ﬂ:d_yn:dxm: m-1

ny dx dx dx mx
Hence
ﬂ — Exm—lyl—n — rxm—lx(l—n)m/n — rxm—1+r—m =rx’.
dx n
2.9 Exam 1 Review
Section Exercises
1.2 7-36, 37-42, 43-46, 49-60, 74, 75
1.3 1-10,11-34
14 17,18, 29, 31
1.5 7-10
2.1 1-12,13-17, 18-24
2.2 11-24 (ignore differentials), 30-33, 34-39, 40-49
2.3 1-50
2.4 1-16, 30-34, 36-39
2.5 1-36, 39-42, 45-46
2.6 1-12
2.8 1-3,5-7,8-15
2.9 1-8,9-16

Table 2.1: Exam 1 Review Problems from Adams & Essex Calculus: A Complete Course 7th Edition

Sample Exam 1

1. Find the following limits if they exist.

a)
, x? x? )
lim -
x—oo\x+1 x-—1
b)
. X
lim———
x—0|x—1|—|x+1|
c)

lim (x+ Vx2—4x+ 1)

X——00
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. Show that f(x) = x>+ x— 1 has a zero between x=0and x = 1.

. Find the slope of the tangent line to the curve

2
tan(xyz) = %

at the point (-m,1/2).

. Calculate the derivatives.

a)
C1+yVx

X+l

b)
y=(sin(vx) +1)° +7xcos x

derivative.

CHAPTER 2. DIFFERENTIATION

. Is the function y = |x —2]| differentiable at x = 2?2 Show your work using the limit definition of the
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Transcendental Functions

3.1 Inverse Functions

Definition 3.1.1. f is called one-to-one if f (x) # f(x2) whenever x; # X, or equivalently

fD)=f(x) = x1=x

D R

Figure 3.1: A function which is not 1-1.
Horizontal Line Test. Let f : R — R. By definition of a function any vertical line intersects the graph at
one point. f is 1-1 ifits graph is never intersected by any horizontal line more than once.

Theorem 3.1.1. Increasing or decreasing functions are 1-1. Thus if f'(x) > 0 for all x in an interval I, then f
is1—1onl. Similarly if f'(x) <0 forall x in I then f is1—1onI.

Definition 3.1.2. If f is one-to-one then it has an inverse function f~! defined as follows: If x is in the range
of f then itis in the domain of f~! and

=y = x=fy.

If f is not 1-1 then it is not invertible.
Given y = f(x), to find the inverse function, we solve x in terms of y.

Example 3.1.1. Show that f(x) = 2x —1 is one-to-one and find its inverse f‘1 (x).

Solution. Since f'(x) =2 >0, f is increasing on R and therefore one-to-one for all x. Solve y = f(x) =2x—1
for x, to get
+1
Lol
2

37



38 CHAPTER 3. TRANSCENDENTAL FUNCTIONS

Thenx=f~'(y) = 4~ or

1, X+l
f (x)——2 :

Usually, we can not solve y = f(x) for x. For example y = x + x3 is 1-1 (check) but it is not possible solve
it for x.

Properties of inverse functions

1. The domain of f~! is the range of f.
2. The range of f~! is the domain of f.

3. f(f~!(x)) = x for all x in the domain of .
Proof. If f~1(x) = ythen x = f(y) and f(f~1(x)) = f(y) = x. O

4. f~Y(f(x)) = x for all x in the domain of f.

5. (f H)7(x) = f(x) for all x in the domain of f. (The inverse of inverse of f is f.)

Proof.
FhHlw=y= fly=x = y=f.

O

6. The graph of f~! is the reflection of the graph of f in the line x = y. (Because if (a, b) is a point on the
graph of y = f(x) then (b, a) is a point on the graph of y = f~!(x)).
y=rx

(g, D)@ y=1"w

i

Figure 3.2: The graph of the inverse function is a reflection along y = x.
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Inverting Non One-to-one Functions by Restricting the Domain of Definition

The function f(x) = x2 defined on all real numbers is
not one-to-one because (—a)2 = a? for any a. Hence
f is not invertible.

In fact f is not invertible on any interval around x = 0.
Notice that f/(0) =0

Let us define a new function F by restricting the do-
main of f,

F(x):x2 x=0.

Then F~!(x) = V/x.

Derivatives of Inverse Functions

Let y = f~!(x). Then f(y) =
—f(y)

In short if y = f~!(x) then
1

d
—x = f(y)

y=x*
y=x
A~ y=Vx

Figure 3.3: The restriction of x2 to [0,00) and its in-

verse.
Conversely, since the range of the 1-1 function /x is [0,00), the domain of its inverse g(x) =

x%isx=0.

x. Considering y as a function of x and using implicit differentiation,

1
'

dy _
dx

1

(fF Y=

'y

is differentiable at x.

This formula says if f'(y) # 0 then f~!

y=fx)

a,b) £

)

y=x

-

yF f L(x)

In Leibniz notation, Z¥ = (f 1)/ (x) whlle

= f'(y), the above formula reads

dydx
dxdy
For example, if y = x%,x=0, then x = vy and % 2x and Z—; = ﬁ So
dydx 1 1
=2x——=2x—=1,
dxdy 2y 2x

Example 3.1.2. Show that f (x)
10.

= x3+x is one-to-one on the whole real line and find (f )’ (10). Hint: 23 +2 =
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Solution. First f'(x) =3x*>+1>0. Hence f is I-1. Let y = f~(x). Then f(y) = x, that is
Yry=x

Take % of both sides to get

32/ /:1 I _ —1y/ —
vy +y =y =) 357 +1

Now ify = f~'(10) then y*+ y =10 and y = 2. So (f~1)/(10) = &;.

Example 3.1.3. If f(x) = 3x+ x>, show that f has an inverse and find the slope of y = f~'(x) at x = 0.

3.2 Exponential and Logarithmic Functions

An exponential function is a function of the form f(x) = a* where the base a is a positive constant and the
exponent x is the variable. Let’s define this function.

e a'=1.
e a"=a-a---an-times)ifn=1,2,3,....

ca"=2%ifn=1,23,....

o g™ = amifn=1,2,...and m=+1,+2,....

How should we define a* if x is not rational? What does 2" mean? We will define a* for irrational x in
the next section. For now, let us regard a* as a limit as discussed in the next problem.

Example 3.2.1. Since the irrational number t = 3.141592... is the limit of the sequence of rational numbers
rn=3 r=31 r3=3.14
we can calculate 2™ as the limit of the sequence
2°=8 2%1=8.5741877... 2> =8.8152409...

This gives
2" = lim 2" = 8.824977...
n—oo

If x is irrational, then we define a* as the limit values a” for rational numbers r approaching x

a*= lim a'.
F—Xx
r is rational

Laws of Exponents
If a>0and b >0 and x, y are real numbers then
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X
4 =L 5. (a*)’ = a",

ay
6. (ab)* = a*b”*.

If a > 1 then
lim a* = oo, lim a*=0.
X—00 X——00
If0<a<1then
lim a* =0, lim a* =oo.
X—00 X——00

The domain of a* is (—oo,00) and its range is (0,00).

Logarithm

If a>0and a # 1 then the function a* is 1-1 (1* has no inverse). The inverse function of a* is log,, x, called
the logarithm of x base a.
y=log,x < x=a’

Since a* has domain (—o0,00), and range (0,00), log, x has domain (0,00) and range (—oo,0).
Since a* and log,, x are inverse functions

log,a*=x Vx, a8 =x x>0

y=log,x

/

Figure 3.4: The graph of logarithmic function is a reflection of the graph of the exponential function in the
line y = x.

Laws of Logarithm If x>0, y>0,a>0,b>0,a#1, b#1, then
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1. log,1=0 4. loga(f):logax—logay
y
2. log,(xy)=log,x+log,y 5. log, x¥ = ylog, x
log, x
1 8b
Y= 6. 1 = —
3. loga(x)_ logax 08a X logba

Example 3.2.2. Provelog,(xy) =log, x +log, y using laws of exponent.
Solution. Takeu =1log,x, v=log,y thenx=a", y=a" and

xy=a""’" < u+v=Ilog(xy)
Example 3.2.3. Simplify

10x 12
log, 10 +1log, 12 —log, 15 =log, 5 - log,8=3
2. log,. a®.
log,a®> 3
log.a’ = 8q 5 ==
log,a= 2
3. 3084,

gloge4 _ g3logzd _ glogs2 _ o
Example 3.2.4. Solve gL _
in terms of a =1log2 and b =log3.
Solution. Take logarithm base 3 of both sides.

11
1-log;2 1-alb

(x—1)log;3=1xlog;2 < x—-1=xlogy2 < x=

Numerically x = 2.70951.

3.3 The Natural Logarithm and Exponential

f | flx)
x3/3 x?
x%/2 X
X 1
x0 0
—x ! x~2
—x7%/2 | x73

Table 3.1: What is the mysterious function whose derivative is x ™12
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Definition 3.3.1. For x >0, let A, be the area bounded by the curve y = 1/t, the t-axis and the vertical lines
t =1 and t = x. The natural logarithm function is defined by

{Ax x=1
Inx=

-A, O<x<l1

¢ Domain of In x is (0, 00), e lInx>0ifx>1,

e In1=0, e Inx<0if0<x<1,

d 1
Theorem 3.3.1. Ifx >0 then —xlnx =7
For h > 0, In(x + h) —In x is the area under

1/t between t = x and ¢t = x+ h. Thus

h
<In(x+h)-Inx<—
x+h X
Thus
=
Proof. 1 < In(x+h)-Inx - 1 .
x+h h X 13 |
_ — 1
Now use Squeeze Theorem to get xth | y=1/1
. In(x+h)-Inx 1 Y x+h
lim —— =— t
h—0+ h x
Similar argument holds for /2 < 0.

Theorem 3.3.2. Ifx # 0 then

1
—In|x|=—,
dx I X



44 CHAPTER 3. TRANSCENDENTAL FUNCTIONS

and .
f—dx: In|x|+ C.
X

Proof. 1f x <0, then by Chain Rule,

—Inlx| = iln(—x) = L(—1) = 1
dx dx -X x

This also shows that In x is an increasing function for all x > 0.
Example 3.3.1. Find the derivatives of

1. y=In|cosx|

2. y=In(x+ m)

Solution. For (1),

y = (—sinx) = —tanx.
cos
For (2),
Y= ———.
Vxe+1

The natural logarithm function In x satisfies all the rules that the regular logarithms satisfy, that’s why
we call it natural log after all!

Theorem 3.3.3. 1. In(xy)=Inx+Iny.
2. In(1/x) ==Inx.
3. In(x/y)=Inx-Iny.
4. Inx" =rinx.

Proof. For (i), if y is constant, then for all x >0

d y 1
- 1 —1 == ——=0
dx( n@y) =iy Xy x
Thus for each y > 0, In(xy) —Inx = C (a constant depending on y) for x > 0. Setting x =1 we get C =1ny.
The others can be done similarly (homework). O
Also note that

In2" = nln2 — coas n — co.
In27™" =-nln2 — —oco as n — oo.

This, combined with In x is increasing shows that

lim Inx = oo, lim Inx = —c0.
X—00 x—0+

Thus domain of In x is (0,00) and the range of In x is (—o0, 00).
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The Exponential Function

Let f(x) =Inx. Since f'(x) =1/x>0 = fisincreasing = fis1-1 = [ has an inverse. Call its inverse
exp x. Thus
expx=y < x=Iny

exp0=1 (sinceln1 =0),

Domain of exp is (—oo,00) (since range of In is (—o0,00)),

Range of exp = Domain of In = (0, 00),

Cancellation identities

explnx=x, x>0

Inexpx=x, —oco<x<oo.

Definition 3.3.2. e =exp(1) = 2.718....

Thus Ine = 1. Hence e is the number for which the area bounded by y = 1/x, the x-axis and the lines
x=1,x=eis 1.
e* = exp(In(e”)) = exp(xIne) = exp(x).

Since exp is actually an exponential function, its inverse must be a logarithm
Inx =log, x

The derivative of y = e* is calculated by implicit differentiation:

/

y=e* < x=lny < 1= — y=y=e"

y

This is a remarkable property:
d
—e*=¢", fexdx:ex+C
dx
Example 3.3.2. Find the derivatives of

1 exz—Sx

)

2. V1+e2x

General Exponentials and Logaritms

Definition 3.3.3. If a > 0 then for all real x, we define

ax — exlna

This coincides with our previous definition that a* is the limit of a’™ where r, are rational numbers
tending to x.
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Example 3.3.3. 27 = ¢"'"2 = 8.825.

Derivative of y = a*.
d . d
—a'=—e¢e
dx dx

xlna — exlnalna = a*lna.

Example 3.3.4. Show that the graph of f (x) = x™ — n* has negative slope at x = 7.

Solution. f'(7) =n"(1-Inm). Note thatlnm >Ine=1

Definition 3.3.4. Let y = a*. Then % = a*Ina which is negative if 0 < a < 1 and positive ifa > 1. Thus a* is
1-1 and has an inverse function. We define its inverse aslog,, x.

Derivative of y =log,, x.

d dlnx_ 1

L log x=—m DX~
dx O8a X dxlna xIna

Logarithmic Differentiation

Example 3.3.5. Lety = x*, x> 0. Find y'.

Solution. Neither the power rule d/dx(x®) = ax® ! nor the exponential rule d/dx(a*) = In aa* works.

/
1
Iny=xlnx = L:llnx+x— = y'=x*(nx+1)
y X

This technique is called logarithmic differentiation and is used to differentiate functions of the form
y=(f)8% (f(x)>0).

Example 3.3.6. Finddy/dt ify = (sint)!™! where0 <t <.

Solution.

Ins [1nsi

/ . nt
y =(sin¥) T+lntcott )

x+Dx+2)(x+3)

vx+4

Solution. Since (x+1) is not necessarily positive, In(x + 1) may or may not be defined. So we take the absolute
value and then logarithm.

Example 3.3.7. Ify =

findy'.

1
ln|y| =ln|x+1|+In|x+2|+In|x+3|— =In|x + 4]
2

/
1
y__1
y x+1



3.4. THE INVERSE TRIGONOMETRIC FUNCTIONS 47

Hyperbolic Functions

The hyperbolic sine function sinh (pronounced ‘zinch’ (thymes with ‘pinch’)) is

eX—e
2
and the hyperbolic cosine function cosh (pronounced ‘kosh’ (rhymes with ‘gosh’)) is

sinhx =

e“+e™*
2

coshx =

One can also define tanh, coth, etc.
These functions have many remarkable properties some of which resemble trigonometric functions.
Show that
cosh0=1, sinh0=0

2sinh xcoshx =sinh2x

dsinh x dcoshx |
= coshx, —— =sinhx.
dx dx

The reason these functions are called hyperbolic is

cosh? x —sinh® x = 1
So the parametric curve (cosh x,sinh x) defines the hyperbola x? — y* = 1.

3.4 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and hence not 1-1. However we can restrict their domains in
such a way that the restricted functions are 1-1.

/2
The arcsin x or arcsin x is the inverse of the sinx re-
stricted to [-7/2,7/2],
-1 1
sin(arcsiny) =y, -l=y=l, e
arcsin(sinx) = x, —nml2<x<mnl2. ‘\\

Figure 3.5: f(x) = arcsinx is a partial inverse of the
sine function.



48 CHAPTER 3. TRANSCENDENTAL FUNCTIONS

Example 3.4.1. Simplify

inl_ 7
1. arcsing = %,

2. arcsin_T‘/§ = —%,

3. arcsin?2 is undefined since 2 is not in the range of sine.
Example 3.4.2. Simplify

1. sin(arcsin0.7) = 0.7,

2. arcsin(sin3n/4) =n/4,

3. cos(arcsin0.6) = 0.8.

Solution. Let 6 = arcsin0.6. By the Pythagorean Theorem, cosf = 0.8.

4. Similarly cos(arcsinx) = v'1 — x2.

Theorem 3.4.1. .
——arcsinx = .
dx NS
Proof. Let y = arcsinx so that x =siny. Then
dy 1 1 1
dx Z_; S cosy  V1—x2
O
The Arctan Function

Define the y = arctan x to be the inverse of y = tanx on (-7/2,7/2).

tan(arctan x) = x, —00< X <00,
arctan(tan x) = x, —nml2<x<ml/2.
Tl2F------------~
fffffffff -2

Figure 3.6: f(x) = arctan x.
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Example 3.4.3. 1. tan(arctan3) =3,

2. arctan(tan %’) =arctan-1= —2—’

1

3. cos(arctanx) =

V1+x2
darctan(x) _ 1
Theorem 3.4.2. ax T T2

Proof. Let y =arctanx so that x =tany,
darctan(x) 1 1 1 1

dx Z_Jyf_seczy_1+tan2y_1+x2'

Example 3.4.4. Find the slope of the curve arctan (27") = % at the point (1,2).

Solution. Taking % of both sides

1 -xy' 2_2xyy'
5 =)
1+ (%)
Pluggingx=1,y =2,
2—y’:n(1—y’):>y':”—_2
-1

Other inverse trigonometric functions
cosx is 1-1 on [0, ] so we define y = arccos x as the inverse of y = cos x restricted to [0, ].
y =arccosx <= X =CoSYy O=sy=m.

Theorem 3.4.3.

d 1
—arccosx = —
dx ,/1 _ x2
For the derivative,
dy 1 1 1

dx _Z:;_ —siny __\/1_x2
Note that

— arccosx = —— arcsinx
dx dx

The inverse and the derivative of other trigonometric functions can be defined similarly.

Quiz Problems

Example 3.4.5. Simplify
2
NG

1-x2
X

1. cos(arctany) =

2. tan(arccos x) =

2y1/2 _

Example 3.4.6. Show that % (arcsinx m






Chapter 4

Applications of Derivatives

4.1 Related Rates

Example 4.1.1. How fast is the area of a rectangle changing if one side is 10cm long and is increasing at a rate
of 2cm/s and the other side is 8cm long and is decreasing at a rate of 3cm/s?

Solution. The area A, and the lengths of sides x and y are functions of time t. Also A = xy. We are given

dx _ o dy _ _ _
d—’lf—Z,%——?) when x =10, y = 8.
Then

dA dx +xdy
ar _ac? T ar

gives % =-14.

In the previous problem, notice that the average changes

A(1)—-A(0

M =12-5-10-8 =-20,
1-0

A(.5) — A(0)

—=2(11-6.5-10-8) =17
5-0

A(.1) - A(0)

—1-0 =10(10.2-7.7-10-8) =-14.6

converge to the instantaneous rate we found.
This is possible because A’(t) = —14 — 6¢. Hence A changes in a non-constant fashion event though x
and y changes constantly. What we are computing in this problem is A’(0) = —14. And this result holds

even if % and % are not constant. (maybe velocity of x is not constant and it accelerates according to
x(£) =10+2¢ + %)

Example 4.1.2. How fast is the surface area of a ball changing when the volume of the ball is 32n/3 cm®

and is increasing at 2cm®/s? (The surface are of the ball is A = 4rr? and the volume is V = %nr3. Note that
V(r)= [y Ar)dr)

Solution. WhenV =32n/3,r =2, % =2
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dr _ 1
gives 7; = 5--
Now
dA g dr )
— =8nr—=
dt d

Example 4.1.3. A point is moving to the right along the first quadrant portion of the curve x*y3 = 72. When
the point has coordinates (3,2), its horizontal velocity is 2 units/s. What is its vertical velocity?

Solution. Takingd/dt of both sides

dx 2dy
2x—y° + x*3 =0
) Ty
— a
Atx=3,y=2, d’Lf 2,
dy 8
dr 3
Exercises. of 20 cn®/s when the radius is 30 cm. How fast

is the radius increasing at that time? (The vol-

1. Find the rate of change of the area of a square ume of a ball of radiusris V = —nr J

whose side is 6 cm long, if the side length is in- 3. The area of a circle is decreasing at a rate of 2
creasing at 2 cm/min. cm?/min. How fast is the radius of the circle
22

2. Air is being pumped into a spherical balloon. changing when the area is 100 cm”

The volume of the balloon is increasing at a rate Answer:

4.2 Indeterminate Forms

To evaluate the limit lim,_.¢ % we can not plug in x = 0. We call sin x/x an indeterminate form of [0/0] at
x=0.

The limit of an indeterminate form [0/0] can be any number.

x3

X X
lim—=1, lim — = oo, 11m—2—0.
x—0Xx x—0 x3 x—0 X

There are other types of indeterminate forms [co/o0], [0-00], [co —o0], [0%°], [00?], [1%°].

Theorem 4.2.1 (I'Hopital’s Rules). Let f and g are differentiable on an interval containing a. Suppose that

lim,_., f(x) andlimy_., g(x) are either both 0 or both +oco. Iflimy_., 57— f®

700 exists then

f( *) = lim ! (x).
x—»a g(x) x—a g’(x)

The results hold true iflimy_., is replaced by limy_. .+ andlimy_.,_ or if a = +oo.
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Proof. Proof follows from generalized mean value theorem which we did not cover.
Let’s give a proof for the following special case. Suppose f(a) = g(a) =0, g'(a) # 0 and f, g have contin-
uous derivatives at x = a. Then

I e = i A B

x—a g(x) - hmx—»a% B g'(a) B x1—>a g'(x)

O

Note that in applying 1’Hopital’s rule we calculate the quotient of the derivatives,
not the derivative of the quotients.

Example 4.2.1. Evaluate

Solution.

. Inx X . 1 1
lim =lim — = lim — = —-.
i—1x2—1 x—12x x—12x2 2

If one application of the I'Hopital’s rule again gives an indeterminate form, we can apply it again.

Example 4.2.2. Evaluate
2sinx —sin(2x)

im 5
x—02e*—-2-2x—x

Solution. Applying 'Hopital’s rule three times we get the answer 3.

Example 4.2.3.
x

1m
x—1+1Inx

Solution. Ifyou apply the 'Hopital’s rule, you get the wrong answer of 1. This is not an indeterminate form,
and you can’t use I'Hopital’s rule. The real answer is co.

Example 4.2.4.
.1 1
lim — — —
x—0+x sinx

Solution. This is an indeterminate form of type [oo — oo] which can be brought to the form [0/0].

| 1 . sinx—x . cosx—1 . —sinx 0
Im - ——=1lm —— = lim ———— = lim —=—=0.
x—0+x sinx x—0+ xsinx x—0+sSinx+xcosx x—0+COSX+COSXx—xsinx -2

where we use 'Hopital’s rule twice.
To deal with indeterminate forms of types [0°], [00®] and [1%°], we take logarithms.
Example 4.2.5.

lim x*.
x—0+
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Solution. This is of the form [0°]. Let y = x*. Then

. . . Inx . 1/x
lim Iny= lim xInx= lim — = lim =
x—0+ x—0+ x—0+1/x x—0+—1/x2

Sinceln is a continuous function
In lim Iny= lim Iny =0,
x—0+ x—0+

lim x*=¢e"=1.
x—0+

Example 4.2.6. Evaluate
3 X
lim (1 +sin —)

X—00 X
D

Solution. This is of the form [1°°]. Again first evaluate the limit of the logarithm. y = (1+ sin

In(1+ sin%)

limlny=lim ———=3
X—00 X—00 1/x
Hence
3 X
. . _ 3
lim (1+sm—) =e°.
X—00 X
Exercises. 4. limy_o+ xV*
Answer: 1
2
1. limyoo . ) _
X700 ex 5. limy_; —lns(iflx;xl
Answer: 0 1
Answer: -
2 i xX—sinx
Climyg——— .
=073 6. limy oy T
Answer: 1/6 Answer: oo
3 i xX—sinx
1My ; 1/x
=0  tanx 7. limy_o (1 +tanx)
Answer: —% Answer: 1

4.3 Extreme Values

A function has an absolute maximum value f (xp) if f(x) < f(xo) holds for every x in its domain.

Similarly, define absolute minimum value.

If it has an absolute min/max, then that value may be achieved at more than one point. For example the
function cos x attains its absolute max at x = 2nx for any integer n.

A function may or may not have an absolute min/max value. For example the function f(x) =x,0<x <1
does not have an absolute maximum or minimum.

Recall from the section on continuous functions that,
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A continuous function defined on a closed and bounded interval must have an absolute
maximum and an absolute minimum.

Maximum and minimum values of a function are collectively referred to as extreme values.

Function f has a local maximum value f(x) if there exists i > 0 such that f(x) < f(x9) whenever x is
in the domain of f and |x — x| < h.

Similarly we define local minimum.

We define critical points of f where f’(x) = 0, singular points of f where x is in domain of f and f'(x)
does not exist.

Following theorem says where the extreme values are located.

Theorem 4.3.1. If the function f is defined on an interval I and has a local max or local min at x = xy then
Xo must be either a critical point, a singular point or an endpoint of the interval.

Proof. If f(xo) is a local extrema and xp is not an endpoint or singular point, then f’(xg) = 0. Otherwise,
either f’(xo) > 0 which means f is increasing at xy or f’(xg) < 0 which means f is decreasing at x, so that
f(xp) is neither a local min nor local max. O

This theorem does not say f must have a local min/max at at every singular, critical or endpoint. For
example for f(x) = x3, f/(0) = 0 but £(0) is not an extremum value.

Example 4.3.1. Find the maximum and minimum values of the function g(x) = x> —3x? —9x + 2 on the
interval -2 < x < 2.

f(x) =x3-3x2-9x+2
Solution. g is a continuous function defined on a

closed and bounded interval so it must have an abso- (-L,7) y

lute minimum and absolute maximum.

Since g is a polynomial, it can’t have singular points. \ X
g'(x) =3(x*-2x-3) =3(x+1)(x-3). g'(x) =0 ifx = -1 )

or x = 3. x =3 is not in the domain, so we ignore it.

We check the values of g(x) at endpoints and critical
points, g(=2) =0, g(-1) =7, g(2) = -20. The maxi-
mum value is 7, the minimum value is -20.

(2,-20)

Example 4.3.2. Find the maximum and minimum values of h(x) = 3x?'3 — 2x on the inteval [-1,1].

h(x) = x2/3 - 2x

Solution. 1'(x) = 2(x~3 —1). W' (0) is undefined, 0 is y
a singular point of h. h has a critical point at x = 1 (=1,5)
which is also an endpoint.

h(=1) =5, h(0) =0, k(1) = 1. h has maximum value 5

and minimum value 0.

(1,1)
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The first derivative test

By investigating the sign of the first derivative we can determine whether an extrema is a local minimum or
local maximum.

Example 4.3.3. Find the local and absolute extreme values of f (x) = x*=2x2-3 ontheinterval [-2,2]. Sketch
the graph of f .

Solution. f'(x) =2x(x*>—1) = 4x(x—1)(x+1). Thecrit-

ical points are0,—1, 1. There are no singular points. f)=x*-2x*-3
x || -2 -1 0 1 2 Y
! - + - +
f ||max \, min / max \, min ,/ max

f(=2)=f@2) =5, f(-1) = f(1)=-4, f(0)=-3.

Since f is continuous and defined on a closed and
bounded interval, it must have an absolute min/max. -3
So 5 is the absolute maximum and —4 is the absolute
minimum. (-1,-9) (1,-4)

Example 4.3.4. Locate all extreme values of f(x) = xV'2 — x2. Determine whether any of these extreme values
are absolute. Sketch the graph.

Solution. Note that f has domain [—v/2,v2]. f'(x) =

— )
—2%. Critical points are +1. Singular points are fR)=xv2-x
+v/2 and endpoints are also +/2. y
f(*V2)=0, f(-1)= -1, f() = 1. Since f is continu- (1,1)
ous on a closed bounded interval it must have maxi-
mum value 1 and minimum value —1. V2 X

x || -v2 -1 1 V2 v v2

!
- + -
f || max \, min / max Y\, min (=1,1)

4.4 Concavity and Inflections

We say f is concave up on an interval I if f’ is increasing on I and concave down on I if f’ decreasing on 1.
Note that if f is concave up then f lies above its tangents and below its chords while if f is concave
down then f lies below its tangents and above its chords.
If f changes its concavity at xp then we call xy and inflection point.

Theorem 4.4.1. Assume f is twice differentiable.
a) If f" >0 on an interval I then f is concave up on I,

b) Iff" <0 on an interval I then f is concave down on I,
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¢) If f has an inflection point at x then " (xy) = 0.

Note f”(xo) = 0 does not necessarily mean X is an inflection point, for example for f(x) = x* f”(0) =0
while f does not change concavity at x = 0.

Example 4.4.1. Determine the intervals of concavity of
f(x) = x® —10x* and the inflection points of its graph.

f(x)=x5-10x*

Solution. f'(x) = 2x3(3x% —20), f"(x) = 30x?(x —
2)(x +2). So possible inflection points are0, £2.

x || -2 0 2
" + 0 - 0 - 0 +
f || cup infl. c.down c.down infl c.up

The inflection points are +2.

Example 4.4.2. Determine the intervals of increase,
decrease , the local extreme values and the concavity

of f(x) = x* —2x3 + 1. Sketch the graph of f . fo=x*-2x3+1
Solution. f'(x) = 4x3 — 6x? = 2x*(2x — 3), critical y
pointsarex =0, x =3/2.
f"(x) =12x(x — 1), possible inflection points are x =0,
x=1.
1
x 0 1 3/2 \ . /x
- o - -0+
" + 0 - 0 + + @
N\ N\ N\ min 2’ 16
cup infl c.down infl c.up c.up

The Second Derivative Test
Theorem 4.4.2. a) If f'(xo) =0 and f"(xy) <0, then f has a local max at xy.
b) If f'(x9) =0 and " (x9) > 0, then f has a local min at xy.

¢) If f'(xo) = f"(x0), then no conclusion can be drawn.

Example 4.4.3. Find an classify the critical points of f=x*e*
flx) = x2e X, y
Solution. f'(x) = x2-x)e* =0, atx =0, x = 2.
f'"(x) = 2-4x+x>e ™. f"(0)=2>0and f"(2) =
—2e72 < 0. Thus f has a local min at x = 0 and local
max at x = 2. (2,4e7%)
X
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4.5 Graphs of Functions

Definition 4.5.1. The graph of y = f(x) has a vertical asymptote at x = a if either limy_.,_ f(x) = too or
limy_. 44 f(x) = 2oo.

Definition 4.5.2. The graph of y = f(x) has a horizontal asymptote at y = L if either lim,_., f(x) = L or
limy__o f(x)=L.

Example 4.5.1. Find the vertical and the horizontal

asymptotes of f(x) = le_x. fx)= le_x
Solution. The vertical asymptotes are x =0, x = 1. y
lim =00, lim = —00,
x—0- X2 —Xx x—0+ X2 — X : X
1
. 1 .
lim = —00, lim = 00,
x—1-x2—x x—1+ x2 — x
The function has a horizontal asymptote,
limy_o ﬁ = lim, . o ﬁ = 0. This is a two-
sided horizontal asymptote.

Example 4.5.2. f(x) = e* has a left horizontal asymptote y =0, lim,_._, e* = 0.
Example 4.5.3. f(x) = tan"! x has a two one sided limits, lim,_.o.tan"! x = /2 andlim,_. o tan™! x = —7/2.

Definition 4.5.3. The straight line y = ax + b (a # 0) is an oblique asymptote of the graph y = f(x) if either
limy_.oo(f(x) = (ax+ b)) =0 orlimy_._(f(x) — (ax + b)) =0.

_ x*+1
[0 =%
2 y -
Example 4.5.4. Let f(x) = © = x+ 1. Then
limy_.00(f(x) —x) = 0. Hence f has a two-sided
oblique asymptote. - X

Asymptotes of rational function

Let f(x) = g*r’l’(()f)), where P, and Q, are polynomials of degree m and n respectively. Suppose that P,, and

Q; have no common linear factors. The graph of f has
1. avertical asymptote at every position at every x for which Q,(x) =0.

2. atwo-sided horizontal asymptote y = 0 only if m < n.
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3. atwo-sided horizontal asymptote y = L only if m = n. L is the ratio of the coefficients of the highest
degree terms in P, and Q,,.

4. atwo sided oblique asymptote only if m = n+ 1.

3
x24+x+1"

Example 4.5.5. Find the oblique asymptote of y =

Solution. Bu polynomial division, wegety =x—1+ m y = x—1 is the oblique asymptote.

Checklist For Curve Sketching

e

. Examine f(x) to find the domain, intercepts, asymptotes and even/odd symmetries.

[\

. Find points where f’(x) = 0 (critical points of f) and where f’(x) is undefined (singular points of f).
3. Find points where f”(x) = 0 (critical points of f) and where f”(x) is undefined (singular points of f).

4. Make a table to investigate the signs of f'(x) and f”(x) to find the intervals where f is increasing
or decreasing and the intervals where f is concave up and down. Find also the extreme points and
inflection points of the graph.

4.6 Extreme Value Problems

Example 4.6.1. Find the area of the largest rectangle that can be inscribed in a semicircle of radius R if one
side of the rectangle lies along the diameter of the semicircle.

Solution. (x/2)2+ y?>=R?. So

A=xy=xVR?-(x/2)2.

dA  2R*—x*
dx iRz _ 12

The derivative is zero when x = \2R. Use the first 0 x/2
derivative test to see that this gives max area A = R?.

Example 4.6.2. Find the shortest distance from the origin to the curve x>y* = 1.

Solution. The distance is V x? + y?. Instead of minimizing distance, an easier way is to minimize its square
x% + y%. Solving x*>y* = 1 for y and plugging into distance,

D(y) 1+2
N=—+y
y4

Then D'(y) = —% +2y. Solving D'(y) = 0 for y we get y = 2/, Use the first derivative test to check that

D(21/6) = 3%/5 is a minimum.

Example 4.6.3. A manufacturer has 100 tons of metal that he can sell now with a profit of $5 a ton. For each
week that he delays shipment, he can produce another 10 tons of metal. However, for each week he waits, the
profit drops 25 cents a ton. If he can sell the metal at any time, when is the best time to sell so that his profit is
maximized?
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Solution. Let x be the number of weeks to wait.

Ship Amount of metal | Profit per ton Total profit
now 100 5 500
in x weeks 100+ 10x 5-0.25x 500 + 25x — 0.25x2

P(x) =500+ 25x—2.5x%. Solve P'(x) = 0 to find x = 5. And maximum profit is $562.50.

. . 10R
Exercises. Answer: 5
3. Among all rectangles of perimeter B show that

to the curvey = 1+ x>/2.
Answer: /44 4. Among all rectangles of given area A, show that
the square has the least perimeter.
2. Find the largest possible perimeter of the rect-

angle that can be inscribed in a semicircle of ra- 5. Find the equation of the straight line of max;—
dius R if one side of the rectangle lies along the mum slope tangent to the curve y = 1+2x — x°.
diameter of the semicircle. Answer: y =1+42x

4.7 Linear Approximation

The best line approximating the graph of y = f(x) near (a, f(a)) is the tangent line through (a, f(a)).

The linearization of the function f about a is the function L defined by
L(x) = f(@) + f'(a)(x - a)

We say that L approximates f near x = a and write f(x) = L(x).
Example 4.7.1. Using the linearization, approximate \/26. (Hint: use the linearization of /X at x = 25.)
Solution. f'(x) = ﬁ f'25)= 1. So

1
L(x)=5+ E(x—25).

Hence f(26) = f(26) =5.1.
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Example 4.7.2. Approximate cosmn/5 = cos36° using the linearization of cosx at x = /6.

Solution. L(x) = cos% - sin%(x - %) =3 —3(x- %).
3 1n
c0s36° = L(/5) = £ - —— =0.81367
2 230
Error Estimation
The error in the linear approximation is
f/l(s) 5
—(x—-a)

2
where s is some number between a and x. (The proof depends on the generalized mean value theorem.)
Since we do not know s, we have to choose f”(s) to be largest (in absolute value) possible value, to get
the maximum error.
So for the previous example, f”(x) = —sinx, a= /6, x =n/5, 1/6 < s < /5. Note that f”(s) < 1. So the

error is smaller that %(x— a)® = % < 0.00549. S0 0.81367 —0.00549 < cos/5 < 0.81367 + 0.00549.

Exercises. Answer: 7+ ﬁ.

) 3. Approximate sin46° using linearization.
1. Sketch y = —= and its linearization about x = 4.

vz Answer: ‘/75 + Y21 (Note: f(x) = sinx® =

"2 180"
2. Approximate /50 using linearization. sin 755)

4.8 Exam 2 Review

Section Exercises
3.1 27-29
3.3 11-16, 19-48, 55-66
3.5 1-12,19-32
4.1 1-15
4.3 1-24
4.4 1-17, 18-39
4.5 1-22
4.6 7-39
4.7 1-32
4.9 1-10, 15-22

Table 4.1: Exam 2 Review Problems from Adams & Essex Calculus: A Complete Course 7th Edition

Sample Exam 2

1. Find the dimensions of the right triangle with hypotenuse /& = 2 and maximum area.
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. Find the min and max values of f(x) = 2x> — 15x% + 24x + 19 on the interval [0, 5]

. Let f(x) = x*-3x%+2.

a) Find the intervals on which f is increasing or decreasing. Find all local extrema for f.
b) Find the intervals on which f is concave up or down. Find all inflection points for f.

¢) Sketch a graph of f(x) using parts (a) and (b).

. Find all the horizontal and vertical asymptotes for

x%+3

Y e 1 3x2

. Let f(x) =2x?+x3,x > 0. Show that f is invertible and find (f 1)’ (16).

. Find dy/dx by implicit differentiation if

y*e* + ylnx = 2.

. Lety = (1/x)™*. Find dy/dx.

. Find cos(sin~10.7).



Chapter 5

Integration

5.1 The Definite Integral

Our main goal in this section is to find the area between the graph of a function and the x-axis.
Idea is to approximate this region with rectangles.
Let’s start with an easy example.

Example 5.1.1. Find the area of the region lying under the straight line y = x+1, above the x-axis and between
the lines x =0 and x = 2.

Solution. Two ways of approximating the area. With “smaller” rectangles and “larger” rectangles.
With “smaller” rectangles. Divide the interval [0,2] into n equal pieces, call xo =0, xy =2/n, x, =4/n, ...,
Xn =2.
Ly = f(x0)(x1 — x0) + f(x1) (X2 — x1) + -+ + f (X — 1) (X5, — Xpp—1)

Ly =f(0)2-0)=2,

L=f0)1-0+f1@2-1)=1+2=3,

Li=(f(0)+ f(1/2)+ fQ1) + f(3/2)(1/2) = 7/2,
_2@2n-1)

n
n

Thus
lim L, =4

n—oo

which is the area.
We can repeat this with “larger” rectangles. In this case

_2@2n+1)

n
n

And again, lim,,_.., U, = 4.
This procedure can be used to find the areas under more exotic curves.

63
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Definition 5.1.1. Suppose f :[a,b] = R. Ifa=xy < x; <--- < X, = b then the set P = {xy, X1, ..., X} is called
a partition of the interval [a,b]. Let f(l;) be the smallest value and f(u;) be the largest value of f(x) on
[x;, Xi+1]. Then we define the lower Riemann sum

L(f,P) = f(lo)(x1 — x0) + f (1) (32 — x1) + -+ f(Ip—1) (X — Xp—1)
and the upper Riemann sum
U(f,P) = fuo)(x1 — xo) + f(u1)(x2 — x1) + -+ f(Up-1) (X — Xp-1)
Suppose that there exists exactly one number I such that for every partition P of |a, b],
L(f,P)<I<U(f,P)

Then we say f is integrable on [a, b] and we call I, the definite integral of f on |a, b] and write

b
I:f fx)dx.

Definition 5.1.2. Let R be the region bounded by the graph of f (x), the x-axis and the lines x = a and x = b.
If f(x) =0 on [a, b] then we define

b
Area(R):f fx)dx
a
If f(x) <0 on|a,b] then
b
Area(R) = —f fx)dx
a

In general [ f f(x) is the area of the part of R lying above the x-axis minus the area of the part below the
X-axis.

Figure 5.1: fabf(x)dx =A - A

Here the variable x is a dummy variable. Replacing x by any other symbol does not change value of the
integral. The function f is known as integrand. dx is differential of x and if an integrand depends on more
than one variable it tells which one is the variable of integration.

In the first example, we showed that

2
f (x+1dx=4.
0

Which functions are integrable?
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Theorem 5.1.1. If f is continuous on |a, b] then f is integrable.
Piecewise continuous functions are also integrable.

Example 5.1.2. Not every function is integrable. Define f : [0,1] — R such that f(x) = 0 is x is a rational
number and f(x) =1 if x is an irrational number. Let P be a partition of [0,1]. Then the smallest value f(1;)
in the subinterval [x;, x;+1] is 0 since every such interval contains a rational, while the largest value f(u;) is
1 since every such interval also contains an irrational. Thus L(f,P) =0 and U(f, P) = 1. This is true for any
partition P. Hence there are infinitely many numbers between L(f, P) and U (f, P) for any partition P. Hence
f is not integrable on [0, 1].

Properties of Definite Integral
The following properties are easy consequences of the definition of definite integral.

Theorem 5.1.2. Let f and g be integrable on an interval containing the points a, b and c.

a
. f fx)dx=0.
a

~

2. We can define fub f(x)dx when a > b. In this case the partition points are xo = a> x; > --- X, = b. Hence

b a
f fx)dx = —f fx)dx.
a b

b

b
3. Ifc isaconsmntf cf(x)dx = cf fx)dx.
a

a

b

b b b
f (fx)+gx)dx :f f(x)dx+f gx)dx
a a a

&

b c c
f f(x)dx+f f(x)dxzf fxdx.
a b a
b b
6. Ifa<band f(x) < g(x) thenf f(x)dxsf gx)dx.

a
7. If f is an odd function then | f(x)dx=0.
—a
Example 5.1.3. [, (sinx®)dx = 0 since f(x) = (sinx*)° is odd. Verify.
a a
8. If f isan even function then | f(x)dx = Zf fx)dx.
-a 0

b _ b _ (P—-a®) . .
Example 5.1.4. Show that [, cdx = c(b— a) and [, xdx = 5= interpreting the integrals as areas.

Example 5.1.5. Using the properties of the integral, compute
2

f (3+5x)dx
-2

Example 5.1.6. Compute [>,v/9— x2.

Solution. This is the area of the semicircle with radius 3 and center (0,0). The answer is 97”.
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5.2 The Fundamental Theorem of Calculus

In this section we develop the relation between the integral and the derivative.

Antiderivative

We will call F(x) as an antiderivative of f(x) if F'(x) = f(x). For example x is an antiderivative of 1. Note
that x + 1 is also an antiderivative of 1. So antiderivatives are not unique.
If F and G are antiderivatives of f on an interval, so that F'(x) = G'(x) = f(x) then

d
—(F(x)—G(x)) =0.
dx

But Theorem 2.7.3 tells that F(x) — G(x) must be a constant. Hence if F(x) is an antiderivative of f(x) then
for any C, F(x) + C is also an antiderivative of f(x). Also any antiderivative of f(x) is of the form F(x) + C for
some c.

Definition 5.2.1. The indefinite integral of f (x) on interval I is
ff(x)dx: Fx)+C

provided F'(x) = f(x) on I.

The Fundamental Theorem of Calculus

Theorem 5.2.1.
PARTI. Suppose f is continuous.

d X

—_— ndt=

= | rwar=fo
PART II. Suppose f is differentiable.

b
f fdx=fb) - f(a

Intuitively, the second part of fundamental theorem of calculus states that the total change (right hand
side) is the sum of all the little changes (right hand side). Recall that f’(x)dx is a tiny change in the value of
f. Ifyou add up (integrate) all these tiny changes, you get the total change f(b) — f(a).

Proof. For the first part, let
X
F(x) :f fx)dx.
a

Then

, L F(x+h)—F(x) L l(fx+h _fx )_ . lfx+h
F(x)—}ll_r% Y —}ll_r%h ; fdte ; fdte —}ll_r%h i fdte

Let m(h) be the minimum, M (h) be the maximum of f on [x,x + h]. Then m(h) < f(t) < M(h)onx <t <
x+ h. Thus

x+h x+h x+h
m(h)h:f m(h)dxsf f(t)dtsf Mh)dx = M(h)h.
X X X
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Or
1 x+h
m(h)sﬁf fydt < M(h)

Since limy,_.o m(h) =limy_o M(h) = f(x), by Sandwich Theorem,

1 x+h
F'(x)= zlqii%ﬁfx fnde= f(x).
Proof of the second part. Let
F(x) :fxf’(t)dt.
a

Then by part I, F'(x) = f'(x). We have seen that the only function whose derivative is zero on an interval is
the constant function. Thus F'(x) — f'(x) = 0. Hence F(x) — f(x) = ¢, a constant. Since 0 = F(a), ¢ = — f(a).
And

b
f fl(dt=Fb) = f(b)+c= f(b)- f(a).
O

Second part gives a method to evaluate definite integrals. To compute || : f(x)dx, find a function F(x)
whose derivative is f(x). Then the value of [ f f(x)dx =F(b) - F(a).
We will use the evaluation symbol
F(x) 5= F(b) - F(a).

Example 5.2.1. Evaluate

a 3
1 x*dx="%

" Jo
2
2. [1 (x> —3x+2)dx =3

Example 5.2.2. Find the derivatives of the following functions.

3
1. F(x):[ e Pdt

5x )
2. G(x):‘/:4 e dt

x3
3. H(x):[2 e Cdt
X

Solution. By the Fundamental Theorem of Calculus Part I,
X s , 2
F(x):—f e’ = Fl(x)=-¢".
3

Letg(x) = [*,e""dt. Then G(x) = g(5x) and
G'(x) = g'(5x)5 = 5¢~ 9’

Hx) =[5 e‘l‘zdt+f;3 e~ dr. Then

X
H' (x) = e '3x2 — ¥ 2x.
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In general
d (8w / /
—f h(t)dt = h(g(x)g' () — h(f () f(x).
dx f
. d
Exercises. 3. ——F(V), if F(1) = Jy cos(x*)dx
X
d [(*sint 1
1. — | =4t Answer: == cos(x)
dxfz t 2vx
Answer: %
x2
d fcosx 1 4. Find H'(2) if H(x) = 3x f eVidt
2. — dx 4
ax Jsinx 1- x?
Answer: — - — L Answer: 6¢*

sinx cosx

5.3 The Method of Substitution

The following should be memorized.
1
Ofx”dx: X" Cifn#1
n+l

. fldx:x+C
1,
. fxdx:—x +C
2
2 1 5
. fx dx=-x+C
3
2 312
. \/}dngx +C
1
. f—dx:ln|x|+C
X
. fsinxdx:—cosx+C

J fcosxdx: sinx+C

Example 5.3.1.

4
X
1. f(x3—3x2+6x—9)dx:Z—x3+3x2—9x+C

2. f(5x3/4—%)dx

J fseczxdx:tanx+C
. fcsczxdx:—cotx+C
o fsecxtanxdx:secx+C

J fcscxcotxdx =—cscx+C

1
. dx =arcsinx+ C
f V1-x?

1
J f dx =arctanx+C
1+ x2

. fexdx:ex+C

1
. faxdx:—ax+C
Ina
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3
5 [ S
X

l g g g *

So we have,
ff’(g(x))g’(x)dx:f(g(x)) +C

To see this another way, let u = g(x). Then du/dx = g'(x). In differential form du = g'(x)dx

ff’(g(x))g’(X)dx=ff’(u)du=f(u)+C=f(g(x))+C

Example 5.3.2. Compute the following integrals.

1. I:fxsin(sz)dx.

Let2x? = u thenAxdx = du.

1 [ . cosu cos2x?
I=-|sinudu=- +C=- +C
4 4 4

2. I:fsec2(3x+2)dx

Let3x+2=uthen3dx=du.

du tanu 1
I:fseczu?: 3 +C:§tan(3x+2)+C

X
1= [ ax
(x—4)3
Letx—4=u.

u+4 -1 2
I:f du:f(u_2+4u_3)du:—u_l—Zu_Z: - +C
03 x—-4 (x—4)?

4. I:ftanzeseczede.

Lettan® = u. Thensec®d6 = du.

3 3
tan® 0
I:fuzdu:u?+C: an +C

3
x? x?
5 I= dx = dax.
[Vz== ] =

Let x3—1=u. Then x*dx = %.

dul3 1 ul'? 2
I= =2 _ic=2VsB-1+C
Vi 3172 3

69
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X
6. Lety= xf sin(£2)dt. Find y'
2

7. I:fsecxdx.

x2
y':f sin(£2)dt + xsin(x%)2x
2

There is an interesting trick to evaluate this integral!

I:fsec

Let u =secx +tanx, then

(secx+tanx) sec? x +secxtanx
X—dx= dx

secx+tanx secx +tanx

du
I:f—:lnlul+C:ln|secx+tanx|+C.
u

Exercises.

1. fxexzdx

2
Answer: %ex +C

21
2. j(: sin® xcos? xdx

Answer: %

Answer: In2
dx

e’+1
Answer: x—1In(1 +¢e*) +C.

5 [
' 2+ x6

L1 3
Answer: - arctan(x IV2)+C

6. fsec5xtanxdx

Answer: % sec’x+C

5.4 Areas of Plane Regions

Example 5.4.1. Find the area of the region lying above the x-axis and under the curve y =3x — x

2
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1y
y=3x—x?
Solution. The points where the graph intersects the x-
axis are y =0 which gives x =0, x =.
The area is
3 3, 1L\ 9
f Bx—x*)dx = (—x2 - —x3) =—
0 2 3 0 2 X
3
Example 5.4.2. Find the area of the region lying above the line y = 1 and below the curve y = %
1y
Solution. The curves y =1 and y = xzil intersect at y=p
x=+2. Thearea x2+1
The area is
2 5 2
f 5 dx—f ldx =10arctan2 — 4.
2 xc+1 _2
— 1 S~
—2 2

Suppose f(x) < g(x) for a < x < b. Then the area of the region between these two curves and the lines

x=aandx=>bis

b
Area:f (g(x) - f(x)dx.

Example 5.4.3. Find the area of the bounded region lying between the curves y = x> —2x and y = 4 — x*.

Solution. The two curves intersect at
x2-2x=4-x*> = 2x*2x-4=0 = (x-2)(x+1)=0

So the intersection points are x = —1 and x = 2. The
area of the region is

2
Area = f (4- x%) — (x? - 2x))dx=9
-1

Example 5.4.4. Find the area of the region bounded by y = v/x and y = x*.

=x%-2x
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Solution. The curves intersect at
Vi=x> = x=x* = x-x¥=o0.

Hence the intersection points are x =0 and x = 1.

Area—fl(\/f—xz)dx—E—l E
o 3 3 3

CHAPTER 5. INTEGRATION

y=vx

)

Example 5.4.5. Find the area of the region lying to the right of the parabola x = y*> — 12 and to the left of the

straight line y = x.

Solution. The curves intersect at
yV -12=y = (y-4)(y+3)=0
The intersection points are y =4 and y = —3.

4 343
Area = f (y-(*-12))dy = e
-3
An alternative way is to make the transformation x —
¥, ¥ — x. The problem becomes finding the area be-
tweeny=x*>—12 and y = x.

Exercises.

1. Find the area bounded by the curves y = x*-2x,
and y =3x— x°.

. 125
Answer: 54

2. Find the area bounded by the curves y = x°, and
y=Xxintheregionx=0.

Answer: i.

. Find the area bounded by y = sinx and y =

cos x between two consecutive intersections of
these curves.

Answer: 2 \/§

. Find the area bounded by the curves y = % and

2x+2y=>5.

Answer: % —In4

. Find the area bounded by the curves x —y =7

andx=2y*—y+3.

Answer: 9
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5.5 Integration by Parts

Integrating both sides of

i(u(x) v(x)) = ﬂv + u@
dx dx dx

f—(u(x)v(x))dx fﬂvdx+fu@dx
dx dx

Since f %(u(x) v(x))dx = u(x)v(x), in differential notation, we get

uv:fduv+fudv
fudv:uv—fvdu

we get

Another way to write this is

This is one of the most powerful method to integrate, known as the integration by parts.

Example 5.5.1. fxexdx.
Solution. Letu=xanddv =e*dx. Thendu=dx and v = e*.

fxexdx:xex—fexdx:xex—ex+(?

Example 5.5.2. f Inxdx.

Solution. Letu=Inx anddv=dx. Thendu=dx/x andv =x

d
flnxdx:xlnx—fx%:xlnx—JHC

Example 5.5.3. [ = fx sinxdx

73

Solution. We have to integrate by parts twice. Let u = x> and dv = sinxdx. Then du = 2xdx and v = — cos x.

I = x*(—cosx) —f(— cosx)2xdx = —x* cosx+f2xcosxdx
Nowletu=2x anddv=cosxdx. Thendu=2dx and v =sinx. And
focosxdx:2xsinx—f23inxdx

Hence

2

I=—x“cosx+2xsinx+2cosx+C

Example 5.5.4. [ = f xarctan xdx
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Solution. Let u = arctanx,dv = xdx. Thendu=dx/(1+ x*) and v = x*/2.

dx

1, 1 [ x* 1, 1 1
I=—x"arctanx — — dx=—x“arctanx — — 1-
2 2J 1+x2 2 2 1+ x2

And ) )
I= Exz arctan x — 5 (x—arctanx) + C

Example 5.5.5. Find I = f e*sinxdx.

Solution. There is a circular argument here. We will integrate by parts twice to return the same integral. Let
u=sinx anddv =e*dx. Thendu = cosxdx, v =e*.

fexsinxdx:exsinx—fcosxexdx
Now letu=cosx anddv =e*dx.
fcosxexdx:cosxex—f(—sinx)ex:cosxex+I

So
I=¢e*sinx—e*cosx—1

Hence .

e
2] =e“(sinx—cosx)+C = [ = ?(sinx—cosx)+C.

Example 5.5.6. [ = f sec> xdx.
Solution. Letu=secx and dv = sec® xdx. Then du = sec xtan xdx and v = tan x

I:secxtanx—fsecxtanzxdx

Usingtan® x = sec>x— 1,

I:secxtanx+fsecxdx—1

Using f secxdx =In|secx +tan x|, (see the section on “The Method of Substitution”) we get

1 1
1= Esecxtanx+ Elnlsecx+tanx| +C

Exercises. 2 f eV dx
Hint: use x = u. Answer: Zeﬁ(—6+6\/§—3x+
x3’2) +C.
1. xcosxdx,

Answer: cosx+ xsinx+ C 3. f x%arctan(x)dx
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Answer: §(—x? + 2x3arctan(x) +In(1 + x?)) + C 5. [arctanxdx
e Hint: use arctanx = u, dx = dv. Answer:
4 f sin(In x)dx xarctanx — 3 In(1 +x?) + ¢

Answer: %(1 —ecosl+esinl)

5.6 Integrals of Rational Function

In this section we are concerned with integrals of the form

_P(x) dx
Qx)

where P(x) and Q(x) are both polynomials.
We will look at methods to deal with such integrals when deg(P(x)) <deg(Q(x)).

The case deg(Q(x)) =1 and deg(P(x)) =0

1
Example 5.6.1. f
ax

1
dx=—Inax+b+C.
+b a

Solution. Let u = ax+ b then du = adx and the integral becomes %l S d—u”.

The case deg(Q(x)) =2 and deg(P(x)) =0
First let’s look at two examples where Q(x) does not have real roots.

dx 1 _,x
Example5.6.2. | -——5=—tan  —+C.
x*+a* a a
Solution. Letx = atan6 (We will talk about these types of transformations in the next section in detail!), then
dx = asec’0d0 and x* + a* = a*(sec®0 + 1) = a* tan? 0.
If Q(x) = ax?® + bx + ¢ has no real roots, we have to complete to squares.

dx

Example 5.6.3. f —_
X2 +3x+3

Solution. Notice that x*> +3x + 3 has no real roots. So we complete to squares
2 32,3
X*+3x+3=(x+-)"+-
2 4
Lettingu = (x+3/2) and du = dx,

f dx _f du 2 tan_lz(x+§)+c
(x+3)2+3 w?+3 V3 V3

The last part follows from the last example.

If Q(x) has real roots then we use partial fractions.
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Partial Fractions

Let us still assume that deg(P(x)) <deg(Q(x)). The Fundamental Theorem of Algebra tells that every poly-
nomial can be factored (over the real numbers) into a product of real linear factors (x—a;) and real quadratic
factors x% + b;x + ¢; having no real roots.

Q%) = (x—a) ™ (x—a)™ - (x— ay)™ (x* + byx +c)™ -+ (x* + brx + cx)"™*
To each factor of the form (x — a)™, the partial fraction decomposition contains a sum

A Ay An
+ +...+—
(x—a) (x—a)? (x—a)m

To each factor of the form (x? + bx + ¢)", the partial fraction decomposition contains a sum
Bix+C Byx+Cy B,x+Cy,
(x2+bx+c) (x>+bx+c)? (X2 + bx+ )"

(x+4)
Example 5.6.4. | —dx
x2-5x+6

Solution.
x+4 A N B
—5x+6 x-2 x-3

x+4=Ax-3)+B(x-2)
Plugging x = 2 gives A= —6 and plugging x =3 gives B=7. So

4
f&dx:—Gf dx +7f A e iIn(x-2)+7In(x-3)+C
-5x+6 x—2 x-3

2+3x+ x2
x(x2+1)

Example 5.6.5. f

Solution. The partial fraction decomposition is

2+3x+x> A Bx+C

L T AW+ D) +x(Bx+C)=2+43x+x°
x(x2+1)  x  x2+1

Since this equation holds for every x, we have A+ B = 1 (coefficient of x> term), C = 3 (coefficient of x term),
A =2 (coefficient of constant term) and B = —1.

2+3x+x
[Seraae= [ axe [
x(x2+1)

Example 5.6.6. Evaluate f —dx.
x(x—1)2

1
dx =2lnx- Eln(x2 +1)+3tan ' x+C.

Solution.
1 A B C

—=—+ +
x(x-1)2 x (x-1) (x-12
1=A(x-1*+Bx(x—1)+Cx
Letting x = 0 gives A= 1, x = 1 gives C = 1. The coefficient of x* is A+ B which must be zero. So B = —1.

1 1
f f —dx— f—dx—l—f—dx:lnlxl—lnlx—ll——+C.
x(x— 1)2 (x—1)2 x-1

The last integral can be found by letting u = x—1.
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The Case deg(P(x)) =deg(Q(x))

77

If deg(P(x)) =deg(Q(x)) then we divide P(x) to Q(x) and get a rational function with the degree of numerator

less than the degree of denominator.

x3 +3x%
Example 5.6.7. Evaluate | ———dx
x?+1
Solution.
x3 +3x% x+3
x2+ x?+1
x+3 3
f dx = dx+f dx
x2+1 x2+1
3 2 2
x°+3x X
T - 43x—-In(x*+1)-3tan"'x+C
x2+1 2 2
Exercises. Answer: %(—lnll —xl+2Inl2—-x|+1In|l1+ x| -

2
1.[ dx dx,
5-4x

Answer: —%ln|5 —4x|+C

2x+2
2. 5 dx
x-+4

Answer: arctan(x/2) +In |4+ x*|+ C

2
X
[
xXc+x-2

Answer:x+%ln|1—x|—§ln|2+x|+C.

4 f x%dx
' (x2-1)(x2-4)

2In12+x))+C

5 f dx
' x4 —4x3

.14 1 1 — oyl L
Answer: o TTox T ea In|4 - x| B Injx|+C

1
6. f dx
x3+9x

Answer: %lnlxl - %ln|9+x2| +C

1
7' f
e2X —4e* +4

.1 2 X
Answer: Z(—W+x—lnl2—e |)+C

5.7 Inverse Substitutions

The Inverse Sine Substitution

If an integral involves v a? — x?, try the substitution x = asin6 or @ =sin™" £,

We can assume a > 0. Notice that v a? — x> makes sense only when —a < x < a which corresponds to

—m/2 <0 <mn/2sothat cosf =0. Hence

vV a?—x2=1/a?(1-sin’0) = aV/ cos20 = a|cosf| = acosb.
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Example 5.7.1. Evaluate[zfm.

Solution. Let x = v/5sin6, dx = v/5cos0d6.
(5-x2)%? = (5-5sin 9)3/2—53/2|C089| =5%2¢os%0.

sincecosO = 0. So

X
+C

5cosfdf 1 1 1
f\/_cos —fsecZHdH:—tan8+C:—
53/2c0s30 5 5 5

The last equality can be found using sin@ =

5— x2
X

5

Example 5.7.2.

X X
f\/8x—x2_f 16 — (x—4)2
du

=sin~! (E) +C
a

. _l(x_4)
=sin " |—|+C
4

The inverse Tangent Substitution

1x

If an integral involves v a* + x* or — > try the substitution x = atan@ or 6 = tan™
x2+a

Since x can take any real value, we have —7/2 <0 < /2 so that sec > 0. Assuming a > 0,

Va?+x2=+va2(1+tan20) = avsec26 = alsech| = asech.

dx
N/

Solution. Letx =2tan6, dx = 2sec?6d0.

Example 5.7.3. Evaluate I =

V4 +x2=2vsec20 = 2|sec| = 2sech

sincesecO > 0. Usingtan = x/2 we can find sec = —”42”2 and

Va+x?2 x
2

I:fseCGdH:lnlsec9+tan9|+C:ln +C

You are not responsible for the inverse secant transformation which can be used to solve integrals in-

volving vV x? — a?.

Exercises. ] f g
’ Vi-4x2 77
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Answer: —%x 1-4x2+ % arcsin(2x) + C 1
3 5 dx
x“+2x+10
2. f 91 _dx Answer: 1 arctan (1£*) + C
X —X

Answer: %lnlxl—%‘3+\/9—x2) +C.
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5.8 Indefinite Integrals Exercises

X 1 2x 1
Example 5.8.1. f dx= —f dx==In(x*+9)+c
x2+9 2J x2+9 2

1
Example 5.8.2. f (e —e™)dx=-e"+-e*+c

4
3—cosx .
Example 5.8.3. f ——dx=In|3x-sinx|+c¢
3x—sinx
Example 5.8.4.
1 1
f S3xt 4=+ v xz) :f3x4dx+f—dx+f vV x2dx
X X
5
:3€ +In|x]| +fx2/3dx
s 2/3+1
=3— +In|x|+ +c
5 2/3+1
x5 3 3
=3—+In|x|+=Vx°+¢
5 5
Example 5.8.5.
1
f4x3 (1 +2x4)4dx = §f8x3 (1+ 2x4)4dx
1
= —(1+2x")°+c
10
Example 5.8.6.
dx 1 1
f 3 :f—ln_3xdx:— s—+¢C
xln® x X 2In“ x
Example 5.8.7.
1 1
fxzexsdx = —foZexsdx ——e% 4¢
3 3
Example 5.8.8.

3 3 3
X X 1 4x 1
f dx:f—dx:—f—dx:—arctanx4+c
1+ 4

1+x8 1+(x4)°
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Example 5.8.9.

3 2+1
x2+1 x2 x2+1
fxdx+fx2

= ? +arctanx+c

Example 5.8.10.
fcoss xdx = fcos2 X-cosxdx

= f (1-sin®x) - cos xdx

:fcosxdx—fsinzx-cosxdx

sin3 x

=sinx-— +c

Example 5.8.11.

sin x
f—dx: —In|jcosx—4|+c=1In(4—-cosx)+c
cosx—4

Example 5.8.12.

2
S ) L L
( 4 3 3

x3 +5)
Example 5.8.13.

1
———— dx=arctan(log(x)) + ¢
fx(1+log2x) 8

Example 5.8.14.

1 1 _ 1
fﬁdx:f 5 tan 4 xdx=- +c
tan®* xcos“ x COS“ X 3tan3 x

Example 5.8.15.
_cosx COS X

V3 -sin®x 1- _Sifgzx

Ccosx

f\/lT

2x+3)4
f(2x+3)3dx:%+c

dx

sin x
dx = arcsin +c

V3

Example 5.8.16.

Example 5.8.17.

1
fz—dx— —log|2—-x|+c¢
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Example 5.8.18.

Example 5.8.19.

oy

VIX+ Y x1/2 4 x13
VITVE = [ 2%y
VX
:f(x1/2—1/4+x1/3—1/4)dx

:f(x”4+x“12)dx

x1/4+1 12

= + +c
1/4+1 1/12+1

4 12
_z (x5/4 + _x13/12) .
5 13

Example 5.8.20.

f e dx=11 (3+e*) +
X=—=10 e c
3+e2* 2 08

Example 5.8.21.

dx=2 dx=2e*"V¥4¢

ez+\/} ez+\/}
v v

Example 5.8.22.

X 2x
f x2+a2dx fz x2+a2dx Vxi+at+c

Example 5.8.23.
xX=v2e*+1l+c

e
——=d
f\/m

e* 1 e* 1 e*
———dx=- —de: —arctan— +c¢
4+ e2x 4J 14(9) 2 2

Example 5.8.24.

Example 5.8.25.
1
f @dx =sinlogx + ¢

Example 5.8.26.

f\4/ (x—2)3dx:f(x—2)3/4dx:%(x—2)7/4+c

81
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Example 5.8.27.

1/2+1 1/2+1
1
f\/}logxdx: a logx—f a dx

1/2+1 1/2+1x
3/2 1/2
X X

:—logx—f—dx
3/2 3/2
2 2

= §x3/210gx—§fx”2dx
2 22

= —x3/210gx———x3/2+c
3 33

2 2

==x*"? logx—=|+c
3 3

Example 5.8.28.
2X 1 1 2X s 1 2X
e sm(Sx)dx:Ee sin(3x) — Ee -3cos(3x)dx =
1 2X .2 3(1 2X fl 2X : )
=—e“"sin(3x)—=|=e“"cos(3x)— | —e~*-(—3)sin(3x)dx| =
> (3x) 513 (3x) > (—=3)sin(3x)

1 3 9
= ~e**sin(3x) — —e** cos(3x) — = f e**sin(3x)dx
2 4 4
9 1 3
(1 + Z) f e**sin(3x)dx = ¢** (5 sin(3x) — 1 COS(3)C))

1
f e**sin(3x)dx = e e**(2sin(3x) —3cos(3x)) + ¢

Example 5.8.29.
X

V1-x2

—2X
——dx
2V1—x2
= xarcsinx+V1-x2+c¢

dx

f arcsin xdx = xarcsin x — f

= xarcsinx +[

Example 5.8.30.
1
flogzxdx:xlogzx—fxlogx—dx
X
:xlogzx—flogxdx
= xlog® x —2xlogx +2x + ¢
Example 5.8.31.
f(x+2)zexdx: (x+2)2ex—f2(x+2)exdx
= (x+2)%e" - (2(x+2)ex—f2exdx)

=(x+2)%e*—2(x+2)e*+2e* +¢
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Example 5.8.32.

X
f arctan xdx = xarctan x — f 1 dx

+ x2
2x

1+ x2

1

= xarctan x — —f
2
1 2

= xarctanx — Elog(l +x7)+c

Example 5.8.33.
1

1+ x2

1, 1 [x*+1-1
= —x“arctanx—— | ———dx
2 2 14 x2

1, 1 1
= —x“arctanx — — 1- dx
2 2 1+ x2

1 1
f xarctan xdx = Exz arctan x — f Exz dx

1, 1 1
= —x"arctanx— —x+ —arctanx+c
2 2 2

x2+1

1
= arctanx——-x+c¢
2 2

Example 5.8.34.

2x%

[10g(1+x2)dx:xlog(1+x2)—f 2
x*+1-1

_ 2
—xlog(1+x )—Zfozdx

1
:xlog(1+x2)—2f( 1_ch)dx

= xlog (1 +x*) - 2x +2arctanx + ¢

Example 5.8.35.

[ R —
x“+4x+3 (x+1)(x+3)

X B A N B
(x+1D(x+3) (x+1) (x+3)

f— =—-f X+ x
x2+4x+3 (x+1) 2J (x+3)

3
= —Elog(x+ 1)+ Elog(x+3) +c

Example 5.8.36.

f X f x__f x—-1 dx
(x2+1) (x- 1) (x 1) 2J (x2+1)

2x 10 1
dx—> [ —X _dx+> d
(x—l) * 4f(x2+1) x+2_[(x2+1) g

1 1, 1
= Eloglx—ll—zlog(x +1)+£arctanx+c
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Example 5.8.37.

f X o= [T,
x-12" ) (x-1)2

:f( L + L )dx
x—1 (x-1)2

1
=loglx-1|-——=+c¢
glx—1l-—

Example 5.8.38.
3x%-x A B D

= + +
(x+1D2(x+2) (x+2) (x+1) (x+1)2

3x2—x 14

11 4
————————dx= | ——dx- —dx+f—dx
(x+1D2(x+2) x+2 x+1 (x+1)2
4

=14log|x+2|-11llog|x+1|———+¢
gl | gl | i1

Example 5.8.39.

x2-2x-1 2x-5
- -1+ —-—
x2—-4x+4 x2—4x+4
2x-5  2x-4-1  2x-4 1 2(x-2) 1 2 1

x2—4x+4 x2—4x+4 x2—4x+4 x2—4x+4 (x-2)2 (x-2)2 T x—2 (x —2)2

X% -2x-1 1
f—dx:x+—+210g|x—2|+c
x2—-4x+4 x—2

Example 5.8.40.
1 1 1

x% (x%+1) T2 2+l

f 1 1
—— dx=—-—-—arctanx+c¢
x%(x?+1) x

Example 5.8.41.
1 1 1 1 1

(l—xz)2 B 4(x+1) ’ Ax+12 4Ax-1) * 4(x—1)2

1 1
- +c
4(x+1) 4(x-1)

1 1 1
f—zdx: —log|x+1|--log|x—1| -
(1_x2) 4 4

Example 5.8.42.
1 1 1 1 1

o1 (x—D(x+1)(1+x?) T4(x-1) 4x+1D) +2(1+x)2

dx 1 1 1
dx = -log|l — x| - -log|x+ 1| — -arctanx + ¢
xt-1 4 4 2

Example 5.8.43.

f1+x+\/}d _th3+t2+tdt

xX=
1+xyx B+1
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by putting /x = t.

B+2+t _ P+t-1

B+1 T 1+ (t+1)gt2—t+1)
=1- + 412
3(t+1)  3(r2—t+1)
—1-11 42 2t
31+1  3312-1+1

B+t+t 11 2 2t-1
————dt= | [1-c—+ > dt
B+1 31+f 332—t+1
1 2
:t—glog|1+t|+§log(t2—t+l)+c

1 2 4
f;xTi/\;}dx:Z\/}—glog(l+\/§)+§log(x—\/}+ D+c

Example 5.8.44.

tan?x+1 1
f—dx:f—dt:lnltl+c:ln|tanx+1|+c
tanx+1 t

byt=tanx+1

Example 5.8.45.

1 1
————dx= dt
fx(logzx—l) g ftz—l
- [ e
(t-1(t+1)

1 1 1 1 1 1 1
f—dt:— —dt——f—dt:—1og|t—1|——log|t+1|+c
(t—-1D((+1) 2J t—1 2J t+1 2 2

byt =logx.

f ! dx—llo [logx —1| 1lo [llogx+1|+c
x(log?x—1) 2 08108 5 081108

Example 5.8.46. Which one is correct?

2

I:fseczxtanxdx U=secx du=secxtanx I:qudu: u?>=sec’x+C

I:fseczxtanxdx u=tanx du =sec® x I:qudu: u? =tan’x+C

Sincetan?® x + C = sec?® x — 1 + C = sec® x + C', both are correct.

mld dyx LIE S | 1+sinx
—Y = — —dx
0 1-sinx 0 l1-sinx 1+sinx
4 1 +sinx
= —de
0 1-sin“x

n/4 1 +sinx
- = ax
0 cos? x

Example 5.8.47.

/4
= f (sec? x +secxtan x) dx
0

= [tanx +secx]?* = 1+v2 - (0+1) = V2

85

(5.1)



86 CHAPTER 5. INTEGRATION

5.9 Improper Integrals

b
Consider I = f f(x)dx, where f is continuous on (a, b).

a
If a = —oco or b = co then we say I is an improper integral of type I.
If f is unbounded as x approaches to a or b then we say [ is an improper integral of type II.

Improper Integrals of Type I

Definition 5.9.1. If f is continuous on [a,o0)

oo R
ff(x)dlegimf fx)dx

Similarly if f is continuous on (—oo, b]

b b
f fx)dx= lim fx)dx
—00 R——-o00JR

In either cases, if the limit is finite, we say the integral converges and if the limit does not exists, we say the
integral diverges. If the limit is oo or —oo we say the integral diverges to oo or —oo.

Example 5.9.1. Find the area of the region lying under the curve y = é and above the x-axis to the right of
x=1

. . ©dx Lo .
Solution. The area is A = f = which is an im-
1
proper integral of type-1.

R
A:foo@:ﬁm @ y:I/x2
. il

1

Example 5.9.2. Find the area of the region lying under the curve y = % and above the x-axis to the right of
x=1.

Solution. The area is

A—fmdx—lim R dx |
)i x  Reoo)] x y=1/x

= lim lnxlf = limInR=0c0
R—o0 R—o0




5.9. IMPROPER INTEGRALS

Definition 5.9.2. For integrals of the form f fx)dx, we define

oo 0 oo
f f(x)dx:f f(x)dx+f fx)dx
-0 —00 0

The integral on the left converges if and only if both integrals on the right converges.

87

Note that /% f(x)dx and limg_.co ffR f(x)dx may or may not be equal. For example [ xdx is diver-

gent according to our definition since [;° xdx = oo is divergent. But limp_. f_RR xdx=0.

o0

Example 5.9.3. Evaluate f dax.
oo 1+ x2
Solution.
o ] R | S| S | 1
I:f dx:f dx+f dx:Zf dx
oo 14 x2 oo 14+ x2 o 1+x2 o 1+x2 y=H1
1+x2

since the integrand is an even function.

S | ) R dx ) i1
dx = lim = lim arctanR = —
o 1+x2 R—ooJyg 1+ x2 R—oco 2

So the answerisI = .

Improper Integrals of Type-II

Definition 5.9.3. If f is continuous on the interval (a, b] and is possibly unbounded near a then

b b
ff(X)dx:CI_i!%_f fx)dx

Similarly, if f is continuous on the interval [a, b) and is possibly unbounded near b then

b c
f fx)dx lim | f(x)dx
a

cC—b—Jg

Example 5.9.4. Find the area of the region lying under y = 1/1/x, above the x-axis, between x =0 and x = 1.

Solution. The area is

S | 1 1
—dx=li —adx = lim 2x'?| = lim (2-2v/c) =2
Jy Jeen=dim, || gz Jip 2517, = i -2v0

2 dx
Example 5.9.5. Evaluate f —
0 V2x—x?
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Solution. By the substitution u=x—1

du

fZ dx _fz dx _fl
0 V2x—x% Jo 1-(x-1)2 J-1V1-u?
By the even symmetry,
1 du
-
0 V1-u?

This is an improper integral of Type-II as the integrand
is unbounded at u = 1.

¢ du
I=2lim =2 lim arcsin ulg =2 lim arcsinc=2arcsinl =7
c—1-Jo V1-—u? c—1- c—1-
. . . /2
Exerc1§es. Evaluate the following integrals or show 4 f tan xdx
they diverge. 0

Answer: the integral diverges to oco.
o0
1. f cosxdx
0

Answer: the integral diverges.

' dx

0o X

5.

Answer: the integral diverges to oco.

2 [ e2a 1
‘[0 ¢ . 6. f Inxdx
0

Answer: 1/2.

Answer: —1.
o0 o0 5
3. f xe *dx 7. f xe X dx
0 —00
Answer: 1. Answer: 0.
5.10 Trigonometric Integrals
Products of Powers of Sines and Cosines
fsinm xcos” xdx

Case 1. If m is odd. Write

2k+1

sin x = sin xX= (sin2 x)k sinx=(1- cos? x)k sin x

fsinmxcos"xdxdx:f(l—coszx)kcos”xsinxdxz—f(l—uz)ku"du

where u = cos x.
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Example 5.10.1.

fsingxcos2 xdx:fsinzxcoszxsinxdx
:f(l—coszx) (cos® x) (—d(cos x))
:f(l—uz)(uz) (-du)
:f(u4—u2)du

wooul cos®x cos®x

= -5 tC= - +C
5 3 5 3

Case 2. If n is odd. In this case

2k+1 2

cos” x = cos x = (cos x)kcosx: (l—sinzx)kcosx

and
. . . k
fsmmxcos”xdxdx:fsmmx(l—smzx) cosxdx:fum(l—uz)kdu

with u = sin x.
Example 5.10.2.
fcossxdx:fcos‘lxcosxdx:f(l—sinzx)zd(sinx)
:f(l— u?)’ du
:/(1—2u2+u4)du

2 3 1 5 . 2 -3 1 .. 5
=u——u +gu +C:smx—§sm x+gsm x+C

Case 3. If m and 7 are both even. Substitute

. 2 1—cos2x > 1+cos2x
SIN“x¥=———, cos"x=——"—

to reduce the integrand to one in lower powers of cos2x.

Example 5.10.3.

1—cos2x)(1+cos2x)?
fsinzxcos4xdx:f( 5 )( > ) dx

1

= gf(l—cost)(l+2cost+c0822x) dx
1 2 3

=3 (1+cos2x—cos”2x—cos’2x) dx

1 1 .
x+—sm2x—I—]]
8 2

1
szcosZZxdx: 5[(1+cos4x)dx

[+ goines)
=—|x+—-sindx
2 4
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]:fcosszxdx:f(1—sin22x)c082xdx

1 1 1
= —f(l— uz)du: - (sin2x——sin32x)
2 2 3

Combining and simplifying gives

1 1 1
fsin2 xcos* xdx=— (x — Zsindx + —sin® Zx) +C
16 4 3

Eliminating Square Roots

Example 5.10.4.

/4 /4 /4
f V1+cosdxdx = f V2cos?2xdx = f V2V cos22xdx
0 0 0

/4 /4
= \/Ef |cos2x|dx = \/Ef cos2xdx
0 0
/4 \/E \/z

o :7[1—0]:7

sin2x
_ \/5[ 2

Integrals of Powers of tan x and sec x
Example 5.10.5.
ftan4 xdx= ftan2 x-tan® xdx = ftan2 x-(sec®x—1)dx
= ftanzxsecz xdx—ftan2 xdx
= ftan2 xsec” xdx —f (sec?x—1)dx
= ftanzxsec2 xdx—fsec2 xdx+fdx
1 3
= gtan x—tanx+x+C
where we used by letting u = tan x and du = sec® x

1
I:ftanzxseczxdx:fuzdu:gtan3x+C

Example 5.10.6. Find [sec’ xdx.
Use the integration by parts
u=secx, dv=sec’xdx, v=tanx, du=secxtanxdx
to get
1= fsec3 xdx =secxtanx — f(tanx)(secxtanxdx)

= secxtanx—f(seczx— 1)secxdx

:secxtanx+fsecxdx—fsec3 xdx

=secxtanx+In|secx+tanx|—1I
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1 1
I:fsec3xdx: —secxtanx+zlnlsecx+tanx|+C

Some Examples

Example 5.10.7.
1
fsinsxdx:fsinzxsinxdx:f(1—coszx)sinxdx:fsinxdx—fcoszxsinxdx:—cosx+§cos3x+C
Example 5.10.8.
fsin5xdx:f(sinzx)zsinxdx:f(1—coszx)zsinxdx:f(1—2coszx+cos4x)sinxdx
. 2 . 4 . 2 3 1 5
= | sinxdx— | 2cos“xsinxdx+ | cos” xsinxdx=—-cosx+ gcos x—gcos x+C
Example 5.10.9.
fsinsxcoss xdx:fsinsxcoszxcosxdx:fsingx[l—sinzx) cosxdx:fsinsxcosxdx—fsin5xcosxdx
1 1
= —sin*x—=sin®x+C
4 6
Example 5.10.10.

1+ cos2x 1 1 1 1 1
fcoszxdx:dex:5[(1+c032x)dx:§fdx+ Efcosbcdx:Efdx+zfc032x-2dx

1 1 .
=—x+-sin2x+C
2 4
Example 5.10.11.
T T /4
f \/I—COSZxdx:f \/Elsinxldx:f \/Esinxdx:[—\/icosx]g:\/é+\/§:2\/§
0 0 0

Example 5.10.12.

1
fsec3 xtanxdx = fsec2 xsecxtanxdx = 3 secdx+C
where we used u = sec x substitution.

Example 5.10.13.
fsec‘lxtan2 xdx:fseczxtanzxsec2 xdx:f(tan2x+ 1)tan® xsec® xdx
1 1
:ftan4xseczxdx+ftan2xsec2xdx: gtan5x+§tan3x+c
Example 5.10.14.
4 2 2 2 2 2 1 3
sec*0d0 = | (1+tan“0)sec”0dO = | sec*0d6 + | tan”Osec 9d9:tan9+§tan 6+C

1 1 2
=tanf + gtane (sec?0-1)+C= gtanesecze + gtane +C
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Example 5.10.15.
ftan5xdx:ftan4xtanxdx:f(seczx—l)ztanxdx:f(sec4x—28ec2x+ 1) tan xdx

:fsec4xtanxdx—2fsec2xtanxdx+ftanxdx

1
:fsechsecxtanxdx—2[secxsecxtanxdx+ftanxdx: Zsec4x—sec2x+1n|secx|+C

1 1 1
Z(tan2x+ 1)2—(tan2x+ 1) +In|secx|+C = Ztan4x—§tan2x+ln|secx|+C



Chapter 6

Applications of Integration

6.1 Volumes Using Cross-Sections

Solids of Revolution: The Disk Method

Suppose the graph of y = f(x), a < x < bis revolved around x-axis. Let a = xp < x1 <--- X, = b. Approximat-
ing the volume of the revolved region by disks,

n b
Ve ) nfx)’Axe—V :f nf(x)*dx.
k=1 a

Example 6.1.1. Find the volume of the solid obtained by revolving the curve y = v/x, 0 < x < 4 around the

X-axis.
3% /i
y=vX
2 |
1 s
X
2 4
_1 is

4
1% :f n(vVx)?dx=8n
0

Example 6.1.2. Find the volume of the sphere with radius a.
The sphere is obtained by revolving the graph of y = V a? — x?, —a < x < a around the x-axis.

y=vVaZ-x2

93
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a 4
V:f ﬂ(az—xz)dngnag’.

a

Example 6.1.3. Find the volume of the solid generated by revolving the region bounded by y = v/x and the
linesy =1, x =4 about the liney = 1.

The distance to the line of revolution is R(x) = /x — 1.

4 4 77T
V:f n(\/}—l)zdx:nf (x—2\/}+1)dx:E.
1 1

Example 6.1.4. Find the volume of the solid generated by revolving the region between the y-axis and the
curvex =2/y,1 < y <4 about the y-axis.

1st method.
4 4 2 2
V:f n(R(y))zdy:ﬂf (—) dy=3m.
1 1 \Y

2nd method. Use x — .

Example 6.1.5. Find the volume of the solid generated by revolving the region between the parabola x = y*+1
and the line x = 3 about the line x = 3.
The intersection of x = y2 +landx=3isatx=+v?2. R(y)=3- (y2 +1).

V2 V2 6472
V:f T(R(y)%d :f 12-v)%dy =
iy ndy iy y)dy 15

Solids of Revolution: The Washer Method

Example 6.1.6. The region bounded by the curve y = x>+1 and the line y = —x+3 is revolved about the x-axis.
Find the volume of the solid.
The volume = The volume of the outer solid - the volume of the inner solid.

! 2 ! 2 ! 2 2 2 1177
V:fzﬂ(Router(x)) dx—fzn(Rinner(x)) dx:fzn((—x+3) —(x"+1) )dx=T.

Example 6.1.7. The region bounded by the parabola y = x* and the line y = 2x in the first quadrant is re-
volved about the y-axis to generate a solid. Find the volume.

V:f;n((ﬁ)Z—(%)z)dy:nf()4(y—yzz)dy:8?”.
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Example 6.1.8. Find the volume of the solid generated by revolving the regions bounded by y = 2\/x, y = 2,
x =0 about the x-axis.

1

r(x):z\/}andR(x):Z:V:f 7 ([RW* = [r(x))?) dx
0
6.1)

1 xz 1 1
=Hf (4-4x)dx=4n x——] :47;(1__):2”
0 2 0 2

Example 6.1.9. Find the volume of the solid generated by revolving the region enclosed by the triangle with
vertices (1, 0), (2, 1), and (1, 1) region about the y-axis.

1
rg)=landR(y)=1+y=>V :fo 7 (IR - [rp1?) dy

1 1
:nf [(1+y)2—1]dy:nf (1+2y+y*-1)dy 6.2)
0 0
1 311 1\ 4n
= 2y +y2)dy=n|y?+L| = (1+—):—
ﬂfo(yy)ynygoﬂg3

Exercises 6.1 from Thomas. 25, 30, 39, 42, 52

6.2 Volumes Using Cylindrical Shells

Solids of Revolution: The Disk Method

A cylindrical shell with height h, outer radius x + Ax and inner radius x has volume
Vahell = T(x + Ax)>h—tx’h = n(2xAx + (Ax)®) h
If Ax is very small then (Ax)? is very small compared to Ax.
Vihell ® 21 xAxh

Suppose the graph of y = f(x), a < x < b is revolved around the y-axis. Let a = xo < x; <---x, = b.
Approximating the volume of the revolved region by cylindrical shells, the height of each shell is f(xx) and
the outer radius is x; + Axy and inner radius xy.

n b b
V= Z 2nxf(x)Axy — V= f 2nxf(x)dx = f 27 (shell radius) - (shell height)d x.
k=1 A?kio a a

Example 6.2.1. The region bounded by the curve y = v/x, the x-axis, and the line x = 4 is revolved about the
y-axis to generate a solid. Find the volume of the solid.

4
V= f 271 (x)(Vx)dx
0

6.3
* 1287 63

0 5

4 2
:an BPdx=2m|=x"?
0 5
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Example 6.2.2. The region bounded by the curve y = v/x, the x-axis, and the line x = 4 is revolved about the
x-axis to generate a solid. Find the volume of the solid by the shell method.

b
shell shell
V_j; 2”( radius )( height )d

2
=f0 2n(y) (4-y?)dy

2 (6.4)
= 2ﬂf (4y-y°)dy
0
412
=27 2y2—y—] =8n
4 1o
Exercises 6.2 from Thomas. 15, 18, 21, 22, 33, 36.
6.3 ArcLength
Finding the length of the curve y = f(x), a< x < b.
E\Tk/i\‘ B=P,
y=f) | i | i
0—‘11 x| X1 | xklfl x‘k } b:‘xn *
PU—A\E i
Pl\/

Figure 6.1: From Thomas.

Partition the interval a = xo < x; <--- < x, = b. The approximation of the arc length is

>\ (A2 + (Ay?

where Axy = x; — Xx—1 and Ayx = yx — yx—1- By the Mean Value Theorem there is a point ¢; with x;_; < ¢ <
Xj. such that

Ayi = f'(c) Ax
So the approximation becomes

b
Y \/(Axk)z +(Ay)? =) \/(Axk)z +(f'(ci)Axi)? =) \/ 1+ (f'(cr))?Axi P f \/ 1+ (f'(x))%dx

Axp—0

The arc length is defined as

b
f 1+ (f(x)%dx
a



6.4. AREAS OF SURFACES OF REVOLUTION

Example 6.3.1. Find the length of the curve

42
y:T\/_xS’Z—l, 0<x<1

f\/ dx f\/mle

(1+8 )3’2] :—~2 17
o 6

Example 6.3.2. Find the length of the graph

64 1 1 72
=|— - - ——]_ :—:6
12 4 12 12

(e*+e7), 0=x<2

Example 6.3.3. Find the length of the curve

y=

/ 2
f 1+d dxf1e+exx
X
_—[x

e 2= 2(e —e7%)=3.63

l\JI»—'

Thelengthofx=g(y),c<y=<dis

:fcd‘/1+(3—;)2dy:fcd\/1+ [g’(y)]zdy

Exercises 6.3 from Thomas. 2, 13, 14, 15, 17.

6.4 Areas Of Surfaces Of Revolution

2my*

NOT TO SCALE

Figure 6.2: From Thomas.
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(6.8)

(6.9

(6.10)

(6.11)
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The surface are of the above shape is

21

)

2
The surface are of the region obtained be revolving y = f(x), a < x < b around the x-axis is

f -1+ f () b
}:zn( 5 )VQAxUZ+(Aka ;:/LL 2 f(xX)\/1+ (f'(x))?dx

Ax—0

Example 6.4.1. Find the area of the surface generated by revolving y = 2\/x, 1 < x < 2 about the x-axis.

() -y “(L)Z ot
YA wn \/x+1

2 Vx+1
S:f 27m-2Vx il dx:47tf Vx+1ldx
1 NE 1

(6.13)

2 2
=4r-=(x+1)%?| =
3 1

8?”(3\/5 —-2v2)

For revolution about the y-axis, we interchange x and y . Exercises 6.4 from Thomas. 1, 9, 13, 22
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