
Dynamical Systems of ODE’s

Taylan Şengül
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Intro

In this lecture, we will study systems of the form

ẋ(t) =
dx(t)

dt
= f(x(t)) (1)

We call the variable t ∈ R as time, the vector valued function x = x(t) ∈ Rn the
position (of a particle). We call ẋ as the velocity (of that particle). The function
f : Rn → Rn is the velocity field and is a given smooth function.

(1) tells that the particle has no choice but to follow the direction of the velocity
field. Our goal will be to determine “the behavior” of the position in time depending
possibly on the initial position

x(0) = x0

The existence and uniqueness theorem of the differential equations guarantees
that the position x(t) can be uniquely determined given an initial position

Chapter 2. Flows on the line

2.1. A Geometric Way of Thinking

Let
f : A ⊂ R → R, x : I ⊂ R → A (2)

We will study

ẋ(t) =
dx(t)

dt
= f(x(t)),

Consider
ẋ = sinx, x(0) = x0

We can solve it.

dx

sinx
= dt =⇒ t =

∫
cscxdx = − ln |cscx+ cotx|+ C

The solution is

t = ln

∣∣∣∣cscx0 + cotx0

cscx+ cotx

∣∣∣∣
Not very useful.
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Listing 1: Code for Figure 2
s [x0_] := NDSolve[x ’ [ t ] == Sin[x[ t ] ] && x[0] == x0, x , {t , 0, 10}]
sol = Evaluate@Table[x[ t ] / . s [x0] , {x0 , −5 Pi /4 , 5 Pi /4 , Pi /4}];
Plot [ sol , {t , 0, 10}, PlotRange −> All , TicksStyle −> Directive [18]]

Question: For x0 = π
4 , limt→∞ x(t) =?

Geometric idea: t= time, x(t) = position at time t, ẋ = velocity at time t of an
imaginary particle.

The particle moves to right if f(x) = ẋ > 0 and to left if f(x) = ẋ < 0.
The particle stays if f(x) = ẋ = 0.
A point x∗ is called a fixed point of the system ẋ = f(x) if f(x∗) = 0. Equivalently

xe(t) = x∗ is a solution, called an an equilibrium solution, of ẋ = f(x), x(0) = x∗.

Example 1.
ẋ = sinx

Sketch the solutions in the x− t plane.

Solution. ẍ = cosxẋ = cosx sinx. For 0 < x < π, ẋ > 0.
For 0 < x < π/2, ẍ > 0.
For π/2 < x < π, ẍ < 0.

Figure 1: Phase portrait of ẋ = sinx.

2 4 6 8 10

-4

-2

2

4

Figure 2: The solutions of ẋ = sinx for different initial codes. See Listing 1.

Definition 1. A fixed point x∗ is called an (locally asymptotically) stable fixed
point if any solution with initial condition near x∗ tends to x∗ as t → ∞. Otherwise it
is called an unstable fixed point.

Definition 2. If x∗ is a stable fixed point then the set B(x∗) consisting of all initial
conditions for which the corresponding solution tends to x∗ as t → ∞ is called the
basin of attraction of x∗.
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2.2. Fixed Point and Stability

Example 2. Find all fixed points of

ẋ = x2 − 1

Sketch the phase portrait and classify the stability of equilibria. Find the basin of
attraction of the stable equilibrium.

x2 − 1

1−1

x

ẋ

Figure 3: The solutions of ẋ = x2 − 1.

The basin of attraction of the stable equilibrium x = −1 is (−∞, 1).

Example 3. Sketch the phase portrait of

ẋ = x− cosx

and determine the stability of all fixed points. Hint: sketch y = x and y = cosx

separately.

Figure 4: f(x) = x− cosx
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Example 4. Consider
ẋ = ax (3)

Show that x∗ = 0 is a stable fixed point if a < 0 and an unstable fixed point if a > 0.

Example 5. Find and classify the fixed points of ẋ = sinx.
There are infinitely many fixed points: x = kπ, k ∈ Z. The fixed points x = 2kπ are

unstable, x = (2k + 1)π are stable. See Figure 1 and Figure 5.

Figure 5: The solutions of ẋ = sinx.

Example 6. Sketch the solutions of ẋ = x2(6 − x), x(0) = x0, for x0 = 0, 1, 10 in the
t− x plane.

Fixed points are x = 0, 6.

ẋ : ↑ (x = 0) ↑ (x = 6) ↓

So x = 0 is half-stable and x = 6 is stable.

ẍ = 3x3(4− x)(6− x)

So inflection points are x = 0, 4, 6.

0.1 0.2 0.3 0.4

2

4

6

8

10

Figure 6: The solutions of ẋ = x2(6− x), x(0) = x0, for x0 = 0, 1, 10.

2.3. Population Growth

Let N(t) be the population of a species at time t, then the rate of change

dN

dt
= births − deaths + migration
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Listing 2: Code for Figure 6

T = .4;
s [x0_] :=
NDSolve[x ’ [ t ] == x[ t]^2 (6 − x[ t ] ) && x[0] == x0, x , {t , 0, T}]

sol = Evaluate@Table[x[ t ] / . s [x0] , {x0 , {0, 1, 10}}];
Plot [ sol , {t , 0, T}, PlotRange −> All , TicksStyle −> Directive [18] , GridLines −> {{}, {4}}]

is a conservation equation for the population.
The simplest model has no migration and the birth and death terms are propor-

tional to N . That is
dN

dt
= bN − dN

Setting r = b− d,
Ṅ = rN, N(0) = N0

The solution is N(t) = ertN0. If r > 0, then the solution grows exponentially. This is
not realistic, no species can grow indefinitely.

If r < 0, then the solution decays to zero exponentially.
A more realistic population growth model is called the logistic equation

Ṅ = rN

(
1− N

K

)
(4)

K > 0 is a constant, called the carrying capacity. The growth rate is r
(
1− N

K

)
which

decreases linearly with N and is negative for N > K.

Figure 7: f(N) = rN
(
1− N

K

)
Picturing the solutions. Note that Ṅ increases with N when 0 < N < K/2 and

decreases when N > K/2. The solution is concave up, when 0 < N < K/2 and
concave down when N > K/2.

Figure 8: The solutions of ẋ = rN
(
1− N

K

)
with different initial conditions.
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Listing 3: Code for Figure 10

s [x0_] :=
NDSolve[x ’ [ t ] == −x[ t ]*Log[2 x[ t ] ] && x[0] == x0, x , {t , 0, 10}]

sol = Evaluate@Table[x[ t ] / . s [x0] , {x0 , 0.01, 2, .2}];
Plot [ sol , {t , 0, 10}, PlotRange −> All , TicksStyle −> Directive [18]]

The logistic growth model gives good results for the growth of simple organisms
such as bacteria under ideal conditions. However, for more complex species, it fails.

Example 7.
Ṅ = −aN ln(bN), a, b > 0.

The fixed points are N = 0, N = 1
b . A graphical analysis shows that the N = 0 is

unstable and N = 1/b is stable.

Plot[-n*Log[2 n], {n, 0, .8}, TicksStyle -> Directive[18]]

0.2 0.4 0.6 0.8

-0.4

-0.3

-0.2

-0.1

0.1

0.2

Figure 9: The plot of f(N) = −aN ln(bN), for a = 1, b = 2.
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Figure 10: The solutions of Ṅ = −aN ln(bN), for a = 1, b = 2 with different initial
conditions. See Listing 3.

2.4. Linear Stability Analysis

Let x∗ be a fixed point of (2), that is f(x∗) = 0. Then x∗ is stable if f ′(x∗) < 0, unstable
if f ′(x∗) > 0.
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Proof. Let x(t) be any solution which stays “sufficiently close” to x∗ for all t.

η(t) = x(t)− x∗

Then we assume that η(t) is small for all t. If limt→∞ η(t) = 0 then x∗ is stable, and
unstable otherwise (why?).

Taylor’s expansion:

η̇ = ẋ = f(x∗ + η) = f(x∗) + f ′(x∗)η +
f ′′(x∗)

2!
η2 + · · · = f ′(x∗)η +O(η2)

since f(x∗) = 0. Here O(η2) denotes the remaining terms with ηk, k ≥ 2. Now if
f ′(x∗) ̸= 0 and if η is “small enough” then O(η2) part can be ignored:

η̇ ≈ f ′(x∗)η (5)

This equation is called the linearization of (2) at the fixed point x = x∗.
Since η(t) is small, η(t) ≈ exp(f ′(x∗)t)C.

lim
t→∞

η(t) = 0, if f ′(x∗) < 0

When f ′(x∗) > 0, as t increases η becomes larger and limt→∞ η(t) ̸= 0. (Note: when
f ′(x∗) > 0, η(t) ≈ exp(f ′(x∗)t)C is no lorger valid for large t as ignoring the O(η2)

terms is not valid when η is not small.)

Example 8. Logistic equation: f(N) = rN(1 − N/K) with fixed points N∗ = 0 and
N∗ = K. Then f ′(0) = r > 0, so that N∗ = 0 is unstable and f ′(K) = −r < 0 so that
N∗ = K is stable.

Example 9. What can be said about stability of a fixed point when f ′(x∗) = 0?
Nothing. Consider

(a) ẋ = −x3, (b) ẋ = x3, (c) ẋ = x2, (d) ẋ = 0,

All these systems have a fixed point x∗ = 0 with f ′(0) = 0. However the stability is
different in each case. In (c) x∗ = 0 is called half-stable. In (d), the x-axis is a line of
fixed points. Each fixed point is marginally stable, the perturbations do not decay to
zero, but they do not grow either.

Such examples seem artifical but they arise naturally in the context of bifurcations.
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Figure 11: The graphs of (a)−x3, (b) x3, (c) x2, (d) 0.

2.5. Existence and Uniqueness Theory

Example 10. Show that the solution to ẋ = x1/3 with x(0) = 0 is not unique.
One solution is x(t) = 0. Another solution is∫

x−1/3dx =

∫
dt

which gives 3
2x

2/3 = t + C. The initial condition gives C = 0. Hence x(t) =
(
2
3 t
)3/2

is
another solution.

When uniqueness fails, our geometric approach fails. The system can not choose
how to evolve.

Problem. Show that the above system has infinitely many solutions. Answer. In
fact

x(t) =

{
0, t ≤ c(
2
3 (t− c)3/2

)
, t > c

is a solution for each c ≥ 0.
The reason of non-uniqueness: the slope f ′(0) = ∞, the fixed point 0 is very unsta-

ble.
Existence and uniqueness theorem. If f and f ′ are continuous then the IVP

(initial value problem)
ẋ = f(x), x(0) = x0

has a unique solution x(t) defined on some interval (−τ, τ).
Remark. The continuity condition of f , f ′ can be replaced by the weaker condition

of f being Lipschitz continuous.
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Example 11. Consider the IVP

ẋ = 1 + x2, x(0) = 0

By the above theorem, a unique solution exists. We can find the solution by sepa-
ration of variables: ∫

dx

1 + x2
dx =

∫
dt =⇒ arctanx = t+ C

By the initial condition, x(t) = tan t. The solution exists only for −π/2 < t < π/2

as x(t) → ±∞ as t → ±π/2. There is no differentiable function defined on a larger
interval which solves the IVP. This phenemenon is called finite time blow-up.

2.6. Impossibility of Oscillations

In all our examples so far, all trajectories either approached a fixed point, or diverged
to ±∞. In fact, those are the only things that can happen for a vector field on the real
line.

The solutions can not oscillate in 1D systems.

Figure 12: This can not be the solution of an autonomous 1D differential equation
ẋ = f(x).

Theorem 1. Suppose x(t) is a solution of ẋ = f(x). Then it is not possible that
x(t+ T ) = x(t) for some t and T > 0 while x(t+ s) ̸= x(t) for 0 < s < T .

Proof. Suppose on the contrary x(t) = x(t + T ) for some T > 0 and x(t) ̸= x(t + s) for
all 0 < s < T . Suppose F ′ = f (such F always exists when f is continuous)

0 <

∫ t+T

t

(
dx(s)

ds

)2

ds =

∫ t+T

t

f(x(s))
dx(s)

ds
ds

=

∫ t+T

t

d

ds
(F (x(s))) ds = F (x(t+ T ))− F (x(t)) = 0

Since oscillations are not possible, the only possible solutions of 1D autonomous
ODE are

• constant (equilibrium) solutions,

• solutions that monotonically approach an equilibrium solution,

• solutions that monotonically tend to ±∞ in finite/infinite time.
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2.7. Potentials

A 1D autonomous system
ẋ = f(x) (6)

can always be put into gradient form

ẋ = −dV

dx
. (7)

by letting

V (x) = −
∫

f(x)dx

The function V (x) is called the potential function of the system (6).

Lemma 1. For any solution x(t), V (x(t)) is non-increasing function of time t. V (x(t))

is a strictly decreasing function of t if x(t) is not an equilibrium solution.

Proof. If x(t) is a solution then

d

dt
V (x(t)) =

dV

dx
ẋ = −ẋ2 ≤ 0

A conclusion of the above lemma is the following.

Theorem 2. Suppose that the domain of f is R and f is a smooth function. Then the
local minima of V are stable equilibrium solutions of (6) and the local maxima of V are
unstable equilibrium solutions of (6).

Proof. Since the domain of f has no boundary and f ′ is defined everywhere by smooth-
ness, at a local extremum point x∗ of V , dV (x∗)

dx = 0. By (7), x∗ is an equilibrium solution
of (6).

Example 12.
ẋ = −x

Then V (x) = −
∫
−xdx = x2. (choose C = 0).

1st viewpoint. For any initial condition x(0) = x0,

lim
t→∞

x(t, x0) = 0 = min
x∈R

V (x)

That is any solution tends to the fixed point which is the minima of V which is x = 0.
2nd viewpoint. The graph analysis of y = f(x) shows that x = 0 is a stable equilib-

rium.
3rd viewpoint. Since f ′(x) = −1, linear stability analysis says that x = 0 is a stable

equilibrium point.
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Example 13. A bistable system: ẋ = x − x3. This time V = − 1
2x

2 + 1
4x

4 known as
double well potential. There are two stable fixed points ±1 which are minima of V and
an unstable fixed point 0 which a maxima of V .

Figure 13: V = − 1
2x

2 + 1
4x

4

Chapter 2 Homework

• 2.2: 1, 3, 7, 8, 9

• 2.3: 1 (Solve the logistic equation (4)), 3, 4

• 2.4: 1, 3, 7, 8

• 2.5: 3, 4

• 2.6: 2

• 2.7: 1, 6

Chapter 3. Bifurcations

The qualitative structure of the flow can change as parameters are varied such as
fixed points can be created or destroyed, or their stability can change. These quali-
tative changes in the dynamics are called bifurcations, and the points (x∗, r∗) with
different types of dynamical behaviors in each neighborhood are called (local) bifur-
cation points.

3.1. Saddle-Node Bifurcation

In a saddle-node bifurcation, as a parameter is varied, two fixed points move toward
each other, collide, and mutually annihilate.

ẋ = r + x2 (8)

where r ∈ R is a parameter. (8) is the prototypical example of a saddle-node bifurca-
tion.
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Figure 14: Fixed points and their stability for (8). (x, r) = (0, 0) is a bifurcation point.

Figure 15: Bifurcation diagram of (8). This is the graph of equilibrium solutions of
ẋ = r+ x2, that is r = −x2. The solution curve x =

√
−r is unstable while x = −

√
−r is

stable.

Example 14. Give the linear stability analysis of (8).
Solution. There are two fixed points x∗ = ±

√
−r for r < 0, 1 for r = 0 and none

for r > 0. For r < 0, f ′(
√
−r) = 2

√
−r > 0 and x∗ = −

√
−r is unstable, f ′(−

√
−r) =

−2
√
−r < 0 and x∗ = −

√
−r is stable.

Example 15. Show that ẋ = r − x − e−x undergoes a saddle-node bifurcation as r is
varied. Find the bifurcation point.
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At the bifurcation point, y = r − x and y = ex become tangent.

e−x = r − x, and
d

dx
e−x =

d

dx
(r − x)

From the second equation, e−x = 1 so x = 0. The first equation yields r = 1. The
bifurcation point (x, r) = (0, 1).

Theorem 3 (No Bifurcation Theorem). Suppose

f(x∗, r∗) = 0.

If
∂f

∂x
(x∗, r∗) ̸= 0

then the equation
f(x, r) = 0

has a unique solution x = g(r) for each r in a sufficiently small neighborhood of r∗.

Proof. This is basically the statement of the implicit function theorem.

Example 16. Show that ẋ = r − x− ex has NO bifurcation as r is varied.
This is because fx(x, r) = −1 − ex < 0. It can be seen easily that the system has

always a stable fixed point.

3.2. Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values of
a parameter and can never be destroyed. For example, for population models, zero
equilibrium is always a solution. However, such a fixed point may change its stability
as the parameter is varied. The transcritical bifurcation is the standard mechanism
for such changes in stability.

The normal form for a transcritical bifurcation is

ẋ = rx− x2 (9)

There is a fixed point at x∗ = 0 for all values of r.

Figure 16: Fixed points and their stability for (9). (x, r) = (0, 0) is a bifurcation point.
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Figure 17: Bifurcation diagram for (9). This is also known as exchange of stabilities.

3.4. Pitchfork Bifurcation

This bifurcation is common in physical problems that have a symmetry. For example,
many problems have a spatial symmetry between left and right. In such cases, fixed
points tend to appear and disappear in symmetrical pairs.

Two types of pitchfork bifurcation.
Supercritical pitchfork bifurcation.

ẋ = rx− x3 (10)

Figure 18: Phase portrait for (10). x = 0 is always a fixed point. (x, r) = (0, 0) is a
bifurcation point. For r < 0 the origin is the only fixed point which is stable. For r > 0,
x = 0 is unstable, and there are two other fixed point x = ±

√
r which are stable.
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Figure 19: Bifurcation diagram for (10).

Figure 20: The potential function V (x) = −1
2 rx2 + 1

4x
4 of the equation (10). When

r < 0, x = 0, is a minimum of V . When r > 0, x = ±
√
r are minima of V .

Example 17. Analyze the subcritical pitchfork bifurcation

ẋ = rx+ x3.

3.7. Insect Outbreak

Ṅ = RN

(
1− N

K

)
− p(N)

• N(t) is the budworm population.

• K is the carrying capacity.

• R is the birth rate of the budworms.

• p(N) is the predation term.
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There are different ways of choosing the predation term. Here

p(N) =
BN2

A2 +N2
.

refuge

bistable

outbreak

0 10 20 30 40
r0.0

0.2

0.4

0.6

0.8
k

Figure 21: Insect outbreak bifurcation diagram. See Code 1.

Code 1.
r = (2 x^3)/(x^2 - 1);
k = (2 x^3)/(1 + x^2)^2;
pp = ParametricPlot[{r, k}, {x, 1.001, 20}, AspectRatio -> 1,

PlotRange -> {{0, 40}, {0, 0.8}}, AxesLabel -> {"r", "k"}];
te = Graphics[{Text[Style["refuge", 12], {10, .2}],

Text[Style["bistable", 12], {20, .4}],
Text[Style["outbreak", 12], {20, .6}]}];

Show[pp, te, ImageSize -> Small]

Chapter 3 Homework

• 3.1: 1, 3

• 3.2: 1, 4

• 3.4: 1, 3, 7, 8

• 3.7: 1, 2

Chapter 5. Two dimensional linear systems

5.1. Definitions and Examples

A two dimensional (autonomous) linear system is of the form

ẋ(t) = ax(t) + by(t)

ẏ(t) = cx(t) + dy(t)
(11)

17



where a, b, c, d are parameters. Letting

x(t) =

[
x(t)

y(t)

]
, A =

[
a b

c d

]
this system can be written in the compact form

ẋ = Ax

This system has the special property of superposition principle. Namely, if x1(t) and
x2(t) are any two solutions then so is c1x1 + c2x2 for any choice of constants c1, c2.

Equilibrium solutions of this system is given by the set of solutions of

ax+ by = 0

cx+ dy = 0

For linear systems (11), the origin

x∗ = 0 =

[
0

0

]
is always an equilibrium solution which is sometimes called the trivial equilibrium.
Basic linear algebra says that no other equilibria exists if detA ̸= 0. On the other hand,
if det(A) = 0 then there are infinitely many equilibria.

A solution (x(t), y(t)) can be visualized as a trajectory in the xy-plane, called the
phase plane, which is always tangent to the vector field (ax + by, cx + dy). The lines
ax+ by = 0 and cx+ dy = 0 are called nullclines of this vector field. The intersection
of the nullclines yield the equilibria, one of which is always located at the origin as
discussed.

Figure 22: Mass hanging from a linear spring.

Example 18. According to Hooke’s Law1, the mass hanging from a linear spring is
modeled by

mẍ+ kx = 0

where k > 0 is a characteristic of the spring, and m > 0 is the mass. See Figure 22.
We convert this equation to a 2d system by writing

ẋ = v

v̇ = −ω2x.

1Hooke’s Law is an accurate approximation as long as the forces and deformations are small enough.
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where ω2 = k/m. The vector plot Figure 23 and the stream plot Figure 24 for ω = 1.5

are produced by Code 2.
The only fixed point is the origin which corresponds to mass sitting at the equilib-

rium forever. Besides there are infinitely many closed trajectories around the origin.
These correspond to time-periodic motions of the spring. See Figure 25.

Code 2. w = 1.5;
VectorPlot[{v, -w^2*x}, {x, -1, 1}, {v, -1, 1}, Axes -> True,
AxesLabel -> {x, v}]
StreamPlot[{v, -w^2*x}, {x, -1, 1}, {v, -1, 1}, Axes -> True,
AxesLabel -> {x, v}]
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Figure 23: The vector plot for (v,−ω2x).
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Figure 24: The stream plot for (v,−ω2x).
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Figure 25: Closed trajectories correspond to time periodic motions of the spring.

Example 19. Sketch the phase portrait of ẋ = Ax where A =

[
a 0

0 −1

]
for different a

showing qualitatively different cases.
Since the equations are uncoupled, the solution is easy to obtain

x(t) = x0e
at, y(t) = y0e

−t

From this, we can obtain

y−a = y−a
0 eat =

y−a
0

x0
x

or
x =

c

ya

From this we can obtain Figure 26. When a < 0, we will call the origin a stable node,
when a > 0 we will call it a saddle. The case a = 0 is a degenerate case, where each
point on the x-axis is an equilibrium.

When the origin is a saddle, there are two important manifolds. The stable man-
ifold is the set of initial conditions x0 such that x(t) → x∗ = 0 as t → ∞. For this
example the stable manifold of the origin is the y-axis. Similarly one defines unstable
manifold as the set of initial conditions x0 for which x(t) → 0 as t → −∞. The stable
manifold of the origin is the x-axis.
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Figure 26:

Stability Language

Let x∗ be an equilibrium of an autonomous dynamical system

ẋ = f(x), x(0) = x0

1. x∗ is said to be Lyapunov stable if for every ϵ > 0 there exists a δ > 0 such that
if ∥x(0)− x∗∥ < δ then ∥x(t)− x∗∥ < ϵ, for every t ≥ 0.

2. x∗ is said to be attracting if there exists δ > 0 such that if ∥x(0)− x∗∥ < δ then
limt→∞ ∥x(t)− x∗∥ = 0.

3. x∗ is said to be asymptotically stable if it is Lyapunov stable and attracting.

4. x∗ is said to be neutrally stable if it is Lyapunov stable but not attracting.

The origin is Lyapunov stable Figure 26a-d, asymptotically stable in Figure 26a-c,
neutrally stable in Figure 26d.

It is possible for an equilibrium to be attracting while not being Lyapunov stable,
see Figure 27.

Figure 27: For θ̇ = 1− cos θ, θ∗ = 0 is an attracting equilibrium which is not Lyapunov
stable.
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5.2. Classification of Linear Systems

To find the general solution of (11), we assume a solution of the form

x(t) = eλtv

Plugging this into the equation, we get

Ax = λx

This means that λ is an eigenvalue and v is the corresponding eigenvector.
Recall that the eigenvalues can be found by the roots of the characteristic equation

0 = det(A− λI) = λ2 − τλ+∆

where τ = tr(A) = a+ d and ∆ = detA = ad− bc. The eigenvalues are thus given by

λ1,2 =
τ ±

√
τ2 − 4∆

2

The case τ2 − 4∆ > 0

In this case the eigenvalues λ1, λ2 are distinct and real. From linear algebra we know
that the eigenvectors v1 and v2 corresponding to distinct eigenvalues are linearly
independent and thus span R2. Hence the initial condition can be written as a linear
combination

x0 = c1v1 + c2v2

for some c1, c2. Since the equation is linear, the superposition of two solutions is also
a solution. Hence

x(t) = c1e
λ1tv1 + c2e

λ2tv2

is a solution. It also satisfies the initial condition x(0) = x0. By uniqueness theorem, it
is the only solution.

If the initial condition x0 lies on the direction of v1 then c2 = 0. In this case x(t) lies
in the direction of v1 for all t. If λ1 < 0, this straight line orbit is towards the origin. If
λ1 > 0, this straight line orbit is away from the origin.

The case λ1 < 0 < λ2.
For any initial condition not on the eigen-directions, v1 component of the solution

vanishes and the solution tends to infinity along the direction v2. The origin is called
a saddle point and is unstable.

x

y

v1

v2

Figure 28: λ1 < 0 < λ2. The origin is called a saddle point.
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The case λ1 < λ2 < 0.
In this case, since eλ1t ≪ eλ2t for large t, the v1 component of the solution decays

faster than the v2 component of the solution. All the orbits tend to the origin tangent
to the slow direction v2 as t → ∞. v1 direction is called the fast direction and
v2 direction is called the slow direction. The origin is called a stable node and is
asymptotically stable.

x

y

v1

v2

Figure 29: λ1 < λ2 < 0. The origin is called a stable node.

The case 0 < λ1 < λ2.
In this case the orbits tend to infinity parallel to the fast direction v2 as t → ∞.

Similarly they tend to the origin tangent to the slow direction v1 as t → −∞. The
origin is called an unstable node.

x

y

v2

v1

Figure 30: 0 < λ1 < λ2. The origin is called a stable node.

The case λ1 < λ2 = 0.
In this case, the solution becomes

x(t) = c1e
λ1tv1 + c2v2

If the v1 part of the initial condition is zero then c1 = 0 and the solution is an equilib-
rium solution x(t) = c2v2. Thus any point in the direction of v2 is an equilibrium. In
other words, there are infinitely equilibria. The origin (and every other equilibria) are
neutrally stable.
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x

y

v1

v2

Figure 31: λ1 < λ2 = 0. There are infinitely many equilibria along the direction of v2.
The origin (and every other equilibria) are neutrally stable.

The case 0 = λ1 < λ2. Similar to the above case but reverse in direction.

The case τ2 − 4∆ < 0

In this case, the eigenvalues are λ1 = λ2 ∈ C \ R and λ1 = α + iβ where α, β ∈ R and
β ̸= 0. Also the eigenvectors are v1 = v2 = a+ ib. Then by Euler’s formula

eλ1tv1 = eαt (cosβt+ i sinβt) (a+ ib) = u(t) + iv(t)

where
u(t) = eαt(a cosβt− b sinβt)

v(t) = eαt(a sinβt+ b cosβt)

It can be shown that u(t) and v(t) are linearly independent solutions. The general
solution can be written as

x(t) = c1u(t) + c2v(t) = eαt (A cosβt+B sinβt)

where
A =(c1a+ c2b)

B =(c1a− c2b)

If α < 0 then the solutions spiral towards the origin as t → ∞. The origin is called
a stable spiral and is asymptotically stable.

-2 -1 1 2
x

-1

1

2

y

Figure 32: The origin is a stable focus if the real part of λ1 < 0. See Listing 4 for the
code.
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Listing 4: Code for Figure 32
a = {1, 2};
b = {−3, 1};
c = −0.1;
d = 1;
ParametricPlot[{Exp[c* t ] (a*Cos[d* t ] + b*Sin [d* t ])} , {t , 0, 6 \ [ Pi ]} ,

PlotRange −> Full , TicksStyle −> Directive [FontSize −> 16] ,
AxesLabel −> {Style ["x" , Bold , 16] , Style ["y" , Bold , 16]}] / .

Line[x_ ] :> {Arrowheads[{0. , 0.05, 0.05, 0.05}] , Arrow[x]}

If α > 0 then the solutions spiral away from the origin to infinity. The origin is
called an unstable spiral.

-15 -10 -5 5 10 15 20
x

-10

-5

5

10

y

Figure 33: The origin is an unstable focus if the real part of λ1 > 0.

If α = 0, then the solutions are given by

x(t) = A cosβt+B sinβt

Note that if x(0) = A. Moreover, if A ̸= 0 then The solutions with initial condition
x0 ̸= 0 are periodic with period 2π/β. The closed orbits are ellipses. The origin is
called a center.

-3 -2 -1 1 2 3
x

-2

-1

1

2

y

Figure 34: The origin is a center if the real part of λ1 = 0. Here the orbits corre-
sponding to five different initial conditions are shown.

5.3. Love Affairs: To do

Chapter 5 Homework

1. 5.1: 1, 2, 10ad.

2. 5.2: 1, 2, 3, 6, 9, 11.
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Chapter 6. Two dimensional nonlinear systems

6.1 Phase Portraits

Watch: https://www.youtube.com/watch?v=9yh9DmNqdk4
We consider systems of the form

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)
(12)

or by defining x = (x1, x2), f = (f1, f2) we have

ẋ = f(x)

We can also consider an initial point

x(0) = x0

For each initial point x0, suppose there is a solution (existence and uniqueness theo-
rem) which we denote by

x(t;x0)

For each x0, the curves
t → x(t;x0)

is called an integral curve of (12). The parametric plot of these curves in the x-y
plane is called the phase portrait of (12).

Figure 35: A typical phase portrait.

Some interesting features of a typical phase portrait such as Figure 35

1. If f(x∗) = 0 then x(t,x∗) = x∗ for all t ∈ R. The fixed points like A, B, C
where f(x∗) = 0 which correspond to steady state solutions also known as
equilibrium solutions. These solutions are independent of time, that is they
are constant.

2. The closed orbits like D which correspond to periodic solutions, i.e. solutions
with x(t
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Listing 5: Code for Figure 37
plot1 = StreamPlot[{x + Exp[−y] , −y}, {x , −3, 2}, {y , −2, 3}];
plot2 = ParametricPlot[{−Exp[−y] , y}, {y , −2, 3}, PlotStyle −> {Red, Dashed}];
Show[ plot1 , plot2 , Axes −> True , AxesStyle −> Directive [Thick , Dashed, Gray] ]

Example 20 (Example 6.1.1).
ẋ = x+ e−y

ẏ = −y
(13)

Sketch the phase portrait.
Solution. The only fixed point is (−1, 0). To determine its stability, note that y(t) → 0

as t → ∞ and for large t, ẋ ≈ x + 1 which has an exponentially growing solution and
the fixed point is unstable.

Figure 36: Nullclines of (13).

-3 -2 -1 0 1 2

-2

-1

0

1

2

3

Figure 37: Phase portrait of (13). Red dashed contour is x + e−y = 0 which is not an
integral curve

6.3. Fixed Points and Linearization

ẋ = f(x, y)

ẏ = g(x, y)
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Suppose (x∗, y∗) is a fixed point, that is

f(x∗, y∗) = g(x∗, y∗) = 0

Consider small deviations,

u(t) = x(t)− x∗, v(t) = y(t)− y∗

u̇ = ẋ = f(x, y) = f(x∗ + u, y∗ + v) = f(x∗, y∗) + u
∂f

∂x
(x∗, y∗) + v

∂f

∂y
(x∗, y∗) + h.o.t.

v̇ = ẋ = g(x, y) = g(x∗ + u, y∗ + v) = g(x∗, y∗) + u
∂g

∂x
(x∗, y∗) + v

∂g

∂y
(x∗, y∗) + h.o.t.

Let the Jacobian matrix be

A =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
Since f(x∗, y∗) = g(x∗, y∗) = 0, if we neglect h.o.t, we have linearization about x∗.[

u̇

v̇

]
=

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

] [
u

v

]
Question. Does linearization give qualitatively correct dynamics near a fixed point
x∗?

Answer. Yes if the real parts of the eigenvalues of the Jacobian matrix are non-
zero. That is when x∗ is a saddle, a node or a spiral. But borderline cases (degenerate
node, star, center, non-isolated fixed point) can be altered by the nonlinear terms.

Here is an example where the center of linear system is altered by nonlinear terms.

Example 21.
ẋ = −y + ax

(
x2 + y2

)
ẏ = x+ ay

(
x2 + y2

)
Show that the linearized system incorrectly predicts that the origin is a center for all
values of a, whereas in fact the origin is a stable spiral if a < 0 and an unstable spiral
if a > 0.

Solution.
The Jacobian is

A =

(
0 −1

1 0

)
which has trace τ = 0 and determinant ∆ = 1 > 0. Thus the origin is a center.

To analyze the nonlinear system, we change variables to polar coordinates. Let
x = r cos θ and y = r sin θ.

x2 + y2 = r2 =⇒ xẋ+ yẏ = rṙ

rṙ = ar4 =⇒ ṙ = ar3

θ = arctan
(y
x

)
=⇒ θ̇ =

xẏ − yẋ

r2

ṙ = ar3

θ̇ = 1
(14)
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Figure 38: Behavior of (14)

6.4. Rabbits vs Sheep

Lotka-Volterra model of competition: x(t) is the population of rabbits, y(t) is the popu-
lation of sheep. x, y ≥ 0.

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

If y = 0, rabbits grow as ẋ = x(3 − x), this is logistic growth. The effect of sheep on
rabbits is −2xy.

Fixed points: (0, 0), (3, 0), (0, 2), (1, 1). Jacobian matrix is

A =

[
3− 2x− 2y −2x

−y 2− x− 2y

]
For (0, 0): λ1 = 3, λ2 = 2 unstable node. Trajectories leave along λ2 = 2 direction
e2 = (0, 1)T .

For (0, 2): λ1 = −1, λ2 = −2 stable node. Trajectories approach along λ1 = −1

eigendirection which is 1
−2

For (3, 0): λ1 = −3, λ2 = −1 stable node.
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For (1, 1): τ = −2, ∆ = −1, a saddle

Combining all together

The phase portrait has an interesting biological interpretation. It shows that one
species generally drives the other to extinction. Trajectories starting below the stable
manifold lead to eventual extinction of the sheep, while those starting above lead to
eventual extinction of the rabbits. This dichotomy occurs in other mod- els of compe-
tition and has led biologists to formulate the principle of competitive exclusion, which
states that two species competing for the same limited resource typically cannot coex-
ist.

6.5. Conservative Systems

Watch: https://www.youtube.com/watch?v=3s2lmZspEU8
Consider mechanical system with 1 degree of freedom

mẍ = F (x) = −dV

dx

mẍẋ+
dV

dx
ẋ = 0 =⇒ d

dt

(
1

2
mẋ+ V (x)

)
= 0

Hence the total energy

E =
1

2
mẋ2 + V (x) ≡ C

For ẋ = f(x), E(x) is a conserved quantity if E(x) is a continuous, real valued
function that is constant on trajectories, that is dE

dt = 0, and not identically constant
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on any open set (otherwise E(x) = 42 is a conserved quantity). If a system has a
conserved quantity, then it is called a conservative system.

Note that E is constant on trajectories mean that trajectories must lie on the level
sets of E (sets on which E is constant).

Example 22. A conservative system cannot have any attracting/repelling fixed points.
Solution. Suppose x∗ were an attracting fixed point. Then E(x∗) would be constant

on the basin of attraction of x∗.

Example 23. Consider the double well potential V (x) = − 1
2x

2+ 1
4x

4 with mass m = 1.

ẍ = x− x3.

ẋ = y

ẏ = x− x3

The equilibria are (0, 0), (±1, 0). The Jacobian is

A =

[
0 1

1− 3x2 0

]
At (0, 0), ∆ = −1 which is a saddle. At (±1, 0), τ = 0, ∆ = 2 which are centers. We know
that small nonlinear terms can destroy centers predicted by the linear approximation.
But here they are actually centers.

Recall E = 1
2y

2 − 1
2x

2 + 1
4x

4. Trajectories lie on the sets E = c, c ∈ R. So we need
plot the contours of E = c.

To sketch this graph one can use Mathematica:

ContourPlot[y^2/2 - x^2/2 + x^4/4,{x,-2, 2}, {y -2, 2}]

To manually sketch:

1. Near (0, 0), ignore x4 term,

E ≈ y2/2− x2/2 = C

which are hyperbolas.

2. Near (1, 0), (x+ 1)2 ≈ 4 and

E = y2/2− 1/4(x− 1)2(x+ 1)2 ≈ y2/2− (x− 1)2 = C ′

which are ellipses.

3. The vector field is vertical, ẋ = 0 on the line y = 0. The vector field is horizontal,
ẏ = 0 on the lines x = −1, x = 0, x = 1.

4. The contours have symmetries x → −x and y → −y. So the picture will be
symmetric with respect to both x and y axes.
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Figure 39: Contours of E = 1
2y

2 − 1
2x

2 + 1
4x

4

Thus solutions of the system are typically periodic, except for the equilibrium solu-
tions and two very special trajectories: which start and end at (0, 0) called homoclinic
orbit. They are common in conservative systems but are rare otherwise.

Figure 40: The graph of V (x) = − 1
2x

2 + 1
4x

4. Periodic orbits can be understood as the
oscillations of the particle in the double well. The homoclinic orbit corresponds to the
trajectory of a particle with just enough energy to end up (in infinite time) at the top.

Figure 41: Graph of E = 1
2y

2− 1
2x

2+ 1
4x

4. The local minima of E correspond to centers
at (±1, 0) while the saddle of E corresponds to the saddle (0, 0).

Theorem 4. Let ẋ = f(x) be a system with a conserved quantity E. At the local
isolated minima/maxima of E (since the contours of E are closed by the Morse Lemma)
the system has a fixed point which is center. At the isolated saddles of E the system
has a saddle.

Recall that the critical point of E(x, y) are given by ∂E
∂x = ∂E

∂y = 0. Moreover let

∆E =

∣∣∣∣Exx Exy

Eyx Eyy

∣∣∣∣
1. If ∆E > 0 and Exx > 0 at (x0, y0) then E has an isolated local minimum at (x0, y0).

2. If ∆E > 0 and Exx < 0 at (x0, y0) then E has an isolated local maximum at (x0, y0).

3. If ∆E < 0 then E has an isolated saddle at (x0, y0).
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6.7. Pendulum

Example 24. Pendulum: θ̈ + sin θ = 0. Let v = θ̇. This is a conservative system with
potential − sin θ = −V ′(θ) and V (θ) = − cos θ and energy E = v2/2 − cos θ. Critical
points of E occur at ∂E

∂θ = 0, ∂E
∂v = 0 which are θ = 0, sin θ = 0. The critical points are

(0, nπ), n ∈ Z.

∆E =

∣∣∣∣cos θ 0

0 1

∣∣∣∣ = cos θ

E has a local minimum at (θ, v) = (0, 2nπ), n ∈ Z. E has saddles at (θ, θ̇) = (0, π +

2nπ), n ∈ Z.

Figure 42: Graph of E = θ̇2/2− cos θ.

6.8. Index Theory

https://www.youtube.com/watch?v=O2fcpxLT5wk Index theory is a method that pro-
vides global information about the phase portrait.

Let ẋ = f(x), x ∈ R2. Consider a simple (not intersecting itself) closed curve C

which does not pass through any fixed points of f . Note that C is not necessarily a
trajectory. At each point on C, we can define the angle ϕ = arctan(ẏ/ẋ).

The index of the closed curve with respect to the vector field f is

IC =
1

2π
[ϕ]C

where [ϕ]C is the net change in angle as the curve is transversed counterclockwise.
Note that IC must be an integer which is the number of net revolutions.
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Figure 43: IC = 1.

Figure 44: IC = −1.

Example 25. Given ẋ = x2y, ẏ = x2 − y2 find IC where C is the unit circle.

Figure 45: IC = 0.

Properties of the Index

1. If C can be continuously deformed into C ′ without passing through a fixed point
then IC = IC′ . proof. IC changes continuously and is an integer. It must be
constant.

2. If C does not enclose any fixed points then IC = 0. proof. By the previous
property, shrink C to a tiny circle C ′ without changing the index. But IC′ = 0

since the vector field is almost constant on C ′.

3. If we reverse the arrows by t → −t the index is unchanged. proof. All angles
change from ϕ to ϕ+ π and the net change in ϕ stay the same.
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4. Index of a closed trajectory = +1.

Figure 46: Index of a closed trajectory = +1.

Index of a Point Suppose x∗ is an isolated fixed point of f . Then the index of I of
x∗ is defined as IC where C is any closed curve that encloses x∗ and no other fixed
points. By (1) above, index of a point is well-defined.

Index of a stable node is 1. By property (3) index of an unstable node is also 1.
Index of a saddle is -1. Index of a non fixed point is 0.

Spirals, centers, degenerate nodes and stars all have index 1. Thus, a saddle point
is truly a different animal from all the other familiar types of isolated fixed points.

Theorem 5. Any closed trajectory on R2 must enclose at least one fixed point.
Moreover if it encloses n fixed points with index Ii, then

IC = I1 + I2 + · · · In

Figure 47: Idea of the proof.

Proof.

We can use index theory to rule out closed trajectories.

Figure 48: A closed trajectory in the plane can enclose two centers and a saddle but
not two saddles and a center.
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Example 26. Rabbit vs sheep system.

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)

with x, y ≥ 0. As shown before there are 4 fixed points (0, 0) unstable node; (0, 2)

and (3, 0) stable nodes; (1, 1) saddle point. There can be no closed trajectory for this
system.

Figure 49: Rabbit sheep system can not have any closed trajectory.

Example 27. Show that the system ẋ = xe−x, ẏ = 1 + x + y2 has no closed orbits.
Solution. This system has no fixed points so it can not have any closed orbits.

Index theory can be generalized to 2-manifolds.

Remark 1. A neighborhood of an equilibrium point consists of the following sectors:

1. Elliptic sectors filled with orbits starting and ending at the equilibrium.

2. Hyperbolic sectors filled with orbits roughly resembling hyperbolas.

3. Parabolic sectors filled with orbits having only one end at the equilibrium.

Figure 50: Sectors of a neighborhood of an equilibrium.
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Bendixon’s formula states that the index of an equilibrium is

1 +
e− h

2

where e is the number of elliptic sectors and h is the number of hyperbolic sectors.
For proof see 2.

Chapter 6 Homework

1. 6.1: 1, 3, 14

2. 6.3: 1, 3, 12, 13, 15

3. 6.4: 1, 2, 3

4. 6.8: 1, 2, 3, 4, 5, 7, 11, 13

Chapter 7. Limit Cycles.

7.0. Introduction

A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajecto-
ries are not closed; they spiral either toward or away from the limit cycle.

Theorem. Linear systems ẋ = Ax can not have limit cycles. Proof. They can have
non-isolated periodic orbits. Because if x(t) is a closed trajectory then so is cx(t) for
every c.

Example 28. Consider ṙ = r(1− r2), θ̇ = 1 where r ≥ 0. The system has a limit cycle
x(t) = cos(t+ θ0) and y(t) = sin(t+ θ0)

Figure 51: Stability of ṙ = r(1− r2).

2https://docs.univr.it/documenti/OccorrenzaIns/matdid/matdid940050.pdf
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Figure 52: Stable limit cycle of ṙ = r(1− r2), θ̇ = 1.

Figure 53: x coordinate of the solution of ṙ = r(1−r2), θ̇ = 1 with some initial condition.

7.2 Ruling Out Closed Orbits

Ways to rule out closed orbit (closed trajectory):
Index theory: if there is a closed orbit then the sum of indices of fixed points

inside must be +1. See the example: rabbit vs sheep system.
Gradient systems: Closed orbits are impossible in gradient systems ẋ = −∇V .

Because on a trajectory V is constant. So if C is closed trajectory corresponding to
the periodic solution x(t+ T ) = x(t) with T > 0 then

0 = V (x(T ))− V (x(0)) =

∫ T

0

dV (x)

dt
dt =

∫ T

0

∇V · ẋdt =
∫ T

0

−∥ẋ∥2 dt < 0

unless ẋ(t) = 0 for all 0 < t < T which implies the orbit is a fixed point and not a closed
trajectory.

Example 29. There are no closed orbits for ẋ = sin y, ẏ = x cos y. Solution. The system
is a gradient system with potential V = −x sin y.

Liapunov Functions Consider ẋ = f(x) with a fixed point at x∗. Suppose

1. L is positive definite. L(x) > 0 for all x ̸= x∗ and L(x∗) = 0.

2. L̇ is negative definite. L̇ < 0 for all x ̸= x∗.
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Then x∗ is globally asymptotically stable: for all initial conditions x(t) → x∗ as t → ∞.
In particular the system has no closed orbits.

For the proof:

L(x(t)) = L(x(0)) +

∫ t

0

L̇(x(s))ds < L(x(0)).

So L(x(t)) is decreasing and minimum of L(x) is at x = 0. The actual proof is a bit
more involved.

Example 30. Show that the system ẋ = −x+ 4y and ẏ = −x− y3 has no closed orbits
by using a Liapunov function of the form L(x, y) = x2 + ay2, choosing a carefully.

Solution. Note that V (x) > 0 for all x ̸= 0. V̇ = −2x2 + (8 − 2a)xy − 2ay4 which is
negative-definite if a = 4.

Disadvantage of the Liapunov method. No general way of finding a Liapunov func-
tion.

Dulac’s criterion. Let ẋ = f(x) be a smooth vector field on a simply connected
(no holes inside) subset R of the plane. If there exists a smooth real valued function
g(x) such that ∇ · (gẋ) has one sign on R then there are no closed orbits lying in R.

Proof. If C is a closed trajectory and n be its normal vector. Then
∮
C
gẋ · n = 0 since

ẋ · n = 0 on C. Let A be the region enclosed by C. By Green’s Theorem∫∫
A

∇ · (gẋ)dA =

∮
C

gẋ · n = 0

which is a contradiction since ∇ · (gẋ) has a single sign.

Figure 54: Proof of Dulac’s criterion.

Example 31. Show ẋ = x(2−x−y), ẏ = y(4x−x2−3) has no closed orbits on x, y > 0.
Solution. Pick g = 1/xy. See ∇ · (gẋ) < 0 and the domain is simply-connected.

Disadvantage of the Dulac’s method.
No general method for finding g. It is hard to guess a g.
Try g = 1, 1/(xy), 1/(xayb), ...

Example 32. Study example 7.2.5.

39



7.3 Poincaré-Bendixson Theorem

In this section we show methods to show the existence of closed orbits.
Poincaré-Bendixson Theorem. Suppose

1. R is closed, bounded region in R2.

2. ẋ = f(x) is smooth.

3. no fixed points in R.

4. there exists a trapped trajectory C: it starts in R and stays in R for all t.

Then either C is a closed trajectory or it spirals to a closed trajectory as t → ∞.

Figure 55: Region R in Poincaré-Bendixson Theorem will generally look like this be-
cause a closed trajectoy always encloseds a fixed point in the plane by the index theory.

Figure 56: The key to finding a trapped trajectory is to construct a trapping region
R where no trajectory can get out and all trajectories in R are trapped.

Example 33. Consider
ṙ = r(1− r2) + µr cos θ

θ̇ = 1

Show that a closed orbit exists for all 0 < µ < 1.
Solution. Fix µ. Construct a trapping region by seeking two concentric circles with

radii rmin > 0 and rmax > 0 such ṙ < 0 at r = rmax and ṙ > 0 at r = rmin. This
guarantees that the annulus rmin < r < rmax is a trapping region.

Notice that when µ = 0, ṙ < 0 if r > 1 and ṙ > 0 if r < 1. Since

r(1− r2 − µ) < ṙ < r(1− r2 + µ)
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choose
1− r2min − µ > 0 =⇒ 0 < r2min < 1− µ =⇒ 0 < rmin <

√
1− µ

and choose
1− r2max + µ < 0 =⇒ rmax >

√
1 + µ.

The result follows by Poincaré-Bendixson.

Example 34. Glycolosis (breaking down of sugar to get energy).

ẋ = −x+ ay + x2y

ẏ = b− ay − x2y

This is kinetic equation of glycolosis. x and y are concentrations of ADP and F6P,
a, b > 0.

Solution. Construct a trapping region by using nullclines (curves where ẋ = 0,
ẏ = 0.)

Figure 57: Nullclines of glycolosis system.
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Figure 58: Trapping region of glycolosis system. The right boundary has slope -1.

How to come up with the right upper vertex (b, b/a) of the trappring region? First
note that

x, y ≫ 1 =⇒ ẋ ≈ x2y, ẏ ≈ −x2y,
ẏ

ẋ
≈ −1

To better see

ẋ+ ẏ = b− x =⇒ ẏ

ẋ
< −1 if x > b.

Can we conclude that there is a closed orbit inside the trapping region? No! There
is a fixed point in the region (at the intersection of the nullclines), and so the condi-
tions of the Poincaré-Bendixson theorem are not satisfied. But if this fixed point is a
repeller, then we can prove the existence of a closed orbit by considering the modified
“punctured” region. Do a linear stability analysis to find that at the fixed point, the
determinant is ∆ = a+ b2 > 0 and the trace is τ > 0.

No Chaos in the Phase Plane by Poincaré-Bendixson

Dynamical possibilities in the phase plane are very limited: if a trajectory is confined
to a closed, bounded region that contains no fixed points, then the trajectory must
eventually approach a closed orbit. Nothing more complicated is possible.

In higher-dimensional systems, the Poincaré-Bendixson theorem no longer applies.
It may happen that trajectories may wander around forever in a bounded region with-
out settling down to a fixed point or a closed orbit.

7.5 Relaxation Oscillations

Mechanical and Electrical Vibrations

my′′ = −µy′ − ky
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This equation models both mechanical vibrations such as motion of a spring and elec-
trical vibrations in an electric circuit. In the case of mechanic spring, this follows from
the Newton’s Law. my′′ is the acceleration term, −ky is the restoring force due to the
spring, −µy′ term is the damping term.

Show the following:

1. Without damping µ = 0, this is just harmonic oscillator: all orbits are periodic
except when y(0) = y′(0) = 0.

2. If µ > 0, then all solutions decay to zero.

3. If µ < 0 then all solutions tend to infinity as t to∞.

The Van der Pol oscillator

The Van der Pol oscillator was originally proposed by the Dutch electrical engineer
and physicist Balthasar van der Pol while he was working at Philips. Van der Pol found
stable oscillations,[2] which he subsequently called relaxation-oscillations and are now
known as a type of limit cycle in electrical circuits employing vacuum tubes.

ẍ+ µ
(
x2 − 1

)
ẋ+ x = 0

1. Nonlinear damping: µ
(
x2 − 1

)
ẋ. For µ > 0, if x2 − 1 > 0 then the damping is

positive and the solutions decay, when x2 − 1 < 0 then the damping is negative
and the solutions are pumped. So it is plausible that the system will settle down
to some oscillation.

2. Using Poincaré-Bendixson type argument, we can show that there exists a unique
stable limit cycle for all µ > 0. The proof is elobarate.

Aim is to investigate: µ ≫ 1 (in this section), 0 < µ ≪ 1 (in the next section).
Trick: tricky change of variables.
Note:

ẍ+ µẋ(x2 − 1) =
d

dt

(
ẋ+ µ

(
1

3
x3 − x

))
Let

w = ẋ+ µF (x), F (x) =
1

3
x3 − x

From the equation
ẋ = w − µF (x)

ẇ = −x

Let
y =

w

µ

Then
ẋ = µ(y − F (x))

ẏ = − 1

µ
x
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For µ ≫ 1,

y − F (x) ∼ O(1) =⇒ |ẋ| ∼ O(µ) ≫ 1, |ẏ| ∼ O(µ−1) ≪ 1.

Hence the velocity is enormous in the horizontal direction except on the cubic null-
cline.

Figure 59: Van der Pol system. The graph has a local min at B = (1,− 2
3 ) and local max

at D = (−1, 2
3 ). Compute A by x3

3 − x = 2 which gives x = 2. So A = (2, 2
3 ). Similarly

C = (−2,− 2
3 ).

This analysis shows that the limit cycle has two widely separated time scales: the
crawls require ∆t ∼ O(µ). Why? Intution. On the crawls, y-speed is O(1/µ) and the
distance traveled is O(1). So the time = distance/speed = O(µ) ≫ 1. The jumps require
∆t ∼ O(µ−1).

10 20 30 40 50

-2

-1

1

2

mu = 10;
sol = NDSolve[{x’’[t] + mu*(x[t]^2 - 1) x’[t] + x[t] == 0, x[0] == .5,

x’[0] == .5}, x, {t, 0, 5*mu}];
Plot[x[t] /. sol, {t, 0, 5*mu}]

Example 7.5.2 Estimate the period for µ ≫ 1.
The period T ∼ 2×(time from A to B).

44



Between A and B, use the fact that w ≈ µF (x).

T = 2

∫ tB

tA

dt ≈ 2

∫ 1

2

dt

dw

dw

dx
dx = 2

∫ 1

2

(
−1

x

)(
µ(x2 − 1)

)
dx = µ (3− 2 ln 2)

which is O(µ) as expected.
The formula can be refined. With much work, one can show that

T ≈ µ (3− 2 ln 2) + 2αµ−1/3

where α ≈ 2.338 . . . is the smallest root of the Airy function.

Chapter 7 Homework

1. 7.1: 1, 3, 8.

2. 7.2: 1, 2, 6, 10, 12, 18

3. 7.3: 1, 3, 4, 5, 10.
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