
Calculus I Lecture Notes

Taylan Şengül
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Chapter 1

Limits and Continuity

1.1 Informal definition of limits

Two main problems of calculus are

1. Derivative. Find the rate of change of f .

2. Integral. Find the area under a given curve.

Both are based on the concept of limit.
We say limx→a f (x) = L to mean that f (x) is “close enough” to L for any x “close enough” to a.

Example 1.1.1. Which value is x close to when x is close to 2?

lim
x→2

x = 2

Example 1.1.2. Which value is 3 close to when x is close to 2?

lim
x→2

3 = 3

We can generalize these examples.

Theorem 1.1.1. Let a and c be two real numbers. Then

lim
x→a

c = c, lim
x→a

x = a.

The limit limx→a f (x) may be different from f (a) as the next example shows.

Example 1.1.3.

f (x) =
{

x, if x 6= 2

1, if x = 2

Which value is f (x) close to when x is close to (but not equal to) 2?
limx→2 f (x) = limx→2 x = 2 although f (2) = 1.

5



6 CHAPTER 1. LIMITS AND CONTINUITY

Informal definition of left and right limits

If f (x) is close to L when x < a and x is close enough to a then we say

lim
x→a− f (x) = L

This is called the left limit of f at x = a.
Similarly we can define the right limit.

Theorem 1.1.2. limx→a f (x) = L if and only if both limx→a− f (x) = L and limx→a+ f (x) = L.

Example 1.1.4. Find the left and right limits of the signum function

f (x) =


−1 for x < 0

0 for x = 0

1 for x > 0

1

−1

Solution. The one-sided limits exist, but are not equal

lim
x→0+ f (x) = 1 and lim

x→0− f (x) =−1.

Hence limx→0 f (x) does not exist.

Properties of Limits

Theorem 1.1.3. Suppose
lim
x→a

f (x) = L, lim
x→a

g (x) = M .

Then

lim
x→a

(
f (x)+ g (x)

)= L+M , (1.1)

lim
x→a

(
f (x)− g (x)

)= L−M , (1.2)

lim
x→a

(
f (x) · g (x)

)= L ·M (1.3)

lim
x→a

f (x)

g (x)
= L

M
, if M 6= 0 (1.4)

lim
x→a

[ f (x)]n = Ln , n = positive integer (1.5)

lim
x→a

[ f (x)]1/n = L1/n , n = positive integer and L > 0 if n=even (1.6)

(1.7)

Proof. Proof requires the formal definition of limit.

Using the above properties we can evaluate the following limits.

Example 1.1.5. Find limx→2 x2 +1 and limx→2
x2 +1

6−x
.
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Solution. Using the product rule of limits and the Theorem 1.1.1,

lim
x→2

x2 = lim
x→2

x · lim
x→2

x = 2 ·2 = 4

Using the sum rule of limits,
lim
x→2

x2 +1 = lim
x→2

x2 + lim
x→2

1 = 4+1 = 5

Using the division rule of limits,

lim
x→2

x2 +1

6−x
= limx→2 x2 +1

limx→2 6−x
= 5

4
.

The above example is a special case of the following theorem.

Theorem 1.1.4. If P (x) is a polynomial then,

lim
x→a

P (x) = P (a)

If Q(x) is another polynomial with Q(a) 6= 0 then

lim
x→a

P (x)

Q(x)
= P (a)

Q(a)
.

The Squeeze Theorem

Theorem 1.1.5. Suppose that f (x) ≤ g (x) ≤ h(x) and limx→a f (x) = limx→a h(x) = L. Then limx→a g (x) = L.

h(x)

f (x)

g (x)
(a,L)

Figure 1.1: The Squeeze Theorem.

Example 1.1.6. If −x2 ≤ g (x) ≤ x2 for −1 ≤ x ≤ 1, find limx→0 g (x).

Example 1.1.7. Show that if limx→a
∣∣ f (x)

∣∣= 0 then limx→a f (x) = 0.

Solution. Note that − ∣∣ f (x)
∣∣≤ f (x) ≤ ∣∣ f (x)

∣∣ and use the Squeeze Theorem.

More examples

Example 1.1.8. Let

f (x) = |x −2|
x2 +x −6

.

Find limx→2+ f (x), limx→2− f (x). Does limx→2 f (x) exist?
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Most of the limits you need to compute in this class will be limx→a f (x) when f (a) does not exist. Here
is an example.

Example 1.1.9.

limx→−2
x2 +x −2

x2 +5x +6
,

Solution. Remember that we consider x values close to but not equal to −2. Hence x+2 6= 0 and we can make
the simplification

lim
x→−2

x2 +x −2

x2 +5x +6
= lim

x→−2

(x +2)(x −1)

(x +2)(x +3)
= lim

x→−2

x −1

x +3
= −3

1
=−3.

Exercises.

1. lim
x→5

1
x − 1

5

x −5
.

Answer: − 1
25 .

2. lim
x→4

p
x −2

x2 −16
,

Hint: multiply and divide by the conjugate ex-
pression

p
x +2. Answer: 1

32

3. lim
x→−2

x2 +2x

x2 −4
.

Answer: 1
2

4. lim
h→0

p
4+h −2

h
.

Answer: 1
4

5. lim
t→0

tp
4+ t −p

4− t
.

Answer: 2

6. lim
x→−1

x3 +1

x +1
.

Answer: 3

7. lim
x→0

|3x −1|− |3x +1|
x

.

Answer: -6

8. lim
x→−2−

x2 −4

|x +2| .
Answer:

9. lim
y→1

y −4
p

y +3

y2 −1
.

Answer: −1
2

10. lim
x→2

p
4−4x +x2

x −2
.

Answer: 1

11. If 2−x2 ≤ f (x) ≤ 2cos x for all x, find lim
x→0

f (x).

Answer: 2

1.2 Limits at Infinity and Infinite Limits

Limits at Infinity

Definition 1.2.1. We will say that limx→∞ f (x) = L if f (x) is “close enough” to L whenever x > 0 is “large
enough”.

Similarly we define limx→−∞ f (x) = L if f (x)is “close enough” to L whenever x < 0 is “large enough”.
If either limx→∞ f (x) = L or limx→−∞ f (x) = L, we say that the line y = L is an horizontal asymptote of

the graph of f .
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Example 1.2.1. Argue that
lim

x→∞1/x = lim
x→−∞1/x = 0.

by making a table of values of x and 1/x.

−10 −5 5 10

−10

−5

5

10

x

f (x) = 1

x

Recall that for ordinary limits, limit of product of functions is a product of limits of functions. Same is
also true for limits at infinity. Hence

lim
x→∞

1

x2
= lim

x→∞
1

x
· lim

x→∞
1

x
= 0×0 = 0.

Similarly

lim
x→−∞

1

x2
= 0

Finally, for any positive integer n

lim
x→∞

1

xn
= lim

x→−∞
1

xn
= 0.

Example 1.2.2. Let f (x) = xp
x2 +1

. Find limx→∞ f (x), limx→−∞ f (x).

Solution.

lim
x→∞

xp
x2 +1

= lim
x→∞

x

|x|
p

1+1/x2

= lim
x→∞

x

x
p

1+1/x2

= lim
x→∞

1p
1+1/x2

= limx→∞ 1

limx→∞
p

1+1/x2

= 1√
limx→∞(1+1/x2)

= 1

1
= 1.

Similarly,

lim
x→−∞

xp
x2 +1

=−1

−5 5

−1

1

x

y

f (x) = xp
x2 +1
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Limits of Rational Functions at Infinity

Recall that a rational function is a ratio of two polynomials.
Strategy. To find limits of rational functions at infinity, divide by the highest power of x appearing in the

denominator.

Example 1.2.3.

lim
x→±∞

2x2 −x +3

3x2 +5
= lim

x→±∞
2− 1

x + 3
x2

3+ 5
x

= 2

3
.

Example 1.2.4.

lim
x→±∞

x −5

2x2 +4x +1
= lim

x→±∞

1
x − 5

x2

2+ 4
x + 1

x2

= 0

2
= 0.

We can generalize the above examples.

Theorem 1.2.1. Let P (x) = ap xp +ap−1xp−1 +·· ·+a0 be a polynomial of degree p and Q(x) = bq xq +·· ·+b0

be a polynomial of degree q. If p = q, then

lim
x→±∞

P (x)

Q(x)
= ap

qp
,

If p < q, then

lim
x→±∞

P (x)

Q(x)
= 0,

Example 1.2.5.

lim
x→∞

√
x2 +x −x = lim

x→∞
(
p

x2 +x −x)(
p

x2 +x +x)p
x2 +x +x

= lim
x→∞

x

|x|
√

1+ 1
x +x

= lim
x→∞

1√
1+ 1

x +1
= 1

2
.

Infinite Limits

Example 1.2.6. The values of
1

x2
gets larger and larger as x approaches to 0. Thus limx→0

1

x2
does not exist.

Although the limit does not exist, it is useful to state why it does not exist by writing

lim
x→0

1

x2
=∞.

−10 −5 5 10

−10

−5

5

10

x

f (x) = 1

x2



1.2. LIMITS AT INFINITY AND INFINITE LIMITS 11

Example 1.2.7.

lim
x→0+

1

x
=∞.

lim
x→0−

1

x
=−∞.

lim
x→0

1

x
does not exist.

Example 1.2.8.

lim
x→−∞

√
x2 +x −x

Solution. Both −x and
p

x2 +x grow large as x →−∞. So the limit is ∞.

Behaviour of Polynomials at Infinity

Example 1.2.9.
lim

x→∞4x3 −2x +1 = lim
x→∞4x3 =∞.

lim
x→−∞−3x5 +x3 +1 = lim

x→−∞−3x5 =∞.

In general,

Theorem 1.2.2. If P (x) = an xn +·· ·+a0 is a polynomial then

lim
x→±∞P (x) = lim

x→±∞an xn .

If Q(x) = bm xm +·· ·+b0 is also a polynomial then

lim
x→±∞

P (x)

Q(x)
= lim

x→±∞
an xn

bm xm

Example 1.2.10.

lim
x→∞

x3 +1

x2 −2x
= lim

x→∞
x + 1

x2

1− 2
x

= lim
x→∞

x

1
=∞

Example 1.2.11. 1. limx→2
(x −2)2

x2 −4
= 0

2. limx→2+
x −3

x2 −4
=−∞

3. limx→2−
x −3

x2 −4
=∞

4. limx→2
x −3

x2 −4
does not exist.

5. limx→∞
2x −1p

3x2 +x +1
,
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6. limx→1+

p
x2 −x

x −x2

Solution. If x > 1 then x −x2 = x(1−x) < 0. So

lim
x→1+

p
x2 −x

x −x2
= lim

x→1+
−
p

x2 −x

x2 −x
= lim

x→1+
−
p

x2 −xp
x2 −x

p
x2 −x

= lim
x→1+

−1p
x2 −x

=−∞

1.3 Continuity

Let f (x) =
p

4−x2. Domain of f is [−2,2].

• x =−2 is the left end point of Dom( f ).

• x = 2 is the right end point of Dom( f ).

• Any x with −2 < x < 2 is called an interior point of Dom( f ).

Definition 1.3.1. A function f is continuous at an interior point c of its domain if

lim
x→c

f (x) = f (c)

f is continuous at its left endpoint c if
lim

x→c+ f (x) = f (c)

f is continuous at its right endpoint c if
lim

x→c− f (x) = f (c)

The following theorem gives an alternative definition of continuity which is sometimes useful.

Theorem 1.3.1. A function f is continuous at an interior point c of its domain if and only if

lim
h→0

f (c +h) = f (c)

f is continuous at its left endpoint c if
lim

h→0+
f (c +h) = f (c)

f is continuous at its right endpoint c if
lim

h→0−
f (c +h) = f (c)

Proof. Let h = x−c. Then x → c if and only if h → 0. So limh→0 f (c+h) = f (c) is the same as limh→0 f (c+h) =
f (c).

Note that f is discontinuous at c if

i) either limx→c f (x) does not exist.

ii) or limx→c f (x) exists but is not equal to f (c).
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a b c

Figure 1.2: f is discontinuous at a because of (ii) and discontinuous at b because of (i). f is continuous at c.

Definition 1.3.2. f is called a continuous function if f is continuous at every pt of its domain.

Example 1.3.1. f (x) =
p

4−x2 is continuous at every point of its domain. So it is a continuous function.

−2 2

2

f (x) =
p

4−x2

According to this definition f (x) = 1
x is also continuous!!! 0 is not in domain of f . So we say f is unde-

fined rather than discontinuous at 0.
There are lots of continuous functions:

• polynomials,

• rational functions,

• rational powers xm/n

• trigonometric functions

• absolute value function |x|

Theorem 1.3.2. If f and g are continuous at c then

• f + g , f − g , f g , are continuous at c,

• if k is constant then k f is continuous at c,

•
f

g
is continuous at c provided that g (c) 6= 0.



14 CHAPTER 1. LIMITS AND CONTINUITY

• f 1/n continuous at c provided that f (c) > 0 if n is even.

Proof. Let’s prove that if f and g are continuous at c then so is f + g . If f and g are continuous at c then

lim
x→c

f (x) = f (c), lim
x→c

g (x) = g (c),

By the limit rule,
lim
x→c

( f (x)+ g (x)) = lim
x→c

f (x)+ lim
x→c

g (x) = f (c)+ g (c).

The other proofs are similar.

Composites of continuous functions are continuous
If g is continuous at c and f is continuous at g (c) then f ◦ g is continuous at c. In other words,

lim
x→c

f (g (x)) = f (lim
x→c

g (x)) = f (g (c)).

Example 1.3.2. Find m so that

g (x) =
{

x −m, if x < 3,

1−mx, if x ≥ 3

is continuous for all x.

Continuity of Trigonometric Functions

Theorem 1.3.3. sin x and cos x are continuous at x = 0, i.e.

lim
x→0

sin x = sin0 = 0, lim
x→0

cos x = cos0 = 1.

Proof.

|1−cosθ| = |AQ| ≤ |AP | ≤ θ,

|sinθ| = |PQ| ≤ |AP | ≤ θ

In other words, −θ ≤ sinθ ≤ θ

and using the squeeze theorem
we get limθ→0 sinθ = 0. Simi-
larly, we get limθ→0 1− cosθ = 0
or limθ→0 cosθ = 1.

A

P = (cosθ, sinθ)

Q

θ

θ

1

Theorem 1.3.4. sin x and cos x are continuous for all x.

Proof. By Theorem 1.3.1, we need to prove limh→0 sin(x +h) = sin x for any x.

lim
h→0

sin(x +h) = lim
h→0

sin x cosh +cos x sinh = sin x lim
h→0

cosh +cos x lim
h→0

sinh = sin x.

Prove the continuity of cos x as an exercise.
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Extreme Value Theorem

Theorem 1.3.5. If f is continuous on the closed interval [a,b] then there exist numbers p and q in the interval
[a,b] s.t.

f (p) ≤ f (x) ≤ f (q)

for all x in [a,b]. f (p) is called the absolute minimum value and f (q) is called the absolute maximum
value.

Extreme value theorem is an existence theorem. It only guarantees the existence of p and q but does
not tell how to actually find them.

We say a function f is bounded if there exists M and N such that M ≤ f (x) ≤ N for all x in the domain
of f . Extreme value theorem says that continuous functions on closed intervals must be bounded.

Example 1.3.3. The conclusions of the theorem may fail if the function f is not continuous or the interval is
not closed.

1
0

(a) The function f (x) = 1/x on the open inter-
val (0,1) is continuous but unbounded and has
no minimum and no maximum.

1
0

(b) The function f (x) = x on (0,1) is discontin-
uous, bounded and has no minimum and no
maximum.

1
0

(a) This function is defined on the closed in-
terval [0,1], discontinuous, has a minimum but
no maximum.

1
0

(b) This function is defined on the closed inter-
val [0,1], discontinuous, bounded, has no min-
imum and no maximum.

Intermediate Value Theorem

Theorem 1.3.6 (Intermediate Value Theorem). If f is continuous on [a,b] and if s is between f (a) and f (b)
then there exists c in [a,b] s.t. f (c) = s.
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a c b

s

x

y

y = f (x)

Figure 1.5: Illustration of the intermediate value theorem.

Example 1.3.4. If a child grows from 1 m to 1.5 m between the ages of two and six years, then, at some time
between two and six years of age, the child’s height must have been 1.23 m.

In particular, a continuous function on a closed interval takes every value between its minimum m and
maximum M . Hence its range is a closed interval [m, M ].

Example 1.3.5. Show that the equation x3 −x −1 = 0 has a solution in the interval [1,2].

Solution. f (x) = x3−x−1 is a polynomial and hence continuous. f (1) =−1 and f (2) = 5. Since 0 lies between
−1 and 5, the intermediate value theorem assures us that there must be a number c in [1,2] such that f (c) = 0.

Bisection Algorithm

Intermediate Value Theorem is also an existence theorem. It does not say how to find c in its statement.
Let’s try to better estimate the root of previous example. Write f (x) = x3 − x − 1 and try to find a smaller
interval where a root lies of

f (x) = 0.

We know that a root lies in [1,2], if say that the root is 1.5 the maximum error will be 0.5.
Now f (1.5) = 0.875 > 0. So a root lies in [1,1.5], and if we say the root is 1.25 then the maximum error

will be 0.25.
If this is not sufficient then compute f (1.25) =−0.2969, now if we say the root is 1.375 then the error is

less than 0.125.
Next step is f (1.1375) = 0.2246. So a root must lie in [1.25,1375]. The error is less than 0.0625 if we say

the root is 1.315.
Going this way, we find the approximations, 1.3438, 1.3282, 1.3204. Hence the root must lie in [1.3204,1.3282].

So the first two decimal digits of the root are 1.32.
In engineering, you almost never get exact results. All you can do is lower your error below an acceptable

threshold.

Optional Issues

Is there a function which is continuous only at a single point? Yes!
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Example 1.3.6.

f (x) =
{

x, if x is a rational number

0, otherwise

is continuous only at x = 0.

This also answers the following question
If a function is continuous at point, is it continuous in some open interval around that point? NO!

1.4 Formal definition of Limit

The informal description of the limit uses phrases like “close enough” and “really very small”. “Fortunately”
there is a good definition, i.e. one which is unambiguous and can be used to settle any dispute about the
question of whether limx→a f (x) equals some number L or not.

In this section we assume that f is defined in an open interval containing a except possibly at x = a.

Definition 1.4.1. We say that
lim
x→a

f (x) = L

if for every ε> 0 there exists a δ> 0 such that

0 < |x −a| < δ implies | f (x)−L| < ε. (1.8)

Why the absolute values? Recall that the quantity |x − y | is the distance between the points x and y on
the number line.

What are ε and δ? The quantity ε is how close you would like f (x) to be to its limit L; the quantity δ is
how close you have to choose x to a to achieve this. To prove that limx→a f (x) = L you must assume that
someone has given you an unknown ε> 0, and then find a positive δ for which (1.8) holds. The δ you find
will depend on ε.

When we first discussed the limit, say limx→5 2x +1, we made a table,

x f (x) = 2x +1
5.1 11.2

5.01 11.02
5.001 11.002

4.9 10.8
4.99 10.98

4.999 10.998

This table can be written also in this form.

|x −5| ∣∣ f (x)−11
∣∣

0.1 0.2
0.01 0.02

0.001 0.002

It looks like for any ε> 0, if |x −5| < ε
2 then

∣∣ f (x)−11
∣∣< ε.
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1.5 Review Problems

Example 1.5.1. Evaluate the limits if they exist. If they do not exist, state wheter they are ∞, −∞ or just does
not exist.

1. limx→2
x2 +1

1−x2
,

2. limx→1
x2

1−x2
,

3. limx→∞
cos x

x
, (Hint: Use Sandwich Theorem)

4. limx→−∞
2x3 +2x −1

−3x3 +x2
,

5. limx→−∞ x +
p

x2 −4x +1,

Solution.

lim
x→−∞x +

√
x2 −4x +1 = lim

x→−∞x +|x|
√

1− 4

x
+ 1

x2
= lim

x→−∞x

(
1−

√
1− 4

x
+ 1

x2

)

= lim
x→−∞x

(
1−

√
1− 4

x
+ 1

x2

) (
1+

√
1− 4

x + 1
x2

)
(
1+

√
1− 4

x + 1
x2

)
= lim

x→−∞x

(
1−

(
1− 4

x
+ 1

x2

))
lim

x→−∞
1(

1+
√

1− 4
x + 1

x2

)
= lim

x→−∞x

(
4

x
− 1

x2

)
1

2
= lim

x→−∞

(
4− 1

x

)
1

2
= 2.

6. limx→0
x

|x −1|− |x +1| .

7. lim
x→5

x −5

x2 −25

8. lim
x→−5

x2 +3x −10

x +5

9. lim
x→1

x−1 −1

x −1

10. lim
u→1

u4 −1

u3 −1

11. lim
x→9

p
x −3

x −9

12. lim
x→0

1
x−1 + 1

x+1

x
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13. lim
v→2

v3 −8

v4 −16

14. If 2−x2 ≤ g (x) ≤ 2cos x, for all x, find limx→0 g (x)

15. If lim
x→2

f (x)−5

x −2
= 3, find limx→2 f (x)

16. If lim
x→2

f (x)−5

x −2
= 4, find limx→2 f (x)

17. lim
h→0+

p
h2 +4h +5−p

5

h

18. lim
x→−2−(x +3)

|x +2|
x +2

19. Define g (3) in a way that extends g (x) = (x2 −9)/(x −3) to be a continuous at x = 3.

20. For what value of b is

g (x) =


ax +2b, x ≤ 0

x2 +3a −b, 0 < x ≤ 2

3x −5, x > 2

continuous at every x?

21. Explain why the equation cos x = x has at least one solution.

22. If f (x) = x3 −8x +10, show that there is a value c for which f (c) = 1000.

23. Suppose that a function f is continuous on the closed interval [0,1] and that 0 ≤ f (x) ≤ 1 for every x in
[0,1]. Show that there must exist a number c in [0,1] such that f (c) = c (c is called a fixed point of f ).
(Hint: Consider the function g (x) = f (x)−x) and try to find a zero of g (x).

24. Show that the function F (x) = (x −a)2(x −b)2 +x takes on the value (a +b)/2 for some value of x.





Chapter 2

Differentiation

2.1 Tangent Lines and Their Slopes

Problem: Find a straight line L that is tangent to a curve C at a point P .
“For simplicity, restrict ourselves to curves which are graphs of functions.”
How do we define the tangent line to a curve?

x0 x0 +h

P

Q

The slope of the line PQ is
f (x0 +h)− f (x0)

h
.

Definition 2.1.1. Suppose f is cts at x = x0 and

lim
h→0

f (x0 +h)− f (x0)

h
= m

If the limit exists, then the line with equation

y = m(x −x0)+ f (x0)

is called the tangent line to the graph of y = f (x) at P = (x0, f (x0)). If the limit does not exist and m =∞ or
m =−∞ then the tangent line is the vertical line x = x0. If the limit does not exist and is not ±∞ then there is
no tangent line at P.

21
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Example 2.1.1. Find an equation of the tangent line to the curve y = x2 at (1,1).

Solution. The slope is

m = lim
h→0

f (1+h)− f (1)

h
= 2.

And an equation is y = 2(x −1)+1.

Example 2.1.2. Find an equation of the tangent line to the curve y = x1/3 = 3
p

x at the origin.

Solution. The slope of the tangent line is

m = lim
h→0

h1/3

h
=∞.

So the tangent line is a vertical line x = 0 (in other words the y-axis).

−2 2
−1

1
x

y

f (x) = x1/3

Tangent lines to curves such as circles and parabolas do not cross these curves, they just touch at a single
point. However, for graphs of functions tangent lines may cross the curve such as above. In fact at inflection
points (which we will define later) they always do! For example the tangent line to the graph of f (x) = x3 at
x = 0 is the y-axis.

Example 2.1.3. Does f (x) = x2/3 have a tangent line at (0,0)?

Solution. The limit of the difference quotient is undefined at 0since the right limit is ∞ while the left limit is
−∞. Hence the graph has no tangent line at (0,0).

−2 2

1

2

x

y

f (x) = x2/3

“We say that this curve has a cusp at the origin. A cusp is an infinitely sharp point. If you were traveling
along the curve, you would have to stop and turn 180◦ at the origin.”

Example 2.1.4. Does f (x) = |x| have a tangent line at (0,0)?



2.2. DERIVATIVE 23

Solution. The difference quotient is
|h|
h

which has right limit 1 and left limit −1 at h = 0.

−1 1

1

x

y

f (x) = |x|

2.2 Derivative

Definition 2.2.1. The derivative of a function f at x is

f ′(x) = lim
h→0

f (x +h)− f (x)

h
.

whenever the limit exists. If f ′(x) exists, f is called differentiable at x.

f ′(x) is the slope of the tangent line to the graph of f at (x, f (x)).

We will regard f ′ as a function whose domain is those x at which f is differentiable.
Another way of defining derivative is

f ′(x0) = lim
x→x0

f (x)− f (x0)

x −x0
= lim

h→0

f (x0 +h)− f (x0)

h

Two limits are equivalent. This can be seen by letting x = x0 +h.

Example 2.2.1. Show that the derivative of the linear function f (x) = ax +b is f ′(x) = a. In particular the
derivative of a constant function is zero.

Example 2.2.2. Use the definition of the derivative to calculate the derivatives of a) f (x) = x2, b) f (x) = 1
x , c)

f (x) =p
x.

The previous three formulas are special cases of the following Power Rule for Derivative:

f (x) = xr =⇒ f ′(x) = r xr−1

whenever xr−1 makes sense.
Proof of the Power Rule for positive integers. Let f (x) = xn and n a positive integer. Then

f ′(x0) = lim
x→x0

xn −xn
0

x −x0
= lim

x→x0

(x −x0)(xn−1 +xn−2x0 +·· ·xxn−1
0 +xn−1

0 )

x −x0

= lim
x→x0

(xn−1 +xn−2x0 +·· ·xxn−1
0 +xn−1

0 ) = nxn−1
0

We will prove the general version later.
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Example 2.2.3.
f (x) = x5/3 =⇒ f ′(x) = x2/3,

for all x. How about f ′(−1/8)?

f (x) = 1p
x

=⇒ f ′(x) =−1

2
x−3/2

for x > 0.

Example 2.2.4. Differentiate the absolute value function f (x) = |x| to get

f ′(x) = sgn(x) =
{
−1, if x < 0

1, if x > 0

Note that f is not differentiable at 0.

Example 2.2.5. How should the function f (x) = xsgn(x) be defined at x = 0 so that it is continuous there? Is
it then differentiable there?

Notations for Derivative

Let y = f (x). We denote the derivative by

y ′ = f ′(x) = d y

d x
= d

d x
f (x).

If we want to evaluate the derivative at point x0

y ′ |x=x0= f ′(x0) = d y

d x
|x=x0=

d

d x
f (x) |x=x0 .

The notations y ′ and f ′(x) are Lagrange notations for the derivative. The notations
d y

d x
and

d

d x
f (x) are

called Leibniz notations for the derivative.
The Leibniz notation is suggested by the definition of the derivative. Let ∆y = f (x +h)− f (x) be the

increment in y and ∆x = x +h −x = h be the increment in x. Then

d y

d x
= lim
∆x→0

∆y

∆x

2.3 Differentiation Rules

Differentiability is stronger than continuity.

Theorem 2.3.1. If f is differentiable at x then f is cts at x.

Proof.

lim
h→0

( f (x +h)− f (x)) = lim
h→0

f (x +h)− f (x)

h
lim
h→0

h = f ′(x)0 = 0

This means
0 = lim

h→0
f (x +h)− lim

h→0
f (x) = lim

h→0
f (x +h)− f (x)
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Hence
lim
h→0

f (x +h) = f (x)

Theorem 2.3.2. If f and g are differentiable at x then

( f + g )′(x) = f ′(x)+ g ′(x),

( f − g )′(x) = f ′(x)− g ′(x),

and for any constant c
(c f )′(x) = c f ′(x).

Proof. Let’s prove the derivative of sums is sum of derivatives. The others are similar.

( f + g )′(x) = lim
h→0

( f + g )(x +h)− ( f + g )(x)

h
= lim

h→0

f (x +h)+ g (x +h)− f (x)+ g (x)

h

= lim
h→0

f (x +h)− f (x)

h
+ lim

h→0

g (x +h)− g (x)

h
= f ′(x)+ g ′(x),

The sum rule extends to any number of functions.

( f1 +·· ·+ fn)′(x) = f ′
1(x)+·· ·+ f ′

n(x).

Example 2.3.1. Take the derivative of

f (x) = 5
p

x + 3

x
−19

It is NOT true that derivative of product of functions is a product of their derivatives. Usually ( f g )′(x) 6=
f (x)g (x).

Theorem 2.3.3. If f and g are differentiable at x then

( f g )′(x) = f ′(x)g (x)+ f (x)g ′(x).

Proof.

( f g )′(x) = lim
h→0

f (x +h)g (x +h)− f (x)g (x)

h
= lim

h→0

(
f (x +h)− f (x)

)
g (x +h)+ f (x)

(
g (x +h)− g (x)

)
h

= lim
h→0

f (x +h)− f (x)

h
lim
h→0

g (x +h)+ lim
h→0

f (x) lim
h→0

g (x +h)− g (x)

h

Example 2.3.2. Find the derivative of f (x) = (x2 +x +1)(2x + 1
x ).

The product rule can be extended to any number of functions

( f1 f2 f3)′ = f ′
1 f2 f3 + f1 f ′

2 f3 + f1 f2 f ′
3

( f1 · · · fn)′ = f ′
1 f2 · · · fn + f1 f ′

2 f3 · · · fn +·· ·+ f1 · · · fn−1 f ′
n .
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Theorem 2.3.4. If f is differentiable at x and f (x) 6= 0 then 1/ f is diff at x, and(
1

f

)′
(x) = − f ′(x)

f (x)2
.

Proof.

d

d x

1

f (x)
= lim

h→0

1

f (x +h)
− 1

f (x)

h
= lim

h→0

−1

f (x +h) f (x)
lim
h→0

f (x +h)− f (x)

h

The result follows by limit rules and continuity of f .

Example 2.3.3. Differentiate y = x5

x2/3 +1
.

Theorem 2.3.5. If f and g are differentiable at x and g (x) 6= 0 then(
f

g

)′
(x) = f ′(x)g (x)− f (x)g ′(x)

g 2(x)

Proof. Using the product rule and reciprocal rule,(
f

g

)′
(x) =

(
1

g
(x) f (x)

)′
= f ′(x)g (x)− f (x)g ′(x)

g 2(x)

Example 2.3.4. Find the derivative of f (x) = a +bx

m + cx
.

Example 2.3.5. Find an equation of the tangent line to y = 2

3−4
p

x
at the point (1,−2).

Solution. Let us define g (x) = 3−4
p

x. Then g ′(x) =−4 1
2
p

x
=− 2p

x
and

y ′ = 2
−g ′(x)

g (x)2
= 2

2p
x

(3−4
p

x)2
= 4p

x(3−4
p

x)2

Hence y ′(1) = 4. And the equation of the tangent line is y = 4(x −1)−2.

Example 2.3.6. Find the x-coordinates of points on the curve y = x+1
x+2 where the tangent line is parallel to the

line y = 4x.

Solution. Solving y ′ = 4, we find x =−3/2 and x =−5/2.

Example 2.3.7. If f (2) = 2 and f ′(2) = 3, calculate

d

d x

(
x2

f (x)

)∣∣∣∣
x=2

Solution. Answer is
2 ·2 f (2)−22 f ′(2)

f (2)2
= 8−12

4
=−1.
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2.4 Chain Rule

The following theorem is known as the chain rule.

Theorem 2.4.1. If f (u) is differentiable at u = g (x) and g (x) is differentiable at x, then

( f ◦ g )′(x) = f ′(g (x))g ′(x)

Proof. The proof in the case g (x) 6= g (a) for x sufficiently close to a.

( f ◦ g )′(a) = lim
x→a

f (g (x))− f (g (a))

x −a
= lim

x→a

f (g (x))− f (g (a))

g (x)− g (a)
· g (x)− g (a)

x −a
= f ′(g (a))g ′(a)

If there is always an x 6= a, x near a such that g (x) = g (a) then the above proof fails due to division by zero.
You can find the proof in this case in Wikipedia.

In Leibniz notation, if y = f (u) where u = g (x) then

y = f (g (x)) = ( f ◦ g )(x)

d y

d x
= d y

du

du

d x

where d y
du is evaluated at u = g (x).

Example 2.4.1. Find the derivative of y =
p

x2 +1.

Solution. Here y = f (g (x)) where f (u) =p
u and u = x2 +1.

d y

d x
= f ′(g (x))g ′(x) = 1

2
√

g (x)
g ′(x) = 1

2
p

x2 +1
2x = xp

x2 +1
.

Example 2.4.2. Differentiate y = (x3 −1)1000.

Solution. Let u = (x3 −1) then y = u1000. y ′ = 1000u999u′ = 1000(x3 −1)9993x2.

Example 2.4.3.
d

d x
|x| = d

d x

√
x2 = 1

2
p

x2
2x = xp

x2
= x

|x| , x 6= 0

This function is called sign function or signum function.

sgn(x) = x

|x| =
{

1, x > 0

−1, x < 0
.

Example 2.4.4. Express in terms of f and f ′.

a) d
d x f (x2),

b) d
d x ( f (π−2 f (x)))4.
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Solution. For (a)
d

d x
f (x2) = f ′(x2)2x

For (b)
d

d x
[ f (π−2 f (x))]4 = 4[ f (π−2 f (x))]3 f ′(π−2 f (x))(−2 f ′(x)).

Example 2.4.5. For

f (x) =
(
1+p

2x +1
)−4/3

evaluate f ′(0).

Solution.

f ′(x) = −4

3
(1+p

2x +1)−7/3 d

d x

p
2x +1 = −4

3
(1+p

2x +1)−7/3 1

2
p

2x +1

d

d x
(2x +1)

= −4

3
(1+p

2x +1)−7/3 1

2
p

2x +1
2

Hence

f ′(0) =− 1

21/33
.

Example 2.4.6. Find an equation of the tangent line to the graph of

y = (1+x2/3)3/2

at x =−1.

Solution.

y ′ = 3

2
(1+x2/3)1/2 2

3
x−1/3.

y ′(−1) = 3

2
(1+1)1/2 2

3
(−1) =−p2.

2.5 Derivatives of Trigonometric Functions

The radian measure of an angle is defined to be the length of the arc of a unit circle corresponding to that
angle.

angle in degrees = angle in radians · 180◦

π
.

In calculus all angles are measured in radians. By an angle of π/3 we mean π/3 radians or 60◦ not
(π/3)◦ ≈ 1.04◦.

Theorem 2.5.1. limθ→0
sinθ

θ
= 1.
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Proof.

Suppose 0 < θ < π
2 .

Area of OQP triangle is 1
2 sinθcosθ.

Area of OAP arc is θ
2ππ12.

Area of OAT triangle is 1
2 tanθ = sinθ

2cosθ .

1

2
sinθcosθ ≤ θ

2
≤ sinθ

2cosθ

Multiply by 2
sinθ > 0

cosθ ≤ θ

sinθ
≤ 1

cosθ

Take reciprocal to get

cosθ ≤ sinθ

θ
≤ 1

cosθ
, (2.1)

for 0 < θ < π
2 .

Use the squeeze theorem to show that

lim
θ→0+

sinθ

θ
= 1

Similarly, we can show that (2.1) holds for −π
2 < θ < 0

and hence

lim
θ→0−

sinθ

θ
= 1

O
A

P = (cosθ, sinθ)

Q

T = (1, tanθ)

θ

θ

1

Example 2.5.1. Show that limh→0
cosh−1

h = 0.

Solution.

lim
h→0

cosh −1

h
= lim

h→0

(cosh −1)(cosh +1)

h(cosh +1)
= lim

h→0

cos2 h −1

h(cosh +1)

= lim
h→0

−sin2 h

h(cosh +1)
=− lim

h→0

sinh

h

sinh

cosh +1
=−1 ·0 = 0

Example 2.5.2. Find the limit of

• limx→0
sin x

sin2x

• limx→0
x sin x

2−2cos x

• limx→0
1−cos x

x2

• limx→0
tan2x

x
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Theorem 2.5.2. sin x is differentiable for every x and

d

d x
sin x = cos x

Proof.

d

d x
sin x = lim

h→0

sin(x +h)− sin x

h
= lim

h→0

sin x cosh +cos x sinh − sin x

h

= lim
h→0

sin x(cosh −1)

h
+ lim

h→0

cos x sinh

h
= sin x lim

h→0

(cosh −1)

h
+cos x lim

h→0

sinh

h
= cos x

Theorem 2.5.3. cos x is differentiable for every x and

d

d x
cos x =−sin x.

Proof.
d

d x
cos x = d

d x
sin

(π
2
−x

)
=−cos

(π
2
−x

)
=−sin x.

Example 2.5.3. Evaluate the derivative of

a) sin(πx)+cos(3x),

b) x2 cos(
p

x),

c)
cos x

1− sin x

The derivatives of the other trigonometric functions

tan x = sin x

cos x
, sec x = 1

cos x
, cot x = cos x

sin x
, csc x = 1

sin x
.

Since cos and sin are eveywhere differentiable, the above functions are differentiable everywhere except
where their denominators are zero. The derivatives of these functions can be derived by using quotient and
reciprocal rules.

d

d x
tan x = sec2 x,

d

d x
sec x = sec x tan x,

d

d x
cot x =−csc2 x,

d

d x
csc =−csc x cot x.

Example 2.5.4. Verify the derivative formulas for tan x and sec x.

Example 2.5.5. Find the derivative of y = sin(cos(tan t )).

Example 2.5.6. Find the points on the curve y = tan(2x), −π/4 < x <π/4, where the normal is parallel to the
line y =−x/8.
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Exercises

1. lim
x→∞

sin x

x
. (Hint: Use Sandwich Theorem)

2. lim
t→∞

2− t + sin t

t +cos t
(Hint: Divide both sides by t and use the previous exercise)

2.6 Higher Order Derivatives

Derivative of derivative is called second derivative. If y = f (x) then

y ′′ = f ′′(x) = d

d x

d

d x
y = d 2

d x2
y = d 2

d x2
f (x).

Similar notations can be used for third, fourth, etc. derivatives. For n-th derivative, we write

y (n) = f (n)(x) = d n y

d xn

Example 2.6.1. Calculate all the derivatives of y = x3.

Example 2.6.2. Calculate all the derivatives of y = xn where n is a positive integer.

Solution.

y (k) =
{

n!
(n−k)! x

n−k if 0 ≤ k ≤ n

0 if k > n

Example 2.6.3. Show that if A, B and k are constants, then the function y = A cos(kt )+B sin(kt ) is a solution
of the second order differential equation

d 2 y

d x2
+k2 y = 0.

Example 2.6.4. If y = tankx show that y ′′ = 2k2 y(1+ y2).

Example 2.6.5. If f and g are twice differentiable functions, show that

( f g )′′ = f ′′g +2 f ′g ′+ f g ′′.

What do you think about the general formula for d n

d xn ( f g )?

2.7 Mean Value Theorem

The Mean Value Theorem is the midwife of calculus - not very important or glamorous by
itself, but often helping to deliver other theorems that are of major significance.
– E. Purcell and D. Varberg

Suppose you drive in 2 hours from city A to city B which are 200km apart. That means your average
speed was 100km/h. Even if you did not travel constant speed, there was at least one instant where your
speed was exactly 100km/h. This is called mean value theorem.
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Theorem 2.7.1 (The Mean-Value Theorem). Suppose
that f is continuous on the interval [a,b] and that it
is differentiable on the open interval (a,b). Then there
exists a point c in the open interval (a,b) s.t.

f (b)− f (a)

b −a
= f ′(c).

a bc

Figure 2.1: Mean Value Theorem says that the slope of
the secant line joining two points on the graph of of
f (x) is equal to the slope of the tangent line at some
point x = c between a and b.

Let f (t ) denote the distance from city A. Then f (0) = 0 and f (2) = 200. Mean Value Theorem says there
is a time t = c s.t. f ′(c) = 100.

Example 2.7.1. Let f (x) = |x| on [−1,1]. Show that there is no c ∈ [−1,1] satisfying the conclusion of the Mean
Value Theorem. Why?

The Mean Value Theorem is an existence theorem like Intermediate Value Theorem. In particular

• We don’t know how to find c.

• We don’t know how many different c can be found satisfying Mean Value Theorem (there is at least
one).

a bc0 c1

Figure 2.2: There may be more than one c satisfying the conclusion of the Mean Value Theorem.

Example 2.7.2. Show that sin x < x for all x > 0.

Solution. For x > 2π, we have sin x < 1 < 2π< x. Now assume 0 < x < 2π. By the Mean Value Theorem there
exists c, 0 < c < x such that

sin x − sin0

x −0
= cosc.

Hence sin x = x cosc. Since 0 < c < 2π, cosc < 1. Since also x > 0, we have x cosc < x. So sin x = x cosc < x.
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Example 2.7.3. Show that
p

1+x < 1+ x
2 for all x > 0.

Solution. Let f (x) =p
1+x. Then f ′(c) < 1

2 for c > 0. Use Mean Value Theorem.

Example 2.7.4. Determine all the numbers c which satisfy the conclusions of the Mean Value Theorem for

f (x) = x3 +2x2 −x, x ∈ [−1,2]

Solution. Solve

3c2 +4c −1 = f ′(c) = f (2)− f (−1)

2− (−1)
= 14−2

3
= 4

Solutions of 3c2 +4c −5 = 0 are

c± = −4±p
76

6
.

Notice that only −4+p76
6 lies in [−1,2].

Example 2.7.5. Suppose f is continuous and differentiable on [3,9]. Suppose f (3) = −4, and f ′(x) ≤ 10 for
all x. What is the largest value possible for f (9)?

Solution. By Mean Value Theorem, there exists c ∈ (3,9) such that

f (9)− f (3) = f ′(c)(9−3) ≤ 10×6 = 60.

So f (9) ≤ 60+ f (3) = 56.

Definition 2.7.1. Suppose f is defined on an interval I . If for all x1, x2 in I s.t. x2 > x1,

If Then on I , f is
f (x2) > f (x1) increasing
f (x2) < f (x1) decreasing
f (x2) ≥ f (x1) non-decreasing
f (x2) ≤ f (x1) non-increasing

Theorem 2.7.2. Suppose f is differentiable on an open interval I . If for all x ∈ I ,

If Then on I , f is
f ′(x) > 0 increasing
f ′(x) < 0 decreasing
f ′(x) ≥ 0 non-decreasing
f ′(x) ≤ 0 non-increasing

Proof. Let’s prove the first statement. Let x2 > x1 in I . By the Mean Value Theorem, there exists c, x1 < c < x2,
such that f (x2) − f (x1) = f ′(c)(x2 − x1). Since f ′(c) > 0 and x2 − x1 > 0, we have f (x2) > f(x1). So f is
increasing.

Example 2.7.6. On what intervals is f (x) = x3 −12x +1 increasing or decreasing?
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Solution.

f ′(x) = 3(x−2)(x+2). So f is decreasing on (−2,2) and
increasing otherwise.

−4 −2 2 4

−10

10

x

y

f (x) = x3 −12x +1

We know that if f is a constant function then its derivative is zero. The converse is also true.

Theorem 2.7.3. If f ′(x) = 0 on an interval I then f (x) is constant on I .

Proof. Choose x0 in I . Let C = f (x0). If x is any other point in I then by Mean Value Theorem, f (x)− f (x0) =
f ′(c)(x −x0) = 0.

Challenge Problem. Suppose that f , g : R → R are differentiable functions such that the limits L =
limx→−∞ f (x) and M = limx→−∞ g (x) exist and L ≤ M . Is it possible that f (1) = 4, and g (1) = 2? Hint:
Consider h(x) = g (x)− f (x) and use MVT.

2.8 Implicit Differentiation

We learned to find the slope of a curve that is the graph of a function. But not all curves are graphs of
functions, for example the circle x2 + y2 = 1.

Curves are graphs of equations in two variables

F (x, y) = 0.

For the circle F (x, y) = x2 + y2 −1.

Example 2.8.1. Find the slope of the circle x2 + y2 = 25 at the point (3,−4).

Solution. 1st method. Solve the equation x2 + y2 = 1 for y. There are two solutions y1,2 = ±
p

25−x2. The
point lies on the graph of y2. Take derivative of y2.

2nd method. To differentiate with respect to x treat y as a function of x and use Chain Rule.

d

d x

(
x2 + y(x)2)= d

d x
0 = 0.

This gives

2x +2y(x)
d y(x)

d x
= 0

or
d y

d x
=−2x

2y

Plug in x = 3, y =−4 to find d y
d x = 3/4.

This second method is known as the implicit differentiation.

Example 2.8.2. Find an equation of the tangent line to the curve x sin(x y − y2) = 0 at (1,1)

Example 2.8.3. Find y ′′ in terms of x and y if x y + y2 = 2x.
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The General Power Rule for Derivative

So far, we proved the following rule
d xr

d x
= r xr−1

for integer exponents r and a few special exponents such as r = 1/2. Using the implicit differentiation, we
can give a proof for any rational exponent r = m/n where n 6= 0.

If y = xm/n then yn = xm . Differentiating implicitly

nyn−1 d y

d x
= d yn

d x
= d xm

d x
= mxm−1

Hence
d y

d x
= m

n
xm−1 y1−n = r xm−1x(1−n)m/n = r xm−1+r−m = r xr .

2.9 Exam 1 Review

Section Exercises
1.2 7-36, 37-42, 43-46, 49-60, 74, 75
1.3 1-10, 11-34
1.4 17, 18, 29, 31
1.5 7-10
2.1 1-12, 13-17, 18-24
2.2 11-24 (ignore differentials), 30-33, 34-39, 40-49
2.3 1-50
2.4 1-16, 30-34, 36-39
2.5 1-36, 39-42, 45-46
2.6 1-12
2.8 1-3, 5-7, 8-15
2.9 1-8, 9-16

Table 2.1: Exam 1 Review Problems from Adams & Essex Calculus: A Complete Course 7th Edition

Sample Exam 1

1. Find the following limits if they exist.

a)

lim
x→∞

(
x2

x +1
− x2

x −1

)
b)

lim
x→0

x

|x −1|− |x +1|
c)

lim
x→−∞

(
x +

√
x2 −4x +1

)
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2. Show that f (x) = x3 +x −1 has a zero between x = 0 and x = 1.

3. Find the slope of the tangent line to the curve

tan(x y2) = 2x y

π

at the point (−π,1/2).

4. Calculate the derivatives.

a)

y = 1+p
x

x4 +1

b)
y = (

sin(
p

x)+1
)3 +7x cos x

5. Is the function y = |x −2| differentiable at x = 2? Show your work using the limit definition of the
derivative.



Chapter 3

Transcendental Functions

3.1 Inverse Functions

Definition 3.1.1. f is called one-to-one if f (x1) 6= f (x2) whenever x1 6= x2 or equivalently

f (x1) = f (x2) =⇒ x1 = x2

D R

Figure 3.1: A function which is not 1-1.

Horizontal Line Test. Let f : R→ R. By definition of a function any vertical line intersects the graph at
one point. f is 1-1 if its graph is never intersected by any horizontal line more than once.

Theorem 3.1.1. Increasing or decreasing functions are 1-1. Thus if f ′(x) > 0 for all x in an interval I , then f
is 1−1 on I . Similarly if f ′(x) < 0 for all x in I then f is 1−1 on I .

Definition 3.1.2. If f is one-to-one then it has an inverse function f −1 defined as follows: If x is in the range
of f then it is in the domain of f −1 and

f −1(x) = y ⇐⇒ x = f (y).

If f is not 1-1 then it is not invertible.
Given y = f (x), to find the inverse function, we solve x in terms of y .

Example 3.1.1. Show that f (x) = 2x −1 is one-to-one and find its inverse f −1(x).

Solution. Since f ′(x) = 2 > 0, f is increasing on R and therefore one-to-one for all x. Solve y = f (x) = 2x −1
for x, to get

x = y +1

2

37



38 CHAPTER 3. TRANSCENDENTAL FUNCTIONS

Then x = f −1(y) = y+1
2 or

f −1(x) = x +1

2
.

Usually, we can not solve y = f (x) for x. For example y = x + x3 is 1-1 (check) but it is not possible solve
it for x.

Properties of inverse functions

1. The domain of f −1 is the range of f .

2. The range of f −1 is the domain of f .

3. f ( f −1(x)) = x for all x in the domain of f −1.

Proof. If f −1(x) = y then x = f (y) and f ( f −1(x)) = f (y) = x.

4. f −1( f (x)) = x for all x in the domain of f .

5. ( f −1)−1(x) = f (x) for all x in the domain of f . (The inverse of inverse of f is f .)

Proof.

( f −1)−1(x) = y ⇐⇒ f −1(y) = x ⇐⇒ y = f (x).

6. The graph of f −1 is the reflection of the graph of f in the line x = y . (Because if (a,b) is a point on the
graph of y = f (x) then (b, a) is a point on the graph of y = f −1(x)).

y = f (x)

y = x

y = f −1(x)(a,b)

(b, a)

Figure 3.2: The graph of the inverse function is a reflection along y = x.
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Inverting Non One-to-one Functions by Restricting the Domain of Definition

The function f (x) = x2 defined on all real numbers is
not one-to-one because (−a)2 = a2 for any a. Hence
f is not invertible.
In fact f is not invertible on any interval around x = 0.
Notice that f ′(0) = 0.
Let us define a new function F by restricting the do-
main of f ,

F (x) = x2, x ≥ 0.

Then F−1(x) =p
x.

y = x2

y =p
x

y = x

Figure 3.3: The restriction of x2 to [0,∞) and its in-
verse.

Conversely, since the range of the 1-1 function
p

x is [0,∞), the domain of its inverse g (x) = x2 is x ≥ 0.

Derivatives of Inverse Functions

Let y = f −1(x). Then f (y) = x. Considering y as a function of x and using implicit differentiation,

d

d x
f (y) = d

d x
x =⇒ f ′(y)

d y

d x
= 1 =⇒ d y

d x
= 1

f ′(y)

In short if y = f −1(x) then

( f −1)′(x) = 1

f ′(y)
= 1

f ′( f −1(x))

This formula says if f ′(y) 6= 0 then f −1 is differentiable at x.

y = f (x) y = x

y = f −1(x)(a,b)

(b, a)

In Leibniz notation, d y
d x = ( f −1)′(x) while d x

d y = f ′(y), the above formula reads

d y

d x

d x

d y
= 1.

For example, if y = x2, x ≥ 0, then x =p
y and d y

d x = 2x and d x
d y = 1

2
p

y . So

d y

d x

d x

d y
= 2x

1

2
p

y
= 2x

1

2x
= 1.

Example 3.1.2. Show that f (x) = x3+x is one-to-one on the whole real line and find ( f −1)′(10). Hint: 23+2 =
10.
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Solution. First f ′(x) = 3x2 +1 > 0. Hence f is 1-1. Let y = f −1(x). Then f (y) = x, that is

y3 + y = x

Take d
d x of both sides to get

3y2 y ′+ y ′ = 1 =⇒ y ′ = ( f −1)′(x) = 1

3y2 +1

Now if y = f −1(10) then y3 + y = 10 and y = 2. So ( f −1)′(10) = 1
13 .

Example 3.1.3. If f (x) = 3x +x3, show that f has an inverse and find the slope of y = f −1(x) at x = 0.

3.2 Exponential and Logarithmic Functions

An exponential function is a function of the form f (x) = ax where the base a is a positive constant and the
exponent x is the variable. Let’s define this function.

• a0 = 1.

• an = a ·a · · ·a (n -times) if n = 1,2,3, . . . .

• a−n = 1
an if n = 1,2,3, . . . .

• am/n = n
p

am if n = 1,2, . . . and m =±1,±2, . . . .

How should we define ax if x is not rational? What does 2π mean? We will define ax for irrational x in
the next section. For now, let us regard ax as a limit as discussed in the next problem.

Example 3.2.1. Since the irrational number π= 3.141592. . . is the limit of the sequence of rational numbers

r1 = 3 r2 = 3.1 r3 = 3.14 . . .

we can calculate 2π as the limit of the sequence

23 = 8 23.1 = 8.5741877. . . 23.14 = 8.8152409. . .

This gives
2π = lim

n→∞2rn = 8.824977. . .

If x is irrational, then we define ax as the limit values ar for rational numbers r approaching x

ax = lim
r→x

r is rational

ar .

Laws of Exponents
If a > 0 and b > 0 and x, y are real numbers then

1. a0 = 1,

2. ax+y = ax ay ,

3. a−x = 1

ax
,
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4. ax−y = ax

ay
, 5. (ax)y = ax y ,

6. (ab)x = axbx .

If a > 1 then
lim

x→∞ax =∞, lim
x→−∞ax = 0.

If 0 < a < 1 then
lim

x→∞ax = 0, lim
x→−∞ax =∞.

The domain of ax is (−∞,∞) and its range is (0,∞).

y = 2xy = 3x

y = 1x

y = (1/2)x
x

y

Logarithm

If a > 0 and a 6= 1 then the function ax is 1-1 (1x has no inverse). The inverse function of ax is loga x, called
the logarithm of x base a.

y = loga x ⇐⇒ x = ay

Since ax has domain (−∞,∞), and range (0,∞), loga x has domain (0,∞) and range (−∞,∞).
Since ax and loga x are inverse functions

loga ax = x ∀x, aloga x = x, x > 0

y = ax

y = x

y = loga x

x

y

Figure 3.4: The graph of logarithmic function is a reflection of the graph of the exponential function in the
line y = x.

Laws of Logarithm If x > 0, y > 0, a > 0, b > 0, a 6= 1, b 6= 1, then
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1. loga 1 = 0

2. loga(x y) = loga x + loga y

3. loga(
1

x
) =− loga x

4. loga(
x

y
) = loga x − loga y

5. loga x y = y loga x

6. loga x = logb x

logb a

Example 3.2.2. Prove loga(x y) = loga x + loga y using laws of exponent.

Solution. Take u = loga x, v = loga y then x = au , y = av and

x y = au+v ⇐⇒ u + v = log(x y)

Example 3.2.3. Simplify

1. log2 10+ log2 12− log2 15.

log2 10+ log2 12− log2 15 = log2
10×12

15
= log2 8 = 3

2. loga2 a3.

loga2 a3 = loga a3

loga a2
= 3

2

3. 3log9 4.
3log9 4 = 3

1
2 log3 4 = 3log3 2 = 2

Example 3.2.4. Solve
3x−1 = 2x ,

in terms of a = log2 and b = log3.

Solution. Take logarithm base 3 of both sides.

(x −1)log3 3 = x log3 2 ⇐⇒ x −1 = x log3 2 ⇐⇒ x = 1

1− log3 2
= 1

1−a/b

Numerically x ≈ 2.70951.

3.3 The Natural Logarithm and Exponential

f (x) f ′(x)

x3/3 x2

x2/2 x
x 1
x0 0

−x−1 x−2

−x−2/2 x−3

Table 3.1: What is the mysterious function whose derivative is x−1?
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Definition 3.3.1. For x > 0, let Ax be the area bounded by the curve y = 1/t , the t-axis and the vertical lines
t = 1 and t = x. The natural logarithm function is defined by

ln x =
{

Ax x ≥ 1

−Ax 0 < x < 1

1 x

y = 1/t

t

y

• Domain of ln x is (0,∞),

• ln1 = 0,

• ln x > 0 if x > 1,

• ln x < 0 if 0 < x < 1,

Theorem 3.3.1. If x > 0 then
d

d x
ln x = 1

x

Proof.

For h > 0, ln(x +h)− ln x is the area under
1/t between t = x and t = x +h. Thus

h

x +h
< ln(x +h)− ln x < h

x

Thus

1

x +h
< ln(x +h)− ln x

h
< 1

x

Now use Squeeze Theorem to get

lim
h→0+

ln(x +h)− ln x

h
= 1

x

Similar argument holds for h < 0.

x x +h

1
x+h

1
x

y = 1/t

t

y

Theorem 3.3.2. If x 6= 0 then
d

d x
ln |x| = 1

x
,
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and ∫
1

x
d x = ln |x|+C .

Proof. If x < 0, then by Chain Rule,

d

d x
ln |x| = d

d x
ln(−x) = 1

−x
(−1) = 1

x
.

This also shows that ln x is an increasing function for all x > 0.

Example 3.3.1. Find the derivatives of

1. y = ln |cos x|
2. y = ln(x +

p
x2 +1)

Solution. For (1),

y ′ = 1

cos x
(−sin x) =− tan x.

For (2),

y ′ = 1p
x2 +1

.

The natural logarithm function ln x satisfies all the rules that the regular logarithms satisfy, that’s why
we call it natural log after all!

Theorem 3.3.3. 1. ln(x y) = ln x + ln y.

2. ln(1/x) =− ln x.

3. ln(x/y) = ln x − ln y.

4. ln xr = r ln x.

Proof. For (i), if y is constant, then for all x > 0

d

d x
(ln(x y)− ln x) = y

x y
− 1

x
= 0

Thus for each y > 0, ln(x y)− ln x = C (a constant depending on y) for x > 0. Setting x = 1 we get C = ln y .
The others can be done similarly (homework).

Also note that
ln2n = n ln2 →∞ as n →∞.

ln2−n =−n ln2 →−∞ as n →∞.

This, combined with ln x is increasing shows that

lim
x→∞ ln x =∞, lim

x→0+ ln x =−∞.

Thus domain of ln x is (0,∞) and the range of ln x is (−∞,∞).
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The Exponential Function

Let f (x) = ln x. Since f ′(x) = 1/x > 0 =⇒ f is increasing =⇒ f is 1-1 =⇒ f has an inverse. Call its inverse
exp x. Thus

exp x = y ⇐⇒ x = ln y

• exp0 = 1 (since ln1 = 0),

• Domain of exp is (−∞,∞) (since range of ln is (−∞,∞)),

• Range of exp = Domain of ln = (0,∞),

• Cancellation identities

expln x = x, x > 0

lnexp x = x, −∞< x <∞.

Definition 3.3.2. e = exp(1) ≈ 2.718. . . .

Thus lne = 1. Hence e is the number for which the area bounded by y = 1/x, the x-axis and the lines
x = 1, x = e is 1.

ex = exp(ln(ex)) = exp(x lne) = exp(x).

Since exp is actually an exponential function, its inverse must be a logarithm

ln x = loge x

The derivative of y = ex is calculated by implicit differentiation:

y = ex ⇐⇒ x = ln y ⇐⇒ 1 = y ′

y
⇐⇒ y ′ = y = ex

This is a remarkable property:
d

d x
ex = ex ,

∫
exd x = ex +C

Example 3.3.2. Find the derivatives of

1. ex2−3x ,

2.
p

1+e2x

General Exponentials and Logaritms

Definition 3.3.3. If a > 0 then for all real x, we define

ax = ex ln a

This coincides with our previous definition that ax is the limit of arn where rn are rational numbers
tending to x.
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Example 3.3.3. 2π = eπ ln2 ≈ 8.825.

Derivative of y = ax .
d

d x
ax = d

d x
ex ln a = ex ln a ln a = ax ln a.

Example 3.3.4. Show that the graph of f (x) = xπ−πx has negative slope at x =π.

Solution. f ′(π) =ππ(1− lnπ). Note that lnπ> lne = 1

Definition 3.3.4. Let y = ax . Then d y
d x = ax ln a which is negative if 0 < a < 1 and positive if a > 1. Thus ax is

1-1 and has an inverse function. We define its inverse as loga x.

Derivative of y = loga x.
d

d x
loga x = d

d x

ln x

ln a
= 1

x ln a
.

Logarithmic Differentiation

Example 3.3.5. Let y = xx , x > 0. Find y ′.

Solution. Neither the power rule d/d x(xa) = axa−1 nor the exponential rule d/d x(ax) = ln aax works.

ln y = x ln x =⇒ y ′

y
= 1ln x +x

1

x
=⇒ y ′ = xx(ln x +1)

This technique is called logarithmic differentiation and is used to differentiate functions of the form
y = ( f (x))g (x) ( f (x) > 0).

Example 3.3.6. Find d y/d t if y = (sin t )ln t where 0 < t <π.

Solution.

y ′ = (sin t )ln t
(

lnsin t

t
+ ln t cot t

)
.

Example 3.3.7. If y = (x +1)(x +2)(x +3)p
x +4

, find y ′.

Solution. Since (x+1) is not necessarily positive, ln(x+1) may or may not be defined. So we take the absolute
value and then logarithm.

ln
∣∣y

∣∣= ln |x +1|+ ln |x +2|+ ln |x +3|− 1

2
ln |x +4|

y ′

y
= 1

x +1
+·· ·
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Hyperbolic Functions

The hyperbolic sine function sinh (pronounced ‘zinch’ (rhymes with ‘pinch’)) is

sinh x = ex −e−x

2
and the hyperbolic cosine function cosh (pronounced ‘kosh’ (rhymes with ‘gosh’)) is

cosh x = ex +e−x

2
One can also define tanh, coth, etc.
These functions have many remarkable properties some of which resemble trigonometric functions.

Show that
cosh0 = 1, sinh0 = 0

2sinh x cosh x = sinh2x
d sinh x

d x
= cosh x,

d cosh x

d x
= sinh x.

The reason these functions are called hyperbolic is

cosh2 x − sinh2 x = 1

So the parametric curve (cosh x, sinh x) defines the hyperbola x2 − y2 = 1.

3.4 The Inverse Trigonometric Functions

The six trigonometric functions are periodic and hence not 1-1. However we can restrict their domains in
such a way that the restricted functions are 1-1.

The arcsin x or arcsin x is the inverse of the sin x re-
stricted to [−π/2,π/2],

sin(arcsin y) = y, −1 ≤ y ≤ 1,

arcsin(sin x) = x, −π/2 ≤ x ≤π/2.

−1 1

−π/2

π/2

Figure 3.5: f (x) = arcsin x is a partial inverse of the
sine function.
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Example 3.4.1. Simplify

1. arcsin 1
2 = π

6 ,

2. arcsin −p2
2 =−π

4 ,

3. arcsin2 is undefined since 2 is not in the range of sine.

Example 3.4.2. Simplify

1. sin(arcsin0.7) = 0.7,

2. arcsin(sin3π/4) =π/4,

3. cos(arcsin0.6) = 0.8.

Solution. Let θ = arcsin0.6. By the Pythagorean Theorem, cosθ = 0.8.

4. Similarly cos(arcsin x) =
p

1−x2.

Theorem 3.4.1.
d

d x
arcsin x = 1p

1−x2
.

Proof. Let y = arcsin x so that x = sin y . Then

d y

d x
= 1

d x
d y

= 1

cos y
= 1p

1−x2
.

The Arctan Function

Define the y = arctan x to be the inverse of y = tan x on (−π/2,π/2).

tan(arctan x) = x, −∞< x <∞,

arctan(tan x) = x, −π/2 < x <π/2.

−π/2

π/2

Figure 3.6: f (x) = arctan x.
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Example 3.4.3. 1. tan(arctan3) = 3,

2. arctan(tan 3π
4 ) = arctan−1 =−π

4

3. cos(arctan x) = 1p
1+x2

Theorem 3.4.2. d arctan(x)
d x = 1

1+x2

Proof. Let y = arctan x so that x = tan y ,

d arctan(x)

d x
= 1

d x
d y

= 1

sec2 y
= 1

1+ tan2 y
= 1

1+x2
.

Example 3.4.4. Find the slope of the curve arctan
(

2x
y

)
= πx

y2 at the point (1,2).

Solution. Taking d
d x of both sides

1

1+
(

2x
y

)2 2

(
y −x y ′

y2

)
=π

(
y2 −2x y y ′

y4

)

Plugging x = 1, y = 2,

2− y ′ =π(1− y ′) =⇒ y ′ = π−2

π−1
.

Other inverse trigonometric functions

cos x is 1-1 on [0,π] so we define y = arccos x as the inverse of y = cos x restricted to [0,π].

y = arccos x ⇐⇒ x = cos y 0 ≤ y ≤π.

Theorem 3.4.3.
d

d x
arccos x =− 1p

1−x2

For the derivative,
d y

d x
= 1

d x
d y

= 1

−sin y
=− 1p

1−x2

Note that
d

d x
arccos x =− d

d x
arcsin x

The inverse and the derivative of other trigonometric functions can be defined similarly.

Quiz Problems

Example 3.4.5. Simplify

1. cos(arctan 1
2 ) = 2p

5

2. tan(arccos x) =
p

1−x2

x

Example 3.4.6. Show that d
d x (arcsin x2)1/2 = xp

1−x4
p

arcsin x2
.





Chapter 4

Applications of Derivatives

4.1 Related Rates

Example 4.1.1. How fast is the area of a rectangle changing if one side is 10cm long and is increasing at a rate
of 2cm/s and the other side is 8cm long and is decreasing at a rate of 3cm/s?

Solution. The area A, and the lengths of sides x and y are functions of time t . Also A = x y. We are given
d x
d t = 2, d y

d t =−3 when x = 10, y = 8.
Then

d A

d t
= d x

d t
y +x

d y

d t

gives d A
d t =−14.

In the previous problem, notice that the average changes

A(1)− A(0)

1−0
= 12 ·5−10 ·8 =−20,

A(.5)− A(0)

.5−0
= 2(11 ·6.5−10 ·8) =−17

A(.1)− A(0)

.1−0
= 10(10.2 ·7.7−10 ·8) =−14.6

converge to the instantaneous rate we found.
This is possible because A′(t ) = −14−6t . Hence A changes in a non-constant fashion event though x

and y changes constantly. What we are computing in this problem is A′(0) = −14. And this result holds

even if d x
d t and d y

d t are not constant. (maybe velocity of x is not constant and it accelerates according to
x(t ) = 10+2t + t 2)

Example 4.1.2. How fast is the surface area of a ball changing when the volume of the ball is 32π/3 cm3

and is increasing at 2cm3/s? (The surface are of the ball is A = 4πr 2 and the volume is V = 4
3πr 3. Note that

V (r ) = ∫ r
0 A(r )dr )

Solution. When V = 32π/3, r = 2, dV
d t = 2

dV

d t
= 4πr 2 dr

d t

51
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gives dr
d t = 1

8π .
Now

d A

d t
= 8πr

dr

d t
= 2

Example 4.1.3. A point is moving to the right along the first quadrant portion of the curve x2 y3 = 72. When
the point has coordinates (3,2), its horizontal velocity is 2 units/s. What is its vertical velocity?

Solution. Taking d/d t of both sides

2x
d x

d t
y3 +x23y2 d y

d t
= 0

At x = 3, y = 2, d x
d t = 2,

d y

d t
=−8

3
.

Exercises.

1. Find the rate of change of the area of a square
whose side is 6 cm long, if the side length is in-
creasing at 2 cm/min.

2. Air is being pumped into a spherical balloon.
The volume of the balloon is increasing at a rate

of 20 cm3/s when the radius is 30 cm. How fast
is the radius increasing at that time? (The vol-
ume of a ball of radius r is V = 4

3πr 3.)

3. The area of a circle is decreasing at a rate of 2
cm2/min. How fast is the radius of the circle
changing when the area is 100 cm2?

Answer:

4.2 Indeterminate Forms

To evaluate the limit limx→0
sin x

x we can not plug in x = 0. We call sin x/x an indeterminate form of [0/0] at
x = 0.

The limit of an indeterminate form [0/0] can be any number.

lim
x→0

x

x
= 1, lim

x→0

x

x3
=∞, lim

x→0

x3

x2
= 0.

There are other types of indeterminate forms [∞/∞], [0 ·∞], [∞−∞], [0∞], [∞0], [1∞].

Theorem 4.2.1 (l’Hopital’s Rules). Let f and g are differentiable on an interval containing a. Suppose that

limx→a f (x) and limx→a g (x) are either both 0 or both ±∞. If limx→a
f ′(x)
g ′(x) exists then

lim
x→a

f (x)

g (x)
= lim

x→a

f ′(x)

g ′(x)
.

The results hold true if limx→a is replaced by limx→a+ and limx→a− or if a =±∞.
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Proof. Proof follows from generalized mean value theorem which we did not cover.
Let’s give a proof for the following special case. Suppose f (a) = g (a) = 0, g ′(a) 6= 0 and f , g have contin-

uous derivatives at x = a. Then

lim
x→a

f (x)

g (x)
= limx→a

f (x)− f (a)
x−a

limx→a
g (x)−g (a)

x−a

= f ′(a)

g ′(a)
= lim

x→a

f ′(x)

g ′(x)

Note that in applying l’Hopital’s rule we calculate the quotient of the derivatives,
not the derivative of the quotients.

Example 4.2.1. Evaluate

lim
x→1

ln x

x2 −1

Solution.

lim
x→1

ln x

x2 −1

[
0

0

]

lim
x→1

ln x

x2 −1
= lim

x→1

1
x

2x
= lim

x→1

1

2x2
= 1

2
.

If one application of the l’Hopital’s rule again gives an indeterminate form, we can apply it again.

Example 4.2.2. Evaluate

lim
x→0

2sin x − sin(2x)

2ex −2−2x −x2

Solution. Applying l’Hopital’s rule three times we get the answer 3.

Example 4.2.3.

lim
x→1+

x

ln x

Solution. If you apply the l’Hopital’s rule, you get the wrong answer of 1. This is not an indeterminate form,
and you can’t use l’Hopital’s rule. The real answer is ∞.

Example 4.2.4.

lim
x→0+

1

x
− 1

sin x

Solution. This is an indeterminate form of type [∞−∞] which can be brought to the form [0/0].

lim
x→0+

1

x
− 1

sin x
= lim

x→0+
sin x −x

x sin x
= lim

x→0+
cos x −1

sin x +x cos x
= lim

x→0+
−sin x

cos x +cos x −x sin x
= 0

−2
= 0.

where we use l’Hopital’s rule twice.

To deal with indeterminate forms of types [00], [∞0] and [1∞], we take logarithms.

Example 4.2.5.
lim

x→0+xx .
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Solution. This is of the form [00]. Let y = xx . Then

lim
x→0+ ln y = lim

x→0+x ln x = lim
x→0+

ln x

1/x
= lim

x→0+
1/x

−1/x2
= 0

Since ln is a continuous function
ln lim

x→0+ ln y = lim
x→0+ ln y = 0,

lim
x→0+xx = e0 = 1.

Example 4.2.6. Evaluate

lim
x→∞

(
1+ sin

3

x

)x

Solution. This is of the form [1∞]. Again first evaluate the limit of the logarithm. y = (
1+ sin 3

x

)x
.

lim
x→∞ ln y = lim

x→∞
ln

(
1+ sin 3

x

)
1/x

= 3

Hence

lim
x→∞

(
1+ sin

3

x

)x

= e3.

Exercises.

1. limx→∞ x2

ex .

Answer: 0

2. limx→0
x − sin x

x3

Answer: 1/6

3. limx→0
x − sin x

x − tan x

Answer: −1
2

4. limx→0+ x
p

x

Answer: 1

5. limx→1
ln(ex)−1

sinπx

Answer: − 1
π

6. limx→0+ csc x
ln x

Answer: ∞

7. limx→0 (1+ tan x)1/x

Answer: 1

4.3 Extreme Values

A function has an absolute maximum value f (x0) if f (x) < f (x0) holds for every x in its domain.
Similarly, define absolute minimum value.
If it has an absolute min/max, then that value may be achieved at more than one point. For example the

function cos x attains its absolute max at x = 2nπ for any integer n.
A function may or may not have an absolute min/max value. For example the function f (x) = x, 0 < x < 1

does not have an absolute maximum or minimum.
Recall from the section on continuous functions that,
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A continuous function defined on a closed and bounded interval must have an absolute
maximum and an absolute minimum.

Maximum and minimum values of a function are collectively referred to as extreme values.
Function f has a local maximum value f (x0) if there exists h > 0 such that f (x) ≤ f (x0) whenever x is

in the domain of f and |x −x0| < h.
Similarly we define local minimum.
We define critical points of f where f ′(x) = 0, singular points of f where x is in domain of f and f ′(x)

does not exist.
Following theorem says where the extreme values are located.

Theorem 4.3.1. If the function f is defined on an interval I and has a local max or local min at x = x0 then
x0 must be either a critical point, a singular point or an endpoint of the interval.

Proof. If f (x0) is a local extrema and x0 is not an endpoint or singular point, then f ′(x0) = 0. Otherwise,
either f ′(x0) > 0 which means f is increasing at x0 or f ′(x0) < 0 which means f is decreasing at x0 so that
f (x0) is neither a local min nor local max.

This theorem does not say f must have a local min/max at at every singular, critical or endpoint. For
example for f (x) = x3, f ′(0) = 0 but f (0) is not an extremum value.

Example 4.3.1. Find the maximum and minimum values of the function g (x) = x3 − 3x2 − 9x + 2 on the
interval −2 ≤ x ≤ 2.

Solution. g is a continuous function defined on a
closed and bounded interval so it must have an abso-
lute minimum and absolute maximum.
Since g is a polynomial, it can’t have singular points.
g ′(x) = 3(x2−2x−3) = 3(x+1)(x−3). g ′(x) = 0 if x =−1
or x = 3. x = 3 is not in the domain, so we ignore it.
We check the values of g (x) at endpoints and critical
points, g (−2) = 0, g (−1) = 7, g (2) = −20. The maxi-
mum value is 7, the minimum value is -20.

−2

(−1,7)

(2,−20)

x

y

f (x) = x3 −3x2 −9x +2

Example 4.3.2. Find the maximum and minimum values of h(x) = 3x2/3 −2x on the inteval [−1,1].

Solution. h′(x) = 2(x−1/3 −1). h′(0) is undefined, 0 is
a singular point of h. h has a critical point at x = 1
which is also an endpoint.
h(−1) = 5, h(0) = 0, h(1) = 1. h has maximum value 5
and minimum value 0.

(−1,5)

0

(1,1)

x

y

h(x) = x2/3 −2x
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The first derivative test

By investigating the sign of the first derivative we can determine whether an extrema is a local minimum or
local maximum.

Example 4.3.3. Find the local and absolute extreme values of f (x) = x4−2x2−3 on the interval [−2,2]. Sketch
the graph of f .

Solution. f ′(x) = 2x(x2−1) = 4x(x−1)(x+1). The crit-
ical points are 0,−1,1. There are no singular points.

x -2 -1 0 1 2
f ′ - + - +
f max ↘ min ↗ max ↘ min ↗ max

f (−2) = f (2) = 5, f (−1) = f (1) =−4, f (0) =−3.
Since f is continuous and defined on a closed and
bounded interval, it must have an absolute min/max.
So 5 is the absolute maximum and −4 is the absolute
minimum. (−1,−4) (1,−4)

(−2,5) (2,5)

−3

x

y

f (x) = x4 −2x2 −3

Example 4.3.4. Locate all extreme values of f (x) = x
p

2−x2. Determine whether any of these extreme values
are absolute. Sketch the graph.

Solution. Note that f has domain [−p2,
p

2]. f ′(x) =
−2 x2−1p

2−x2
. Critical points are ±1. Singular points are

±p2 and endpoints are also ±p2.
f (±p2) = 0, f (−1) = −1, f (1) = 1. Since f is continu-
ous on a closed bounded interval it must have maxi-
mum value 1 and minimum value −1.

x −p2 -1 1
p

2
f ′ - + -
f max ↘ min ↗ max ↘ min

−p2 p
2

(−1,1)

(1,1)

x

y

f (x) = x
p

2−x2

4.4 Concavity and Inflections

We say f is concave up on an interval I if f ′ is increasing on I and concave down on I if f ′ decreasing on I .
Note that if f is concave up then f lies above its tangents and below its chords while if f is concave

down then f lies below its tangents and above its chords.
If f changes its concavity at x0 then we call x0 and inflection point.

Theorem 4.4.1. Assume f is twice differentiable.

a) If f ′′ > 0 on an interval I then f is concave up on I ,

b) If f ′′ < 0 on an interval I then f is concave down on I ,
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c) If f has an inflection point at x0 then f ′′(x0) = 0.

Note f ′′(x0) = 0 does not necessarily mean x0 is an inflection point, for example for f (x) = x4 f ′′(0) = 0
while f does not change concavity at x = 0.

Example 4.4.1. Determine the intervals of concavity of
f (x) = x6 −10x4 and the inflection points of its graph.

Solution. f ′(x) = 2x3(3x2 − 20), f ′′(x) = 30x2(x −
2)(x +2). So possible inflection points are 0, ±2.

x -2 0 2
f ′′ + 0 - 0 - 0 +
f c.up infl. c.down c.down infl c.up

The inflection points are ±2.

−2 2

−96

x

y

f (x) = x6 −10x4

Example 4.4.2. Determine the intervals of increase,
decrease , the local extreme values and the concavity
of f (x) = x4 −2x3 +1. Sketch the graph of f .

Solution. f ′(x) = 4x3 − 6x2 = 2x2(2x − 3), critical
points are x = 0, x = 3/2.
f ′′(x) = 12x(x −1), possible inflection points are x = 0,
x = 1.

x 0 1 3/2
f ′ - 0 - - 0 +
f ′′ + 0 - 0 + +
f ↘ ↘ ↘ min ↗

c.up infl c.down infl c.up c.up

1

1

( 3
2 ,−11

16 )

x

y

f (x) = x4 −2x3 +1

The Second Derivative Test

Theorem 4.4.2. a) If f ′(x0) = 0 and f ′′(x0) < 0, then f has a local max at x0.

b) If f ′(x0) = 0 and f ′′(x0) > 0, then f has a local min at x0.

c) If f ′(x0) = f ′′(x0), then no conclusion can be drawn.

Example 4.4.3. Find an classify the critical points of
f (x) = x2e−x .

Solution. f ′(x) = x(2 − x)e−x = 0, at x = 0, x = 2.
f ′′(x) = (2 − 4x + x2)e−x . f ′′(0) = 2 > 0 and f ′′(2) =
−2e−2 < 0. Thus f has a local min at x = 0 and local
max at x = 2. (2,4e−2)

x

y

f (x) = x2e−x
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4.5 Graphs of Functions

Definition 4.5.1. The graph of y = f (x) has a vertical asymptote at x = a if either limx→a− f (x) = ±∞ or
limx→a+ f (x) =±∞.

Definition 4.5.2. The graph of y = f (x) has a horizontal asymptote at y = L if either limx→∞ f (x) = L or
limx→−∞ f (x) = L.

Example 4.5.1. Find the vertical and the horizontal
asymptotes of f (x) = 1

x2−x
.

Solution. The vertical asymptotes are x = 0, x = 1.

lim
x→0−

1

x2 −x
=∞, lim

x→0+
1

x2 −x
=−∞,

lim
x→1−

1

x2 −x
=−∞, lim

x→1+
1

x2 −x
=∞,

The function has a horizontal asymptote,
limx→∞ 1

x2−x
= limx→−∞ 1

x2−x
= 0. This is a two-

sided horizontal asymptote.

1

x

y

f (x) = 1
x2−x

Example 4.5.2. f (x) = ex has a left horizontal asymptote y = 0, limx→−∞ ex = 0.

Example 4.5.3. f (x) = tan−1 x has a two one sided limits, limx→∞ tan−1 x =π/2 and limx→−∞ tan−1 x =−π/2.

Definition 4.5.3. The straight line y = ax +b (a 6= 0) is an oblique asymptote of the graph y = f (x) if either
limx→∞( f (x)− (ax +b)) = 0 or limx→−∞( f (x)− (ax +b)) = 0.

Example 4.5.4. Let f (x) = x2+1
x = x + 1

x . Then
limx→±∞( f (x) − x) = 0. Hence f has a two-sided
oblique asymptote. x

y

f (x) = x2+1
x

Asymptotes of rational function

Let f (x) = Pm (x)
Qn (x) , where Pm and Qn are polynomials of degree m and n respectively. Suppose that Pm and

Qn have no common linear factors. The graph of f has

1. a vertical asymptote at every position at every x for which Qn(x) = 0.

2. a two-sided horizontal asymptote y = 0 only if m < n.
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3. a two-sided horizontal asymptote y = L only if m = n. L is the ratio of the coefficients of the highest
degree terms in Pm and Qn .

4. a two sided oblique asymptote only if m = n +1.

Example 4.5.5. Find the oblique asymptote of y = x3

x2+x+1
.

Solution. Bu polynomial division, we get y = x −1+ 1
x2+x+1

. y = x −1 is the oblique asymptote.

Checklist For Curve Sketching

1. Examine f (x) to find the domain, intercepts, asymptotes and even/odd symmetries.

2. Find points where f ′(x) = 0 (critical points of f ) and where f ′(x) is undefined (singular points of f ).

3. Find points where f ′′(x) = 0 (critical points of f ) and where f ′′(x) is undefined (singular points of f ).

4. Make a table to investigate the signs of f ′(x) and f ′′(x) to find the intervals where f is increasing
or decreasing and the intervals where f is concave up and down. Find also the extreme points and
inflection points of the graph.

4.6 Extreme Value Problems

Example 4.6.1. Find the area of the largest rectangle that can be inscribed in a semicircle of radius R if one
side of the rectangle lies along the diameter of the semicircle.

Solution. (x/2)2 + y2 = R2. So

A = x y = x
√

R2 − (x/2)2.

d A

d x
= 2R2 −x2

p
4R2 −x2

The derivative is zero when x = p
2R. Use the first

derivative test to see that this gives max area A = R2.
O x/2

y
R

Example 4.6.2. Find the shortest distance from the origin to the curve x2 y4 = 1.

Solution. The distance is
p

x2 + y2. Instead of minimizing distance, an easier way is to minimize its square
x2 + y2. Solving x2 y4 = 1 for y and plugging into distance,

D(y) = 1

y4
+ y2

Then D ′(y) = − 4
y5 + 2y. Solving D ′(y) = 0 for y we get y = 21/6. Use the first derivative test to check that

D(21/6) = 3
3p8

is a minimum.

Example 4.6.3. A manufacturer has 100 tons of metal that he can sell now with a profit of $5 a ton. For each
week that he delays shipment, he can produce another 10 tons of metal. However, for each week he waits, the
profit drops 25 cents a ton. If he can sell the metal at any time, when is the best time to sell so that his profit is
maximized?
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Solution. Let x be the number of weeks to wait.

Ship Amount of metal Profit per ton Total profit
now 100 5 500

in x weeks 100+10x 5−0.25x 500+25x −0.25x2

P (x) = 500+25x −2.5x2. Solve P ′(x) = 0 to find x = 5. And maximum profit is $562.50.

Exercises.

1. Find the shortest distance from the point (8,1)
to the curve y = 1+x3/2.

Answer:
p

44

2. Find the largest possible perimeter of the rect-
angle that can be inscribed in a semicircle of ra-
dius R if one side of the rectangle lies along the
diameter of the semicircle.

Answer: 10Rp
5

3. Among all rectangles of perimeter P, show that
the square has the greatest area.

4. Among all rectangles of given area A, show that
the square has the least perimeter.

5. Find the equation of the straight line of maxi-
mum slope tangent to the curve y = 1+2x −x3.

Answer: y = 1+2x

4.7 Linear Approximation

The best line approximating the graph of y = f (x) near (a, f (a)) is the tangent line through (a, f (a)).

The linearization of the function f about a is the function L defined by

L(x) = f (a)+ f ′(a)(x −a)

We say that L approximates f near x = a and write f (x) ≈ L(x).

Example 4.7.1. Using the linearization, approximate
p

26. (Hint: use the linearization of
p

x at x = 25.)

Solution. f ′(x) = 1
2
p

x
. f ′(25) = 1

10 . So

L(x) = 5+ 1

10
(x −25).

Hence f (26) ≈ f (26) = 5.1.
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Example 4.7.2. Approximate cosπ/5 = cos36◦ using the linearization of cos x at x =π/6.

Solution. L(x) = cos π
6 − sin π

6 (x − π
6 ) =

p
3

2 − 1
2 (x − π

6 ).

cos36◦ ≈ L(π/5) =
p

3

2
− 1

2

π

30
≈ 0.81367

Error Estimation

The error in the linear approximation is
f ′′(s)

2
(x −a)2

where s is some number between a and x. (The proof depends on the generalized mean value theorem.)
Since we do not know s, we have to choose f ′′(s) to be largest (in absolute value) possible value, to get

the maximum error.
So for the previous example, f ′′(x) =−sin x, a = π/6, x = π/5, π/6 < s < π/5. Note that f ′′(s) ≤ 1. So the

error is smaller that 1
2 (x −a)2 = π2

1800 < 0.00549. So 0.81367−0.00549 < cosπ/5 < 0.81367+0.00549.

Exercises.

1. Sketch y = 1p
x

and its linearization about x = 4.

2. Approximate
p

50 using linearization.

Answer: 7+ 1
14 .

3. Approximate sin46◦ using linearization.

Answer:
p

2
2 +

p
2

2
π

180 . (Note: f (x) = sin x◦ =
sin πx

180 )

4.8 Exam 2 Review

Section Exercises
3.1 27-29
3.3 11-16, 19-48, 55-66
3.5 1-12, 19-32
4.1 1-15
4.3 1-24
4.4 1-17, 18-39
4.5 1-22
4.6 7-39
4.7 1-32
4.9 1-10, 15-22

Table 4.1: Exam 2 Review Problems from Adams & Essex Calculus: A Complete Course 7th Edition

Sample Exam 2

1. Find the dimensions of the right triangle with hypotenuse h = 2 and maximum area.
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2. Find the min and max values of f (x) = 2x3 −15x2 +24x +19 on the interval [0,5]

3. Let f (x) = x4 −3x2 +2.

a) Find the intervals on which f is increasing or decreasing. Find all local extrema for f .

b) Find the intervals on which f is concave up or down. Find all inflection points for f .

c) Sketch a graph of f (x) using parts (a) and (b).

4. Find all the horizontal and vertical asymptotes for

y = x2 +3

1−3x2
.

5. Let f (x) = 2x2 +x3, x > 0. Show that f is invertible and find ( f −1)′(16).

6. Find d y/d x by implicit differentiation if

y2ex + y ln x = 2.

7. Let y = (1/x)ln x . Find d y/d x.

8. Find cos(sin−1 0.7).



Chapter 5

Integration

5.1 The Definite Integral

Our main goal in this section is to find the area between the graph of a function and the x-axis.
Idea is to approximate this region with rectangles.
Let’s start with an easy example.

Example 5.1.1. Find the area of the region lying under the straight line y = x+1, above the x-axis and between
the lines x = 0 and x = 2.

Solution. Two ways of approximating the area. With “smaller” rectangles and “larger” rectangles.
With “smaller” rectangles. Divide the interval [0,2] into n equal pieces, call x0 = 0, x1 = 2/n, x2 = 4/n, . . . ,

xn = 2.

Ln = f (x0)(x1 −x0)+ f (x1)(x2 −x1)+·· ·+ f (xn −1)(xn −xn−1)

L1 = f (0)(2−0) = 2,

L2 = f (0)(1−0)+ f (1)(2−1) = 1+2 = 3,

L4 = ( f (0)+ f (1/2)+ f (1)+ f (3/2))(1/2) = 7/2,

Ln = 2(2n −1)

n

Thus

lim
n→∞Ln = 4

which is the area.
We can repeat this with “larger” rectangles. In this case

Un = 2(2n +1)

n

And again, limn→∞Un = 4.

This procedure can be used to find the areas under more exotic curves.

63
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Definition 5.1.1. Suppose f : [a,b] → R. If a = x0 < x1 < ·· · < xn = b then the set P = {x0, x1, . . . , xn} is called
a partition of the interval [a,b]. Let f (li ) be the smallest value and f (ui ) be the largest value of f (x) on
[xi , xi+1]. Then we define the lower Riemann sum

L( f ,P ) = f (l0)(x1 −x0)+ f (l1)(x2 −x1)+·· · f (ln−1)(xn −xn−1)

and the upper Riemann sum

U ( f ,P ) = f (u0)(x1 −x0)+ f (u1)(x2 −x1)+·· · f (un−1)(xn −xn−1)

Suppose that there exists exactly one number I such that for every partition P of [a,b],

L( f ,P ) ≤ I ≤U ( f ,P )

Then we say f is integrable on [a,b] and we call I , the definite integral of f on [a,b] and write

I =
∫ b

a
f (x)d x.

Definition 5.1.2. Let R be the region bounded by the graph of f (x), the x-axis and the lines x = a and x = b.
If f (x) ≥ 0 on [a,b] then we define

Area(R) =
∫ b

a
f (x)d x

If f (x) ≤ 0 on [a,b] then

Area(R) =−
∫ b

a
f (x)d x

In general
∫ b

a f (x) is the area of the part of R lying above the x-axis minus the area of the part below the
x-axis.

a b

A1

A2

x

y

Figure 5.1:
∫ b

a f (x)d x = A1 − A2

Here the variable x is a dummy variable. Replacing x by any other symbol does not change value of the
integral. The function f is known as integrand. d x is differential of x and if an integrand depends on more
than one variable it tells which one is the variable of integration.

In the first example, we showed that ∫ 2

0
(x +1)d x = 4.

Which functions are integrable?
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Theorem 5.1.1. If f is continuous on [a,b] then f is integrable.

Piecewise continuous functions are also integrable.

Example 5.1.2. Not every function is integrable. Define f : [0,1] → R such that f (x) = 0 is x is a rational
number and f (x) = 1 if x is an irrational number. Let P be a partition of [0,1]. Then the smallest value f (li )
in the subinterval [xi , xi+1] is 0 since every such interval contains a rational, while the largest value f (ui ) is
1 since every such interval also contains an irrational. Thus L( f ,P ) = 0 and U ( f ,P ) = 1. This is true for any
partition P. Hence there are infinitely many numbers between L( f ,P ) and U ( f ,P ) for any partition P. Hence
f is not integrable on [0,1].

Properties of Definite Integral

The following properties are easy consequences of the definition of definite integral.

Theorem 5.1.2. Let f and g be integrable on an interval containing the points a, b and c.

1.
∫ a

a
f (x)d x = 0.

2. We can define
∫ b

a f (x)d x when a > b. In this case the partition points are x0 = a > x1 > ·· ·xn = b. Hence∫ b

a
f (x)d x =−

∫ a

b
f (x)d x.

3. If c is a constant
∫ b

a
c f (x)d x = c

∫ b

a
f (x)d x.

4.
∫ b

a
( f (x)+ g (x))d x =

∫ b

a
f (x)d x +

∫ b

a
g (x)d x

5.
∫ b

a
f (x)d x +

∫ c

b
f (x)d x =

∫ c

a
f (x)d x.

6. If a ≤ b and f (x) ≤ g (x) then
∫ b

a
f (x)d x ≤

∫ b

a
g (x)d x.

7. If f is an odd function then
∫ a

−a
f (x)d x = 0.

Example 5.1.3.
∫ 3
−3(sin x3)5d x = 0 since f (x) = (sin x3)5 is odd. Verify.

8. If f is an even function then
∫ a

−a
f (x)d x = 2

∫ a

0
f (x)d x.

Example 5.1.4. Show that
∫ b

a cd x = c(b −a) and
∫ b

a xd x = (b2−a2)
2 interpreting the integrals as areas.

Example 5.1.5. Using the properties of the integral, compute∫ 2

−2
(3+5x)d x

Example 5.1.6. Compute
∫ 3
−3

p
9−x2.

Solution. This is the area of the semicircle with radius 3 and center (0,0). The answer is 9π
2 .
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5.2 The Fundamental Theorem of Calculus

In this section we develop the relation between the integral and the derivative.

Antiderivative

We will call F (x) as an antiderivative of f (x) if F ′(x) = f (x). For example x is an antiderivative of 1. Note
that x +1 is also an antiderivative of 1. So antiderivatives are not unique.

If F and G are antiderivatives of f on an interval, so that F ′(x) =G ′(x) = f (x) then

d

d x
(F (x)−G(x)) = 0.

But Theorem 2.7.3 tells that F (x)−G(x) must be a constant. Hence if F (x) is an antiderivative of f (x) then
for any C , F (x)+C is also an antiderivative of f (x). Also any antiderivative of f (x) is of the form F (x)+C for
some c.

Definition 5.2.1. The indefinite integral of f (x) on interval I is∫
f (x)d x = F (x)+C

provided F ′(x) = f (x) on I .

The Fundamental Theorem of Calculus

Theorem 5.2.1.
PART I. Suppose f is continuous.

d

d x

∫ x

a
f (t )d t = f (x)

PART II. Suppose f is differentiable. ∫ b

a
f ′(x)d x = f (b)− f (a)

Intuitively, the second part of fundamental theorem of calculus states that the total change (right hand
side) is the sum of all the little changes (right hand side). Recall that f ′(x)d x is a tiny change in the value of
f . If you add up (integrate) all these tiny changes, you get the total change f (b)− f (a).

Proof. For the first part, let

F (x) =
∫ x

a
f (x)d x.

Then

F ′(x) = lim
h→0

F (x +h)−F (x)

h
= lim

h→0

1

h

(∫ x+h

a
f (t )d t −

∫ x

a
f (t )d t

)
= lim

h→0

1

h

∫ x+h

x
f (t )d t

Let m(h) be the minimum, M(h) be the maximum of f on [x, x +h]. Then m(h) ≤ f (t ) ≤ M(h) on x ≤ t ≤
x +h. Thus

m(h)h =
∫ x+h

x
m(h)d x ≤

∫ x+h

x
f (t )d t ≤

∫ x+h

x
M(h)d x = M(h)h.
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Or

m(h) ≤ 1

h

∫ x+h

x
f (t )d t ≤ M(h)

Since limh→0 m(h) = limh→0 M(h) = f (x), by Sandwich Theorem,

F ′(x) = lim
h→0

1

h

∫ x+h

x
f (t )d t = f (x).

Proof of the second part. Let

F (x) =
∫ x

a
f ′(t )d t .

Then by part I, F ′(x) = f ′(x). We have seen that the only function whose derivative is zero on an interval is
the constant function. Thus F ′(x)− f ′(x) = 0. Hence F (x)− f (x) = c, a constant. Since 0 = F (a), c =− f (a).
And ∫ b

a
f ′(t )d t = F (b) = f (b)+ c = f (b)− f (a).

Second part gives a method to evaluate definite integrals. To compute
∫ b

a f (x)d x, find a function F (x)

whose derivative is f (x). Then the value of
∫ b

a f (x)d x = F (b)−F (a).
We will use the evaluation symbol

F (x) |ba= F (b)−F (a).

Example 5.2.1. Evaluate

1.

∫
a

0
x2d x = a3

3

2.

∫
2

−1
(x2 −3x +2)d x = 9

2

Example 5.2.2. Find the derivatives of the following functions.

1. F (x) =
∫

3

x
e−t 2

d t

2. G(x) =
∫

5x

−4
e−t 2

d t

3. H(x) =
∫

x3

x2
e−t 2

d t

Solution. By the Fundamental Theorem of Calculus Part I,

F (x) =−
∫ x

3
e−t 2 =⇒ F ′(x) =−ex2

.

Let g (x) = ∫ x
−4 e−t 2

d t. Then G(x) = g (5x) and

G ′(x) = g ′(5x)5 = 5e−(5x)2

H(x) = ∫ a
x2 e−t 2

d t +∫ x3

a e−t 2
d t. Then

H ′(x) = e−x6
3x2 −ex4

2x.
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In general
d

d x

∫ g (x)

f (x)
h(t )d t = h(g (x))g ′(x)−h( f (x)) f ′(x).

Exercises.

1.
d

d x

∫ x

2

sin t

t
d t

Answer: sin x
x

2.
d

d x

∫ cos x

sin x

1

1−x2
d x

Answer: − 1
sin x − 1

cos x

3.
d

d x
F (

p
x), if F (t ) = ∫ t

0 cos(x2)d x

Answer: 1
2
p

x
cos(x)

4. Find H ′(2) if H(x) = 3x
∫ x2

4
e
p

t d t

Answer: 6e2

5.3 The Method of Substitution

The following should be memorized.

•
∫

xnd x = 1

n +1
xn+1 +C , if n 6= 1

•
∫

1d x = x +C

•
∫

xd x = 1

2
x2 +C

•
∫

x2d x = 1

3
x3 +C

•
∫ p

xd x = 2

3
x3/2 +C

•
∫

1

x
d x = ln |x|+C

•
∫

sin xd x =−cos x +C

•
∫

cos xd x = sin x +C

•
∫

sec2 xd x = tan x +C

•
∫

csc2 xd x =−cot x +C

•
∫

sec x tan xd x = sec x +C

•
∫

csc x cot xd x =−csc x +C

•
∫

1p
1−x2

d x = arcsin x +C

•
∫

1

1+x2
d x = arctan x +C

•
∫

exd x = ex +C

•
∫

axd x = 1

ln a
ax +C

Example 5.3.1.

1.
∫

(x3 −3x2 +6x −9)d x = x4

4
−x3 +3x2 −9x +C

2.
∫

(5x3/4 − 1p
x

)d x
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3.
∫

(x +1)3

x
d x

The Chain Rule says
d

d x
f (g (x)) = f ′(g (x))g ′(x).

So we have, ∫
f ′(g (x))g ′(x)d x = f (g (x))+C

To see this another way, let u = g (x). Then du/d x = g ′(x). In differential form du = g ′(x)d x∫
f ′(g (x))g ′(x)d x =

∫
f ′(u)du = f (u)+C = f (g (x))+C

Example 5.3.2. Compute the following integrals.

1. I =
∫

x sin(2x2)d x.

Let 2x2 = u then 4xd x = du.

I = 1

4

∫
sinudu =−cosu

4
+C =−cos2x2

4
+C

2. I =
∫

sec2(3x +2)d x

Let 3x +2 = u then 3d x = du.

I =
∫

sec2 u
du

3
= tanu

3
+C = 1

3
tan(3x +2)+C

3. I =
∫

x

(x −4)3
d x

Let x −4 = u.

I =
∫

u +4

u3
du =

∫
(u−2 +4u−3)du =−u−1 −2u−2 = −1

x −4
− 2

(x −4)2
+C

4. I =
∫

tan2θ sec2θdθ.

Let tanθ = u. Then sec2 dθ = du.

I =
∫

u2du = u3

3
+C = tan3θ

3
+C

5. I =
∫ √

x4

x3 −1
d x =

∫
x2

p
x3 −1

d x.

Let x3 −1 = u. Then x2d x = du
3 .

I =
∫

du/3p
u

= 1

3

u1/2

1/2
+C = 2

3

√
x3 −1+C



70 CHAPTER 5. INTEGRATION

6. Let y = x
∫ x2

2
sin(t 3)d t. Find y ′

y ′ =
∫ x2

2
sin(t 3)d t +x sin(x6)2x

7. I =
∫

sec xd x.

There is an interesting trick to evaluate this integral!

I =
∫

sec x
(sec x + tan x)

sec x + tan x
d x =

∫
sec2 x + sec x tan x

sec x + tan x
d x

Let u = sec x + tan x, then

I =
∫

du

u
= ln |u|+C = ln |sec x + tan x|+C .

Exercises.

1.

∫
xex2

d x

Answer: 1
2 ex2 +C

2.

∫
2π

0
sin2 x cos2 xd x

Answer: π
4

3.

∫
e2

e

d t

t ln t
,

Answer: ln2

4.

∫
d x

ex +1
Answer: x − ln(1+ex)+C .

5.

∫
x2

2+x6

Answer: 1
3
p

2
arctan(x3/

p
2)+C

6.

∫
sec5 x tan xd x

Answer: 1
5 sec5 x +C

5.4 Areas of Plane Regions

Example 5.4.1. Find the area of the region lying above the x-axis and under the curve y = 3x −x2.
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Solution. The points where the graph intersects the x-
axis are y = 0 which gives x = 0, x =.
The area is∫ 3

0
(3x −x2)d x =

(
3

2
x2 − 1

3
x3

)∣∣∣∣3

0
= 9

2
.

3

y = 3x −x2

x

y

Example 5.4.2. Find the area of the region lying above the line y = 1 and below the curve y = 5
x2+1

.

Solution. The curves y = 1 and y = 5
x2+1

intersect at
x =±2. The area
The area is∫ 2

−2

5

x2 +1
d x −

∫ 2

−2
1d x = 10arctan2−4.

−2 2

y = 5
x2+1

1
x

y

Suppose f (x) ≤ g (x) for a ≤ x ≤ b. Then the area of the region between these two curves and the lines
x = a and x = b is

Area =
∫ b

a
(g (x)− f (x))d x.

Example 5.4.3. Find the area of the bounded region lying between the curves y = x2 −2x and y = 4−x2.

Solution. The two curves intersect at

x2−2x = 4−x2 =⇒ 2x2−2x−4 = 0 =⇒ (x−2)(x+1) = 0

So the intersection points are x = −1 and x = 2. The
area of the region is

Area =
∫ 2

−1

(
4−x2)− (x2 −2x)

)
d x = 9 −1 2

y = x2 −2x

y = 4−x2

x

y

Example 5.4.4. Find the area of the region bounded by y =p
x and y = x2.
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Solution. The curves intersect at

p
x = x2 =⇒ x = x4 =⇒ x(1−x3) = 0.

Hence the intersection points are x = 0 and x = 1.

Area =
∫ 1

0

(p
x −x2)d x = 2

3
− 1

3
= 1

3
.

1

y = x2

y =p
x

x

y

Example 5.4.5. Find the area of the region lying to the right of the parabola x = y2 −12 and to the left of the
straight line y = x.

Solution. The curves intersect at

y2 −12 = y =⇒ (y −4)(y +3) = 0

The intersection points are y = 4 and y =−3.

Area =
∫ 4

−3

(
y − (y2 −12)

)
d y = 343

6

An alternative way is to make the transformation x →
y, y → x. The problem becomes finding the area be-
tween y = x2 −12 and y = x.

−3

4
x = y2 −12

y = x

x

y

Exercises.

1. Find the area bounded by the curves y = x2−2x,
and y = 3x −x2.

Answer: 125
24

2. Find the area bounded by the curves y = x3, and
y = x in the region x ≥ 0.

Answer: 1
4 .

3. Find the area bounded by y = sin x and y =
cos x between two consecutive intersections of
these curves.

Answer: 2
p

2

4. Find the area bounded by the curves y = 1
x and

2x +2y = 5.

Answer: 15
8 − ln4

5. Find the area bounded by the curves x − y = 7
and x = 2y2 − y +3.

Answer: 9
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5.5 Integration by Parts

Integrating both sides of
d

d x
(u(x)v(x)) = du

d x
v +u

d v

d x
we get ∫

d

d x
(u(x)v(x))d x =

∫
du

d x
vd x +

∫
u

d v

d x
d x

Since
∫ d

d x (u(x)v(x))d x = u(x)v(x), in differential notation, we get

uv =
∫

du v +
∫

u d v

Another way to write this is ∫
u d v = u v −

∫
v du

This is one of the most powerful method to integrate, known as the integration by parts.

Example 5.5.1.
∫

xexd x.

Solution. Let u = x and d v = exd x. Then du = d x and v = ex .∫
xexd x = xex −

∫
exd x = xex −ex +C

Example 5.5.2.
∫

ln xd x.

Solution. Let u = ln x and d v = d x. Then du = d x/x and v = x.∫
ln xd x = x ln x −

∫
x

d x

x
= x ln x −x +C

Example 5.5.3. I =
∫

x2 sin xd x

Solution. We have to integrate by parts twice. Let u = x2 and d v = sin xd x. Then du = 2xd x and v =−cos x.

I = x2(−cos x)−
∫

(−cos x)2xd x =−x2 cos x +
∫

2x cos xd x

Now let u = 2x and d v = cos xd x. Then du = 2d x and v = sin x. And∫
2x cos xd x = 2x sin x −

∫
2sin xd x

Hence
I =−x2 cos x +2x sin x +2cos x +C

Example 5.5.4. I =
∫

x arctan xd x
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Solution. Let u = arctan x,d v = xd x. Then du = d x/(1+x2) and v = x2/2.

I = 1

2
x2 arctan x − 1

2

∫
x2

1+x2
d x = 1

2
x2 arctan x − 1

2

∫ (
1− 1

1+x2

)
d x

And

I = 1

2
x2 arctan x − 1

2
(x −arctan x)+C

Example 5.5.5. Find I =
∫

ex sin xd x.

Solution. There is a circular argument here. We will integrate by parts twice to return the same integral. Let
u = sin x and d v = exd x. Then du = cos xd x, v = ex .∫

ex sin xd x = ex sin x −
∫

cos xexd x

Now let u = cos x and d v = exd x.∫
cos xexd x = cos xex −

∫
(−sin x)ex = cos xex + I

So
I = ex sin x −ex cos x − I

Hence

2I = ex(sin x −cos x)+C =⇒ I = ex

2
(sin x −cos x)+C .

Example 5.5.6. I =
∫

sec3 xd x.

Solution. Let u = sec x and d v = sec2 xd x. Then du = sec x tan xd x and v = tan x

I = sec x tan x −
∫

sec x tan2 xd x

Using tan2 x = sec2 x −1,

I = sec x tan x +
∫

sec xd x − I

Using
∫

secxd x = ln |sec x + tan x|, (see the section on “The Method of Substitution”) we get

I = 1

2
sec x tan x + 1

2
ln |sec x + tan x|+C

Exercises.

1.

∫
x cos xd x,

Answer: cos x +x sin x +C

2.

∫
xe

p
xd x

Hint: use x = u2. Answer: 2e
p

x(−6+6
p

x−3x+
x3/2)+C .

3.

∫
x2 arctan(x)d x
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Answer: 1
6 (−x2 +2x3 arctan(x)+ ln(1+x2))+C

4.

∫
e

1
sin(ln x)d x

Answer: 1
2 (1−e cos1+e sin1)

5.
∫

arctan xd x

Hint: use arctan x = u, d x = d v. Answer:
x arctan x − 1

2 ln(1+x2)+ c

5.6 Integrals of Rational Function

In this section we are concerned with integrals of the form∫
P (x)

Q(x)
d x

where P (x) and Q(x) are both polynomials.
We will look at methods to deal with such integrals when deg(P (x)) <deg(Q(x)).

The case deg(Q(x)) = 1 and deg(P (x)) = 0

Example 5.6.1.
∫

1

ax +b
d x = 1

a
ln ax +b +C .

Solution. Let u = ax +b then du = ad x and the integral becomes 1
a

∫ du
u .

The case deg(Q(x)) = 2 and deg(P (x)) = 0

First let’s look at two examples where Q(x) does not have real roots.

Example 5.6.2.
∫

d x

x2 +a2
= 1

a
tan−1 x

a
+C .

Solution. Let x = a tanθ (We will talk about these types of transformations in the next section in detail!), then
d x = a sec2θdθ and x2 +a2 = a2(sec2θ+1) = a2 tan2θ.

If Q(x) = ax2 +bx + c has no real roots, we have to complete to squares.

Example 5.6.3.
∫

d x

x2 +3x +3

Solution. Notice that x2 +3x +3 has no real roots. So we complete to squares

x2 +3x +3 = (x + 3

2
)2 + 3

4

Letting u = (x +3/2) and du = d x,∫
d x

(x + 3
2 )2 + 3

4

=
∫

du

u2 + 3
4

= 2p
3

tan−1 2(x + 3
2 )p

3
+C

The last part follows from the last example.

If Q(x) has real roots then we use partial fractions.
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Partial Fractions

Let us still assume that deg(P (x)) <deg(Q(x)). The Fundamental Theorem of Algebra tells that every poly-
nomial can be factored (over the real numbers) into a product of real linear factors (x−ai ) and real quadratic
factors x2 +bi x + ci having no real roots.

Q(x) = (x −a1)m1 (x −a2)m2 · · · (x −a j )m j (x2 +b1x + c1)n1 · · · (x2 +bk x + ck )nk

To each factor of the form (x −a)m , the partial fraction decomposition contains a sum

A1

(x −a)
+ A2

(x −a)2
+·· ·+ Am

(x −a)m

To each factor of the form (x2 +bx + c)n , the partial fraction decomposition contains a sum

B1x +C1

(x2 +bx + c)
+ B2x +C2

(x2 +bx + c)2
+·· ·+ Bn x +Cn

(x2 +bx + c)n

Example 5.6.4.
∫

(x +4)

x2 −5x +6
d x

Solution.
x +4

x2 −5x +6
= A

x −2
+ B

x −3
x +4 = A(x −3)+B(x −2)

Plugging x = 2 gives A =−6 and plugging x = 3 gives B = 7. So∫
(x +4)

x2 −5x +6
d x =−6

∫
d x

x −2
+7

∫
d x

x −3
=−6ln(x −2)+7ln(x −3)+C

Example 5.6.5.
∫

2+3x +x2

x(x2 +1)
d x.

Solution. The partial fraction decomposition is

2+3x +x2

x(x2 +1)
= A

x
+ B x +C

x2 +1
=⇒ A(x2 +1)+x(B x +C ) = 2+3x +x2

Since this equation holds for every x, we have A +B = 1 (coefficient of x2 term), C = 3 (coefficient of x term),
A = 2 (coefficient of constant term) and B =−1.∫

2+3x +x2

x(x2 +1)
d x =

∫
2

x
d x +

∫ −x +3

x2 +1
d x = 2ln x − 1

2
ln(x2 +1)+3tan−1 x +C .

Example 5.6.6. Evaluate
∫

1

x(x −1)2
d x.

Solution.
1

x(x −1)2
= A

x
+ B

(x −1)
+ C

(x −1)2

1 = A(x −1)2 +B x(x −1)+C x

Letting x = 0 gives A = 1, x = 1 gives C = 1. The coefficient of x2 is A+B which must be zero. So B =−1.∫
1

x(x −1)2
d x =

∫
1

x
d x −

∫
1

x −1
d x +

∫
1

(x −1)2
d x = ln |x|− ln |x −1|− 1

x −1
+C .

The last integral can be found by letting u = x −1.
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The Case deg(P (x)) ≥deg(Q(x))

If deg(P (x)) ≥deg(Q(x)) then we divide P (x) to Q(x) and get a rational function with the degree of numerator
less than the degree of denominator.

Example 5.6.7. Evaluate
∫

x3 +3x2

x2 +1
d x

Solution.
x3 +3x2

x2 +1
= x +3− x +3

x2 +1∫
x +3

x2 +1
d x =

∫
x

x2 +1
d x +

∫
3

x2 +1
d x

x3 +3x2

x2 +1
= x2

2
+3x − 1

2
ln(x2 +1)−3tan−1 x +C

Exercises.

1.

∫
2d x

5−4x
d x,

Answer: −1
2 ln |5−4x|+C

2.

∫
2x +2

x2 +4
d x

Answer: arctan(x/2)+ ln
∣∣4+x2

∣∣+C

3.

∫
x2

x2 +x −2
d x

Answer: x + 1
3 ln |1−x|− 4

3 ln |2+x|+C .

4.

∫
x2d x

(x2 −1)(x2 −4)

Answer: 1
6 (− ln |1−x| + 2ln |2−x| + ln |1+x| −

2ln |2+x|)+C

5.

∫
d x

x4 −4x3

Answer: 1
8x2 + 1

16x + 1
64 ln |4−x|− 1

64 ln |x|+C

6.

∫
1

x3 +9x
d x

Answer: 1
9 ln |x|− 1

18 ln
∣∣9+x2

∣∣+C

7.

∫
1

e2x −4ex +4

Answer: 1
4

(− 2
−2+ex +x − ln |2−ex |)+C

5.7 Inverse Substitutions

The Inverse Sine Substitution

If an integral involves
p

a2 −x2, try the substitution x = a sinθ or θ = sin−1 x
a .

We can assume a > 0. Notice that
p

a2 −x2 makes sense only when −a ≤ x ≤ a which corresponds to
−π/2 ≤ θ ≤π/2 so that cosθ ≥ 0. Hence√

a2 −x2 =
√

a2(1− sin2θ) = a
√

cos2θ = a |cosθ| = a cosθ.
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Example 5.7.1. Evaluate I =
∫

d x

(5−x2)3/2
.

Solution. Let x =p
5sinθ, d x =p

5cosθdθ.

(5−x2)3/2 = (5−5sin2θ)3/2 = 53/2 |cosθ|3 = 53/2 cos3θ.

since cosθ ≥ 0. So

I =
∫ p

5cosθdθ

53/2 cos3θ
= 1

5

∫
sec2θdθ = 1

5
tanθ+C = 1

5

xp
5−x2

+C

The last equality can be found using sinθ = xp
5

.

Example 5.7.2. ∫
d xp

8x −x2
=

∫
d x√

16− (x −4)2

=
∫

dup
a2 −u2

= sin−1
(u

a

)
+C

= sin−1
(

x −4

4

)
+C

The inverse Tangent Substitution

If an integral involves
p

a2 +x2 or
1

x2 +a2
, try the substitution x = a tanθ or θ = tan−1 x

a .

Since x can take any real value, we have −π/2 < θ <π/2 so that secθ > 0. Assuming a > 0,√
a2 +x2 =

√
a2(1+ tan2θ) = a

√
sec2θ = a |secθ| = a secθ.

Example 5.7.3. Evaluate I =
∫

d xp
4+x2

.

Solution. Let x = 2tanθ, d x = 2sec2θdθ.√
4+x2 = 2

√
sec2θ = 2 |secθ| = 2secθ

since secθ > 0. Using tanθ = x/2 we can find secθ =
p

4+x2

2 and

I =
∫

secθdθ = ln |secθ+ tanθ|+C = ln

∣∣∣∣∣
p

4+x2

2
+ x

2

∣∣∣∣∣+C

You are not responsible for the inverse secant transformation which can be used to solve integrals in-
volving

p
x2 −a2.

Exercises.
1.

∫
x2p

1−4x2
d x,
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Answer: −1
8 x

p
1−4x2 + 1

16 arcsin(2x)+C

2.

∫
1

x
p

9−x2
d x

Answer: 1
3 ln |x|− 1

3

∣∣∣3+p
9−x2

∣∣∣+C .

3.

∫
1

x2+2x+10
d x

Answer: 1
3 arctan

(1+x
3

)+C

5.8 Indefinite Integrals Exercises

Example 5.8.1.
∫

x

x2 +9
dx = 1

2

∫
2x

x2 +9
dx = 1

2
ln

(
x2 +9

)+ c

Example 5.8.2.
∫ (

e−x −e−4x)
dx =−e−x + 1

4
e−4x + c

Example 5.8.3.
∫

3−cos x

3x − sin x
d x = ln |3x − sin x|+ c

Example 5.8.4. ∫ (
3x4 + 1

x
+ 3

√
x2

)
=

∫
3x4dx +

∫
1

x
dx +

∫
3
√

x2dx

= 3
x5

5
+ ln |x|+

∫
x2/3dx

= 3
x5

5
+ ln |x|+ x2/3+1

2/3+1
+ c

= 3
x5

5
+ ln |x|+ 3

5
3
√

x5 + c

Example 5.8.5. ∫
4x3 (

1+2x4)4
dx = 1

2

∫
8x3 (

1+2x4)4
dx

= 1

10

(
1+2x4)5 + c

Example 5.8.6. ∫
dx

x ln3 x
=

∫
1

x
ln−3 xdx =− 1

2ln2 x
+ c

Example 5.8.7. ∫
x2ex3

dx = 1

3

∫
3x2ex3

dx = 1

3
ex3 + c

Example 5.8.8. ∫
x3

1+x8
dx =

∫
x3

1+ (
x4

)2 dx = 1

4

∫
4x3

1+ (
x4

)2 dx = 1

4
arctan x4 + c
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Example 5.8.9. ∫
x3 +x +1

x2 +1
dx =

∫
x

(
x2 +1

)
x2 +1

dx +
∫

1

x2 +1
dx

=
∫

xd x +
∫

1

x2 +1
dx

= x2

2
+arctan x + c

Example 5.8.10. ∫
cos3 xdx =

∫
cos2 x ·cos xdx

=
∫ (

1− sin2 x
) ·cos xdx

=
∫

cos xdx −
∫

sin2 x ·cos xdx

= sin x − sin3 x

3
+ c

Example 5.8.11. ∫
sin x

cos x −4
dx =− ln |cos x −4|+ c = ln(4−cos x)+ c

Example 5.8.12. ∫
x2(

x3 +5
)4 dx = 1

3

∫
3x2 (

x3 +5
)−4

dx =−1

9

1(
x3 +5

)3 + c

Example 5.8.13. ∫
1

x
(
1+ log2 x

)dx = arctan(log(x))+ c

Example 5.8.14. ∫
1

tan4 x cos2 x
dx =

∫
1

cos2 x
tan−4 xdx =− 1

3tan3 x
+ c

Example 5.8.15. ∫
cos x√

3− sin2 x
dx =

∫
cos x

p
3
√

1− sin2 x
3

dx

=
∫ cos xp

3√
1−

(
sin xp

3

)2
dx = arcsin

(
sin xp

3

)
+ c

Example 5.8.16. ∫
(2x +3)3dx = (2x +3)4

8
+ c

Example 5.8.17. ∫
1

2−x
dx =− log |2−x|+ c
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Example 5.8.18. ∫
x2

p
x3 +2

dx = 1

3

∫
3x2 (

x3 +2
)− 1

2 dx

= 1

3

(
x3 +2

)− 1
2+1

−1
2 +1

= 2

3

(
x3 +2

) 1
2

= 2

3

√
x3 +2+ c

Example 5.8.19. ∫ p
x + 3

p
x

4
p

x
dx =

∫
x1/2 +x1/3

x1/4
dx

=
∫ (

x1/2−1/4 +x1/3−1/4)dx

=
∫ (

x1/4 +x1/12)dx

= x1/4+1

1/4+1
+ 12

1/12+1
+ c

= 4

5

(
x5/4 + 12

13
x13/12

)
+ c

Example 5.8.20. ∫
e2x

3+e2x
dx = 1

2
log

(
3+e2x)+ c

Example 5.8.21. ∫
e2+px

p
x

dx = 2
∫

e2+px

2
p

x
dx = 2e2+px + c

Example 5.8.22. ∫
xp

x2 +a2
dx =

∫
2x

2
p

x2 +a2
dx =

√
x2 +a2 + c

Example 5.8.23. ∫
ex

p
2ex +1

dx =
p

2ex +1+ c

Example 5.8.24. ∫
ex

4+e2x
dx = 1

4

∫
ex

1+ ( ex

2

)2 dx = 1

2
arctan

ex

2
+ c

Example 5.8.25. ∫
coslog x

x
dx = sinlog x + c

Example 5.8.26. ∫
4
√

(x −2)3dx =
∫

(x −2)3/4dx = 4

7
(x −2)7/4 + c
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Example 5.8.27. ∫ p
x log xdx = x1/2+1

1/2+1
log x −

∫
x1/2+1

1/2+1

1

x
dx

= x3/2

3/2
log x −

∫
x1/2

3/2
dx

= 2

3
x3/2 log x − 2

3

∫
x1/2d x

= 2

3
x3/2 log x − 2

3

2

3
x3/2 + c

=2

3
x3/2

[
log x − 2

3

]
+ c

Example 5.8.28.∫
e2x sin(3x)dx = 1

2
e2x sin(3x)−

∫
1

2
e2x ·3cos(3x)dx =

= 1

2
e2x sin(3x)− 3

2

(
1

2
e2x cos(3x)−

∫
1

2
e2x · (−3)sin(3x)dx

)
=

= 1

2
e2x sin(3x)− 3

4
e2x cos(3x)− 9

4

∫
e2x sin(3x)dx

(
1+ 9

4

)∫
e2x sin(3x)dx = e2x

(
1

2
sin(3x)− 3

4
cos(3x)

)
∫

e2x sin(3x)dx = 1

13
e2x(2sin(3x)−3cos(3x))+ c

Example 5.8.29. ∫
arcsin xdx = x arcsin x −

∫
xp

1−x2
dx

= x arcsin x +
∫ −2x

2
p

1−x2
dx

= x arcsin x +
√

1−x2 + c

Example 5.8.30. ∫
log2 xdx = x log2 x −

∫
x log x

1

x
dx

= x log2 x −
∫

log xdx

= x log2 x −2x log x +2x + c

Example 5.8.31. ∫
(x +2)2exdx = (x +2)2ex −

∫
2(x +2)exdx

= (x +2)2ex −
(
2(x +2)ex −

∫
2exdx

)
= (x +2)2ex −2(x +2)ex +2ex + c
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Example 5.8.32. ∫
arctan xdx = x arctan x −

∫
x

1+x2
dx

= x arctan x − 1

2

∫
2x

1+x2
dx

= x arctan x − 1

2
log

(
1+x2)+ c

Example 5.8.33. ∫
x arctan xdx = 1

2
x2 arctan x −

∫
1

2
x2 1

1+x2
dx

= 1

2
x2 arctan x − 1

2

∫
x2 +1−1

1+x2
dx

= 1

2
x2 arctan x − 1

2

∫ (
1− 1

1+x2

)
dx

= 1

2
x2 arctan x − 1

2
x + 1

2
arctan x + c

= x2 +1

2
arctan x − 1

2
x + c

Example 5.8.34. ∫
log

(
1+x2)dx = x log

(
1+x2)−∫

2x2

1+x2
dx

= x log
(
1+x2)−2

∫
x2 +1−1

1+x2
dx

= x log
(
1+x2)−2

∫ (
1− 1

1+x2

)
dx

= x log
(
1+x2)−2x +2arctan x + c

Example 5.8.35. ∫
x

x2 +4x +3
dx =

∫
x

(x +1)(x +3)
dx

x

(x +1)(x +3)
= A

(x +1)
+ B

(x +3)∫
x

x2 +4x +3
dx =−1

2

∫
1

(x +1)
dx + 3

2

∫
1

(x +3)
dx

=−1

2
log(x +1)+ 3

2
log(x +3)+ c

Example 5.8.36. ∫
x(

x2 +1
)

(x −1)
dx = 1

2

∫
1

(x −1)
dx − 1

2

∫
x −1(
x2 +1

)dx

= 1

2

∫
1

(x −1)
dx − 1

4

∫
2x(

x2 +1
)dx + 1

2

∫
1(

x2 +1
)dx

= 1

2
log |x −1|− 1

4
log

(
x2 +1

)+ 1

2
arctan x + c
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Example 5.8.37. ∫
x

(x −1)2
dx =

∫
x +1−1

(x −1)2
dx

=
∫ (

1

x −1
+ 1

(x −1)2

)
dx

= log |x −1|− 1

x −1
+ c

Example 5.8.38.
3x2 −x

(x +1)2(x +2)
= A

(x +2)
+ B

(x +1)
+ D

(x +1)2∫
3x2 −x

(x +1)2(x +2)
dx =

∫
14

x +2
dx −

∫
11

x +1
dx +

∫
4

(x +1)2
dx

= 14log |x +2|−11log |x +1|− 4

x +1
+ c

Example 5.8.39.
x2 −2x −1

x2 −4x +4
= 1+ 2x −5

x2 −4x +4

2x −5

x2 −4x +4
= 2x −4−1

x2 −4x +4
= 2x −4

x2 −4x +4
− 1

x2 −4x +4
= 2(x −2)

(x −2)2
− 1

(x −2)2
= 2

x −2
− 1

(x −2)2

∫
x2 −2x −1

x2 −4x +4
dx = x + 1

x −2
+2log |x −2|+ c

Example 5.8.40.
1

x2
(
x2 +1

) = 1

x2
− 1

x2 +1∫
1

x2
(
x2 +1

)dx =−1

x
−arctan x + c

Example 5.8.41.
1(

1−x2
)2 = 1

4(x +1)
+ 1

4(x +1)2
− 1

4(x −1)
+ 1

4(x −1)2∫
1(

1−x2
)2 dx = 1

4
log |x +1|− 1

4
log |x −1|− 1

4(x +1)
− 1

4(x −1)
+ c

Example 5.8.42.
1

x4 −1
= 1

(x −1)(x +1)
(
1+x2

) = 1

4(x −1)
− 1

4(x +1)
+ 1

2(1+x)2∫
d x

x4 −1
dx = 1

4
log |1−x|− 1

4
log |x +1|− 1

2
arctan x + c

Example 5.8.43. ∫
1+x +p

x

1+x
p

x
dx = 2

∫
t 3 + t 2 + t

t 3 +1
dt
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by putting
p

x = t .
t 3+t 2+t

t 3+1
= 1+ t 2+t−1

(t+1)(t 2−t+1)
= 1− 1

3(t+1) + 4t−2
3(t 2−t+1)

= 1− 1
3

1
1+t + 2

3
2t−1

3t 2−t+1∫
t 3 + t 2 + t

t 3 +1
dt =

∫ (
1− 1

3

1

1+ t
+ 2

3

2t −1

3t 2 − t +1

)
d t

= t − 1

3
log |1+ t |+ 2

3
log

(
t 2 − t +1

)+ c∫
1+x +p

x

1+x
p

x
dx = 2

p
x − 2

3
log(1+p

x)+ 4

3
log(x −p

x +1)+ c

Example 5.8.44. ∫
tan2 x +1

tan x +1
dx =

∫
1

t
dt = ln |t |+ c = ln | tan x +1|+ c

by t = tan x +1

Example 5.8.45. ∫
1

x
(
log2 x −1

)dx =
∫

1

t 2 −1
dt

=
∫

1

(t −1)(t +1)
dt

by t = log x. ∫
1

(t −1)(t +1)
dt = 1

2

∫
1

t −1
d t − 1

2

∫
1

t +1
dt = 1

2
log |t −1|− 1

2
log |t +1|+ c∫

1

x
(
log2 x −1

)dx = 1

2
log | log x −1|− 1

2
log | log x +1|+ c

Example 5.8.46. Which one is correct?

I =
∫

sec2 x tan xd x u = sec x du = sec x tan x I =
∫

2udu = u2 = sec2 x +C

I =
∫

sec2 x tan xd x u = tan x du = sec2 x I =
∫

2udu = u2 = tan2 x +C

Since tan2 x +C = sec2 x −1+C = sec2 x +C ′, both are correct.

Example 5.8.47. ∫ π/4

0

d x

1− sin x
=

∫ π/4

0

1

1− sin x
· 1+ sin x

1+ sin x
d x

=
∫ π/4

0

1+ sin x

1− sin2 x
d x

=
∫ π/4

0

1+ sin x

cos2 x
d x

=
∫ π/4

0

(
sec2 x + sec x tan x

)
d x

= [tan x + sec x]π/4
0 = (1+p

2− (0+1)) =p
2

(5.1)
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5.9 Improper Integrals

Consider I =
∫ b

a
f (x)d x, where f is continuous on (a,b).

If a =−∞ or b =∞ then we say I is an improper integral of type I.
If f is unbounded as x approaches to a or b then we say I is an improper integral of type II.

Improper Integrals of Type I

Definition 5.9.1. If f is continuous on [a,∞)∫ ∞

a
f (x)d x = lim

R→∞

∫ R

a
f (x)d x

Similarly if f is continuous on (−∞,b]∫ b

−∞
f (x)d x = lim

R→−∞

∫ b

R
f (x)d x

In either cases, if the limit is finite, we say the integral converges and if the limit does not exists, we say the
integral diverges. If the limit is ∞ or −∞ we say the integral diverges to ∞ or −∞.

Example 5.9.1. Find the area of the region lying under the curve y = 1
x2 and above the x-axis to the right of

x = 1.

Solution. The area is A =
∫ ∞

1

d x

x2
which is an im-

proper integral of type-I.

A =
∫ ∞

1

d x

x2
= lim

R→∞

∫ R

1

d x

x2

= lim
R→∞

(
−1

x

)∣∣∣∣R

1
= lim

R→∞

(
− 1

R
+1

)
= 1

1

y = 1/x2

Example 5.9.2. Find the area of the region lying under the curve y = 1
x and above the x-axis to the right of

x = 1.

Solution. The area is

A =
∫ ∞

1

d x

x
= lim

R→∞

∫ R

1

d x

x

= lim
R→∞

ln x|R1 = lim
R→∞

lnR =∞

1

y = 1/x
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Definition 5.9.2. For integrals of the form
∫ ∞

−∞
f (x)d x, we define

∫ ∞

−∞
f (x)d x =

∫ 0

−∞
f (x)d x +

∫ ∞

0
f (x)d x

The integral on the left converges if and only if both integrals on the right converges.

Note that
∫ ∞
−∞ f (x)d x and limR→∞

∫ R
−R f (x)d x may or may not be equal. For example

∫ ∞
−∞ xd x is diver-

gent according to our definition since
∫ ∞

0 xd x =∞ is divergent. But limR→∞
∫ R
−R xd x = 0.

Example 5.9.3. Evaluate
∫ ∞

−∞
1

1+x2
d x.

Solution.

I =
∫ ∞

−∞
1

1+x2
d x =

∫ 0

−∞
1

1+x2
d x+

∫ ∞

0

1

1+x2
d x = 2

∫ ∞

0

1

1+x2
d x

since the integrand is an even function.∫ ∞

0

1

1+x2
d x = lim

R→∞

∫ R

0

d x

1+x2
= lim

R→∞
arctanR = π

2

So the answer is I =π.

y = 1
1+x2

Improper Integrals of Type-II

Definition 5.9.3. If f is continuous on the interval (a,b] and is possibly unbounded near a then∫ b

a
f (x)d x = lim

c→a+

∫ b

c
f (x)d x

Similarly, if f is continuous on the interval [a,b) and is possibly unbounded near b then∫ b

a
f (x)d x lim

c→b−

∫ c

a
f (x)d x

Example 5.9.4. Find the area of the region lying under y = 1/
p

x, above the x-axis, between x = 0 and x = 1.

Solution. The area is∫ 1

0

1p
x

d x = lim
c→0+

∫ 1

c

1p
x

d x = lim
c→0+ 2x1/2

∣∣1
c = lim

c→0+(2−2
p

c) = 2

1

y = 1p
x

Example 5.9.5. Evaluate
∫ 2

0

d xp
2x −x2
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Solution. By the substitution u = x −1

I =
∫ 2

0

d xp
2x −x2

=
∫ 2

0

d x√
1− (x −1)2

=
∫ 1

−1

dup
1−u2

By the even symmetry,

I = 2
∫ 1

0

dup
1−u2

This is an improper integral of Type-II as the integrand
is unbounded at u = 1.

I = 2 lim
c→1−

∫ c

0

dup
1−u2

= 2 lim
c→1− arcsinu|c0 = 2 lim

c→1−arcsinc = 2arcsin1 =π

1

y = 1p
2x−x2

Exercises. Evaluate the following integrals or show
they diverge.

1.
∫ ∞

0
cos xd x

Answer: the integral diverges.

2.
∫ ∞

0
e−2xd x

Answer: 1/2.

3.
∫ ∞

0
xe−xd x

Answer: 1.

4.
∫ π/2

0
tan xd x

Answer: the integral diverges to ∞.

5.
∫ 1

0

d x

x
Answer: the integral diverges to ∞.

6.
∫ 1

0
ln xd x

Answer: −1.

7.
∫ ∞

−∞
xe−x2

d x

Answer: 0.

5.10 Trigonometric Integrals

Products of Powers of Sines and Cosines∫
sinm x cosn xd x

Case 1. If m is odd. Write

sinm x = sin2k+1 x = (
sin2 x

)k
sin x = (

1−cos2 x
)k

sin x∫
sinm x cosn xd xd x =

∫ (
1−cos2 x

)k
cosn x sin xd x =−

∫
(1−u2)k undu

where u = cos x.
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Example 5.10.1. ∫
sin3 x cos2 xd x =

∫
sin2 x cos2 x sin xd x

=
∫ (

1−cos2 x
)(

cos2 x
)

(−d(cos x))

=
∫ (

1−u2)(u2) (−du)

=
∫ (

u4 −u2)du

= u5

5
− u3

3
+C = cos5 x

5
− cos3 x

3
+C

Case 2. If n is odd. In this case

cosn x = cos2k+1 x = (
cos2 x

)k
cos x = (

1− sin2 x
)k

cos x

and ∫
sinm x cosn xd xd x =

∫
sinm x

(
1− sin2 x

)k
cos xd x =

∫
um(1−u2)k du

with u = sin x.

Example 5.10.2. ∫
cos5 xd x =

∫
cos4 x cos xd x =

∫ (
1− sin2 x

)2
d(sin x)

=
∫ (

1−u2)2
du

=
∫ (

1−2u2 +u4)du

= u − 2

3
u3 + 1

5
u5 +C = sin x − 2

3
sin3 x + 1

5
sin5 x +C

Case 3. If m and n are both even. Substitute

sin2 x = 1−cos2x

2
, cos2 x = 1+cos2x

2

to reduce the integrand to one in lower powers of cos2x.

Example 5.10.3. ∫
sin2 x cos4 xd x =

∫ (
1−cos2x

2

)(
1+cos2x

2

)2

d x

= 1

8

∫
(1−cos2x)

(
1+2cos2x +cos2 2x

)
d x

= 1

8

∫ (
1+cos2x −cos2 2x −cos3 2x

)
d x

= 1

8

[
x + 1

2
sin2x − I − J

]
I =

∫
cos2 2xd x = 1

2

∫
(1+cos4x)d x

= 1

2

(
x + 1

4
sin4x

)
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J =
∫

cos3 2xd x =
∫ (

1− sin2 2x
)

cos2xd x

= 1

2

∫ (
1−u2)du = 1

2

(
sin2x − 1

3
sin3 2x

)
Combining and simplifying gives∫

sin2 x cos4 xd x = 1

16

(
x − 1

4
sin4x + 1

3
sin3 2x

)
+C

Eliminating Square Roots

Example 5.10.4. ∫ π/4

0

p
1+cos4xd x =

∫ π/4

0

√
2cos2 2xd x =

∫ π/4

0

p
2
√

cos2 2xd x

=p
2
∫ π/4

0
|cos2x|d x =p

2
∫ π/4

0
cos2xd x

=p
2

[
sin2x

2

]π/4

0
=

p
2

2
[1−0] =

p
2

2

Integrals of Powers of tan x and sec x

Example 5.10.5. ∫
tan4 xd x =

∫
tan2 x · tan2 xd x =

∫
tan2 x · (sec2 x −1

)
d x

=
∫

tan2 x sec2 xd x −
∫

tan2 xd x

=
∫

tan2 x sec2 xd x −
∫ (

sec2 x −1
)

d x

=
∫

tan2 x sec2 xd x −
∫

sec2 xd x +
∫

d x

= 1

3
tan3 x − tan x +x +C

where we used by letting u = tan x and du = sec2 x

I =
∫

tan2 x sec2 xd x =
∫

u2du = 1

3
tan3 x +C

Example 5.10.6. Find
∫

sec3 xd x.
Use the integration by parts

u = sec x, d v = sec2 xd x, v = tan x, du = sec x tan xd x

to get

I =
∫

sec3 xd x = sec x tan x −
∫

(tan x)(sec x tan xd x)

= sec x tan x −
∫ (

sec2 x −1
)

sec xd x

= sec x tan x +
∫

sec xd x −
∫

sec3 xd x

= sec x tan x + ln |sec x + tan x|− I
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I =
∫

sec3 xd x = 1

2
sec x tan x + 1

2
ln |sec x + tan x|+C

Some Examples

Example 5.10.7.∫
sin3 xd x =

∫
sin2 x sin xd x =

∫ (
1−cos2 x

)
sin xd x =

∫
sin xd x −

∫
cos2 x sin xd x =−cos x + 1

3
cos3 x +C

Example 5.10.8.∫
sin5 xd x =

∫ (
sin2 x

)2
sin xd x =

∫ (
1−cos2 x

)2
sin xd x =

∫ (
1−2cos2 x +cos4 x

)
sin xd x

=
∫

sin xd x −
∫

2cos2 x sin xd x +
∫

cos4 x sin xd x =−cos x + 2

3
cos3 x − 1

5
cos5 x +C

Example 5.10.9.∫
sin3 x cos3 xd x =

∫
sin3 x cos2 x cos xd x =

∫
sin3 x

(
1− sin2 x

)
cos xd x =

∫
sin3 x cos xd x −

∫
sin5 x cos xd x

= 1

4
sin4 x − 1

6
sin6 x +C

Example 5.10.10.∫
cos2 xd x =

∫
1+cos2x

2
d x = 1

2

∫
(1+cos2x)d x = 1

2

∫
d x + 1

2

∫
cos2xd x = 1

2

∫
d x + 1

4

∫
cos2x ·2d x

= 1

2
x + 1

4
sin2x +C

Example 5.10.11.∫ π

0

p
1−cos2xd x =

∫ π

0

p
2|sin x|d x =

∫ π

0

p
2sin xd x = [−p2cos x]π0 =p

2+p
2 = 2

p
2

Example 5.10.12. ∫
sec3 x tan xd x =

∫
sec2 x sec x tan xd x = 1

3
sec3 x +C

where we used u = sec x substitution.

Example 5.10.13.∫
sec4 x tan2 xd x =

∫
sec2 x tan2 x sec2 xd x =

∫ (
tan2 x +1

)
tan2 x sec2 xd x

=
∫

tan4 x sec2 xd x +
∫

tan2 x sec2 xd x = 1

5
tan5 x + 1

3
tan3 x +C

Example 5.10.14.∫
sec4θdθ =

∫ (
1+ tan2θ

)
sec2θdθ =

∫
sec2θdθ+

∫
tan2θ sec2θdθ = tanθ+ 1

3
tan3θ+C

= tanθ+ 1

3
tanθ

(
sec2θ−1

)+C = 1

3
tanθ sec2θ+ 2

3
tanθ+C
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Example 5.10.15.∫
tan5 xd x =

∫
tan4 x tan xd x =

∫ (
sec2 x −1

)2
tan xd x =

∫ (
sec4 x −2sec2 x +1

)
tan xd x

=
∫

sec4 x tan xd x −2
∫

sec2 x tan xd x +
∫

tan xd x

=
∫

sec3 x sec x tan xd x −2
∫

sec x sec x tan xd x +
∫

tan xd x = 1

4
sec4 x − sec2 x + ln |sec x|+C

= 1

4

(
tan2 x +1

)2 − (
tan2 x +1

)+ ln |sec x|+C = 1

4
tan4 x − 1

2
tan2 x + ln |sec x|+C



Chapter 6

Applications of Integration

6.1 Volumes Using Cross-Sections

Solids of Revolution: The Disk Method

Suppose the graph of y = f (x), a ≤ x ≤ b is revolved around x-axis. Let a = x0 < x1 < ·· ·xn = b. Approximat-
ing the volume of the revolved region by disks,

V ≈
n∑

k=1
π f (xk )2∆xk →V =

∫ b

a
π f (x)2d x.

Example 6.1.1. Find the volume of the solid obtained by revolving the curve y = p
x, 0 ≤ x ≤ 4 around the

x-axis.

2 4−1

1

2

3

x

y =p
x

V =
∫ 4

0
π(

p
x)2d x = 8π

Example 6.1.2. Find the volume of the sphere with radius a.
The sphere is obtained by revolving the graph of y =

p
a2 −x2, −a ≤ x ≤ a around the x-axis.

−a a

a

x

y =
p

a2 −x2

93
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V =
∫ a

−a
π(a2 −x2)d x = 4

3
πa3.

Example 6.1.3. Find the volume of the solid generated by revolving the region bounded by y = p
x and the

lines y = 1, x = 4 about the line y = 1.

1 4

1

y =p
x

y = 1

x

y

The distance to the line of revolution is R(x) =p
x −1.

V =
∫ 4

1
π(

p
x −1)2d x =π

∫ 4

1
(x −2

p
x +1)d x = 7π

6
.

Example 6.1.4. Find the volume of the solid generated by revolving the region between the y-axis and the
curve x = 2/y, 1 ≤ y ≤ 4 about the y-axis.

1st method.

V =
∫ 4

1
π(R(y))2d y =π

∫ 4

1

(
2

y

)2

d y = 3π.

2nd method. Use x ↔ y.

Example 6.1.5. Find the volume of the solid generated by revolving the region between the parabola x = y2+1
and the line x = 3 about the line x = 3.

The intersection of x = y2 +1 and x = 3 is at x =±p2. R(y) = 3− (y2 +1).

V =
∫ p

2

−p2
π(R(y))2d y =

∫ p
2

−p2
π(2− y2)2d y = 64π

p
2

15

Solids of Revolution: The Washer Method

Example 6.1.6. The region bounded by the curve y = x2+1 and the line y =−x+3 is revolved about the x-axis.
Find the volume of the solid.

The volume = The volume of the outer solid - the volume of the inner solid.

V =
∫ 1

−2
π (Router(x))2 d x −

∫ 1

−2
π (Rinner(x))2 d x =

∫ 1

−2
π

(
(−x +3)2 − (x2 +1)2)d x = 117π

5
.

Example 6.1.7. The region bounded by the parabola y = x2 and the line y = 2x in the first quadrant is re-
volved about the y-axis to generate a solid. Find the volume.

V =
∫ 4

0
π

(
(
p

y)2 −
( y

2

)2
)

d y =π

∫ 4

0

(
y − y2

4

)
d y = 8π

3
.
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Example 6.1.8. Find the volume of the solid generated by revolving the regions bounded by y = 2
p

x, y = 2,
x = 0 about the x-axis.

r (x) = 2
p

x and R(x) = 2 ⇒V =
∫ 1

0
π

(
[R(x)]2 − [r (x)]2)d x

=π

∫ 1

0
(4−4x)d x = 4π

[
x − x2

2

]1

0
= 4π

(
1− 1

2

)
= 2π

(6.1)

Example 6.1.9. Find the volume of the solid generated by revolving the region enclosed by the triangle with
vertices (1, 0), (2, 1), and (1, 1) region about the y-axis.

r (y) = 1 and R(y) = 1+ y ⇒V =
∫ 1

0
π

(
[R(y)]2 − [r (y)]2)d y

=π

∫ 1

0

[
(1+ y)2 −1

]
d y =π

∫ 1

0

(
1+2y + y2 −1

)
d y

=π

∫ 1

0

(
2y + y2)d y =π

[
y2 + y3

3

]1

0
=π

(
1+ 1

3

)
= 4π

3

(6.2)

Exercises 6.1 from Thomas. 25, 30, 39, 42, 52

6.2 Volumes Using Cylindrical Shells

Solids of Revolution: The Disk Method

A cylindrical shell with height h, outer radius x +∆x and inner radius x has volume

Vshell =π(x +∆x)2h −πx2h =π(2x∆x + (∆x)2)h

If ∆x is very small then (∆x)2 is very small compared to ∆x.

Vshell ≈ 2πx∆xh

Suppose the graph of y = f (x), a ≤ x ≤ b is revolved around the y-axis. Let a = x0 < x1 < ·· ·xn = b.
Approximating the volume of the revolved region by cylindrical shells, the height of each shell is f (xk ) and
the outer radius is xk +∆xk and inner radius xk .

V ≈
n∑

k=1
2πx f (xk )∆xk →︸︷︷︸

∆xk→0

V =
∫ b

a
2πx f (x)d x =

∫ b

a
2π(shell radius) · (shell height)d x.

Example 6.2.1. The region bounded by the curve y =p
x, the x-axis, and the line x = 4 is revolved about the

y-axis to generate a solid. Find the volume of the solid.

V =
∫ 4

0
2π(x)(

p
x)d x

= 2π
∫ 4

0
x3/2d x = 2π

[
2

5
x5/2

]4

0
= 128π

5

(6.3)
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Example 6.2.2. The region bounded by the curve y =p
x, the x-axis, and the line x = 4 is revolved about the

x-axis to generate a solid. Find the volume of the solid by the shell method.

V =
∫ b

a
2π

(
shell

radius

)(
shell

height

)
d y

=
∫ 2

0
2π(y)

(
4− y2)d y

= 2π
∫ 2

0

(
4y − y3)d y

= 2π

[
2y2 − y4

4

]2

0
= 8π

(6.4)

Exercises 6.2 from Thomas. 15, 18, 21, 22, 33, 36.

6.3 Arc Length

Finding the length of the curve y = f (x), a ≤ x ≤ b.

Figure 6.1: From Thomas.

Partition the interval a = x0 < x1 < ·· · < xn = b. The approximation of the arc length is∑√
(∆xk )2 + (∆yk )2

where ∆xk = xk −xk−1 and ∆yk = yk − yk−1. By the Mean Value Theorem there is a point ck with xk−1 < ck <
xk such that

∆yk = f ′(ck )∆xk

So the approximation becomes∑√
(∆xk )2 + (∆yk )2 =∑√

(∆xk )2 + ( f ′(ck )∆xk )2 =∑√
1+ ( f ′(ck ))2∆xk →︸︷︷︸

∆xk→0

∫ b

a

√
1+ ( f ′(x))2d x

The arc length is defined as ∫ b

a

√
1+ ( f ′(x))2d x
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Example 6.3.1. Find the length of the curve

y = 4
p

2

3
x3/2 −1, 0 ≤ x ≤ 1 (6.5)

L =
∫ 1

0

√
1+

(
d y

d x

)2

d x =
∫ 1

0

p
1+8xd x

= 2

3
· 1

8
(1+8x)3/2

]1

0
= 13

6
≈ 2.17

(6.6)

Example 6.3.2. Find the length of the graph

f (x) = x3

12
+ 1

x
, 1 ≤ x ≤ 4 (6.7)

L =
∫ 4

1

√
1+ [

f ′(x)
]2d x =

∫ 4

1

(
x2

4
+ 1

x2

)
d x

=
[

x3

12
− 1

x

]4

1
=

(
64

12
− 1

4

)
−

(
1

12
−1

)
= 72

12
= 6

(6.8)

Example 6.3.3. Find the length of the curve

y = 1

2

(
ex +e−x)

, 0 ≤ x ≤ 2 (6.9)

L =
∫ 2

0

√
1+

(
d y

d x

)2

d x =
∫ 2

0

1

2

(
ex +e−x)

d x

= 1

2

[
ex −e−x]2

0 =
1

2

(
e2 −e−2)≈ 3.63

(6.10)

The length of x = g (y), c ≤ y ≤ d is

L =
∫ d

c

√
1+

(
d x

d y

)2

d y =
∫ d

c

√
1+ [

g ′(y)
]2d y (6.11)

Exercises 6.3 from Thomas. 2, 13, 14, 15, 17.

6.4 Areas Of Surfaces Of Revolution

Figure 6.2: From Thomas.
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The surface are of the above shape is

2π
( y1 + y2

2

)
L,

The surface are of the region obtained be revolving y = f (x), a ≤ x ≤ b around the x-axis is

∑
2π

(
f (xk−1 + f (xk ))

2

)√
(∆xk )2 + (∆yk )2 →︸︷︷︸

∆xk→0

∫ b

a
2π f (x)

√
1+ ( f ′(x))2d x

Example 6.4.1. Find the area of the surface generated by revolving y = 2
p

x, 1 ≤ x ≤ 2 about the x-axis.√
1+

(
d y

d x

)2

=
√

1+
(

1p
x

)2

=
√

1+ 1

x
=

√
x +1

x
=

p
x +1p

x

(6.12)

S =
∫ 2

1
2π ·2

p
x

p
x +1p

x
d x = 4π

∫ 2

1

p
x +1d x

= 4π · 2

3
(x +1)3/2

]2

1
= 8π

3
(3
p

3−2
p

2)

(6.13)

For revolution about the y-axis, we interchange x and y . Exercises 6.4 from Thomas. 1, 9, 13, 22
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